1
|
Maestrini S, Diotallevi A, Santilli L, Canovari B, Orlandi C, Buffi G, Ceccarelli M, Galluzzi L. The use of conjunctival swabs in the diagnosis of human visceral leishmaniasis. Diagn Microbiol Infect Dis 2024; 110:116450. [PMID: 39029389 DOI: 10.1016/j.diagmicrobio.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Human visceral leishmaniasis (VL) is a severe disease whose diagnosis comprises immunological tests, microscopic biopsy examination, and biomolecular assays. In veterinary medicine, conjunctival swabs are widely used for detection of parasite DNA. Here, we describe the case of human VL in which conjunctival swabs were successfully used for Leishmania detection.
Collapse
Affiliation(s)
- Sara Maestrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Luca Santilli
- Unit of Infectious Diseases, San Salvatore Hospital, Azienda Sanitaria Territoriale Pesaro-Urbino, Pesaro, Italy
| | - Benedetta Canovari
- Unit of Infectious Diseases, San Salvatore Hospital, Azienda Sanitaria Territoriale Pesaro-Urbino, Pesaro, Italy
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
2
|
Aljedaie MM, Alam P. In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: Considering the RNAi-mediated gene control. Front Genet 2024; 14:1329339. [PMID: 38390455 PMCID: PMC10883313 DOI: 10.3389/fgene.2023.1329339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
3
|
Buffi G, Ceccarelli M, Diotallevi A, Abruzzese M, Bruno F, Castelli G, Vitale F, Andreoni F, Bencardino D, Magnani M, Galluzzi L. High-resolution melting (HRM)-based detection of polymorphisms in the malic enzyme and glucose-6-phosphate isomerase genes for Leishmania infantum genotyping. Parasit Vectors 2023; 16:282. [PMID: 37580789 PMCID: PMC10426199 DOI: 10.1186/s13071-023-05878-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/11/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.
Collapse
Affiliation(s)
- Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | | | - Federica Bruno
- OIE Leishmania Reference Laboratory, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, PA, Italy
| | - Germano Castelli
- OIE Leishmania Reference Laboratory, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, PA, Italy
| | - Fabrizio Vitale
- OIE Leishmania Reference Laboratory, Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, PA, Italy
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy.
| |
Collapse
|
4
|
Fernandes JCR, Gonçalves ANA, Floeter-Winter LM, Nakaya HI, Muxel SM. Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Front Genet 2023; 13:1051568. [PMID: 36685903 PMCID: PMC9845402 DOI: 10.3389/fgene.2022.1051568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil,Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra M. Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sandra M. Muxel,
| |
Collapse
|
5
|
Buffi G, Diotallevi A, Ceccarelli M, Bruno F, Castelli G, Vitale F, Magnani M, Galluzzi L. The host micro-RNA cfa-miR-346 is induced in canine leishmaniasis. BMC Vet Res 2022; 18:247. [PMID: 35761326 PMCID: PMC9235276 DOI: 10.1186/s12917-022-03359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Leishmaniases are a group of anthropo-zoonotic parasitic diseases caused by a protozoan of the Leishmania genus, affecting both humans and other vertebrates, including dogs. L. infantum is responsible for the visceral and occasionally cutaneous form of the disease in humans and canine leishmaniasis. Previously, we have shown that L. infantum induces a mild but significant increase in endoplasmic reticulum (ER) stress expression markers to promote parasites survival in human and murine infected macrophages. Moreover, we demonstrated that the miRNA hsa-miR-346, induced by the UPR-activated transcription factor sXBP1, was significantly upregulated in human macrophages infected with different L. infantum strains. However, the ER stress response in infected dogs, which represent an important reservoir for Leishmania parasite, was described once recently, whereas the miR-346 expression was not reported before. Therefore, this study aimed to investigate these pathways in the canine macrophage-like cell line DH82 infected by Leishmania spp. and to evaluate the presence of cfa-miR-346 in plasma of non-infected and infected dogs. The DH82 cells were infected with L. infantum and L. braziliensis parasites and the expression of cfa-mir-346 and several ER stress markers was evaluated by quantitative PCR (qPCR) at different time points. Furthermore, the cfa-miR-346 was monitored in plasma collected from non-infected dogs (n = 11) and dogs naturally infected by L. infantum (n = 18). Results The results in DH82 cells showed that cfa-mir-346 was induced at both 24 h and 48 h post-infection with all Leishmania strains but not with tunicamycin, accounting for a mechanism of induction independent from sXBP1, unlike what was previously observed in human cell lines. Moreover, the cfa-miR-346 expression analysis on plasma revealed a significant increase in infected dogs compared to non-infected dogs. Conclusions Here for the first time, we report the upregulation of cfa-miR-346 induced by Leishmania infection in canine macrophage-like cells and plasma samples of naturally infected dogs. According to our results, the cfa-miR-346 appears to be linked to infection, and understanding its role and identifying its target genes could contribute to elucidate the mechanisms underlying the host–pathogen interaction in leishmaniasis.
Collapse
|
6
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
7
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
8
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
9
|
Diotallevi A, Scalvini L, Buffi G, Pérez-Pertejo Y, De Santi M, Verboni M, Favi G, Magnani M, Lodola A, Lucarini S, Galluzzi L. Phenotype Screening of an Azole-bisindole Chemical Library Identifies URB1483 as a New Antileishmanial Agent Devoid of Toxicity on Human Cells. ACS OMEGA 2021; 6:35699-35710. [PMID: 34984300 PMCID: PMC8717589 DOI: 10.1021/acsomega.1c05611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
We report the evaluation of a small library of azole-bisindoles for their antileishmanial potential, in terms of efficacy on Leishmania infantum promastigotes and intracellular amastigotes. Nine compounds showed good activity on L. infantum MHOM/TN/80/IPT1 promastigotes with IC50 values ranging from 4 to 10 μM. These active compounds were also tested on human (THP-1, HEPG2, HaCaT, and human primary fibroblasts) and canine (DH82) cell lines. URB1483 was selected as the best compound, with no quantifiable cytotoxicity in mammalian cells, to test the efficacy on intracellular amastigotes. URB1483 significantly reduced the infection index of both human and canine macrophages with an effect comparable to the clinically used drug pentamidine. URB1483 emerges as a new anti-infective agent with remarkable antileishmanial activity and no cytotoxic effects on human and canine cells.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Laura Scalvini
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Gloria Buffi
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | | | - Mauro De Santi
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Michele Verboni
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Gianfranco Favi
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Mauro Magnani
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Alessio Lodola
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Simone Lucarini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
- . Tel: +39 0722 303333
| | - Luca Galluzzi
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, 61029 Urbino (PU), Italy
| |
Collapse
|
10
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021; 148:1434-1446. [PMID: 34218829 PMCID: PMC11010138 DOI: 10.1017/s0031182021001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Leishmania parasites, the causative agents of leishmaniasis, are protozoan parasites with the ability to modify the signalling pathway and cell responses of their infected host cells. These parasite strategies alter the host cell environment and conditions favouring their replication, survival and pathogenesis. Since microRNAs (miRNAs) are able to post-transcriptionally regulate gene expression processes, these biomolecules can exert critical roles in controlling Leishmania-host cell interplay. Therefore, the identification of relevant miRNAs differentially expressed in Leishmania parasites as well as in infected cells, which affect the host fitness, could be critical to understand the infection biology, pathogenicity and immune response against these parasites. Accordingly, the current review aims to address the differentially expressed miRNAs in both, the parasite and infected host cells and how these biomolecules change cell signalling and host immune responses during infection. A deep understanding of these processes could provide novel guidelines and therapeutic strategies for managing and treating leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Barazesh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008Pamplona, Spain
| | | |
Collapse
|
11
|
Uno S, Nishimura T, Nishio K, Kohsaka A, Tamizu E, Nakano Y, Kagyo J, Nakajima Y, Arai R, Hasegawa H, Arakawa K, Kashimura S, Ishii R, Miyazaki N, Uwamino Y, Hasegawa N. Potential biomarker enhancing the activity of tuberculosis, hsa-miR-346. Tuberculosis (Edinb) 2021; 129:102101. [PMID: 34144376 DOI: 10.1016/j.tube.2021.102101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/27/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the usefulness of hsa-miR-346, a potential biomarker enhancing the activity of non-tuberculous mycobacterial diseases, as a biomarker of tuberculosis activity. METHODS We investigated whether hsa-miR-346 is secreted by human macrophages infected with Mycobacterium tuberculosis (M. tuberculosis) in an in vitro study. In addition, a cross-sectional study was conducted first to evaluate whether serum hsa-miR-346 is elevated in patients with tuberculosis compared with that in healthy individuals. Second, we conducted a retrospective study to evaluate whether anti-tuberculosis treatment reduces serum hsa-miR-346 levels. RESULTS Log hsa-miR-346 levels were significantly elevated in the supernatant of human macrophages infected with M. tuberculosis in a dose-dependent manner. The mean serum log hsa-miR-346 levels were -15.48 (-15.76 to -15.21) in patients with tuberculosis and -16.12 (-16.29 to -15.95) in healthy volunteers, which significantly differed. In addition, hsa-miR-346 significantly decreased at 2 months from starting an anti-tuberculosis treatment. CONCLUSIONS We consider hsa-miR-346 as a potential biomarker enhancing the tuberculosis activity.
Collapse
Affiliation(s)
- Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Keio University Health Center, Japan.
| | - Kazumi Nishio
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Asami Kohsaka
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Eiko Tamizu
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Yasushi Nakano
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Junko Kagyo
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan; Department of Respiratory Medicine, Keiyu Hospital, Japan
| | - Yukiko Nakajima
- Department of Infectious Diseases, Kawasaki Municipal Ida Hospital, Japan
| | - Ryosuke Arai
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Hanako Hasegawa
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, Japan
| | - Kenichi Arakawa
- Department of Respiratory Medicine, Japan Anti-Tuberculosis Association Fukujuji Hospital, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Ryota Ishii
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Japan; Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Miyazaki
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Japan
| | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| |
Collapse
|
12
|
Diotallevi A, Buffi G, Corbelli G, Ceccarelli M, Ortalli M, Varani S, Magnani M, Galluzzi L. In Vitro Reduced Susceptibility to Pentavalent Antimonials of a Leishmania infantum Isolate from a Human Cutaneous Leishmaniasis Case in Central Italy. Microorganisms 2021; 9:1147. [PMID: 34073643 PMCID: PMC8229719 DOI: 10.3390/microorganisms9061147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Cutaneous leishmaniasis (CL) caused by Leishmania (Leishmania) infantum is endemic in the Mediterranean basin. Here we report an autochthonous case of CL in a patient living in central Italy with an unsatisfactory response to treatment with intralesional Meglumine Antimoniate and in vitro demonstration of reduced susceptibility to SbIII. Parasitological diagnosis was first achieved by histopathology on tissue biopsy and the patient was treated with a local infiltration of Meglumine Antimoniate. Since the clinical response at 12 weeks from the treatment's onset was deemed unsatisfactory, two further skin biopsies were taken for histopathological examination, DNA extraction and parasite isolation. L. (L.) infantum was identified by molecular typing. The low susceptibility to Meglumine Antimoniate was confirmed in vitro: the promastigotes from the patient strain showed significantly lower susceptibility to SbIII (the active trivalent form of antimonial) compared to the reference strain MHOM/TN/80/IPT1. The patient underwent a new treatment course with intravenous liposomal Amphotericin B, reaching complete healing of the lesion. Additional studies are needed to confirm the epidemiological and clinical relevance of reduced susceptibility to SbIII of human L. (L.) infantum isolate in Italy.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy; (A.D.); (G.B.); (M.C.); (M.M.)
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy; (A.D.); (G.B.); (M.C.); (M.M.)
| | - Giovanni Corbelli
- Unit of Infectious Diseases, Marche Nord Hospital, 61122 Pesaro, Italy;
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy; (A.D.); (G.B.); (M.C.); (M.M.)
| | - Margherita Ortalli
- Unit of Microbiology, IRCCS Polyclinic S.Orsola-Malpighi, 40138 Bologna, Italy; (M.O.); (S.V.)
| | - Stefania Varani
- Unit of Microbiology, IRCCS Polyclinic S.Orsola-Malpighi, 40138 Bologna, Italy; (M.O.); (S.V.)
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy; (A.D.); (G.B.); (M.C.); (M.M.)
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy; (A.D.); (G.B.); (M.C.); (M.M.)
| |
Collapse
|
13
|
Paul S, Ruiz-Manriquez LM, Serrano-Cano FI, Estrada-Meza C, Solorio-Diaz KA, Srivastava A. Human microRNAs in host-parasite interaction: a review. 3 Biotech 2020; 10:510. [PMID: 33178551 PMCID: PMC7644590 DOI: 10.1007/s13205-020-02498-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules with significant capacity to regulate the gene expression at the post-transcriptional level in a sequence-specific manner either through translation repression or mRNA degradation triggering a fine-tuning biological impact. They have been implicated in several processes, including cell growth and development, signal transduction, cell proliferation and differentiation, metabolism, apoptosis, inflammation, and immune response modulation. However, over the last few years, extensive studies have shown the relevance of miRNAs in human pathophysiology. Common human parasitic diseases, such as Malaria, Leishmaniasis, Amoebiasis, Chagas disease, Schistosomiasis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and Echinococcosis are the leading cause of death worldwide. Thus, identifying and characterizing parasite-specific miRNAs and their host targets, as well as host-related miRNAs, are important for a deeper understanding of the pathophysiology of parasite-specific diseases at the molecular level. In this review, we have demonstrated the impact of human microRNAs during host-parasite interaction as well as their potential to be used for diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Francisco I. Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Karla A. Solorio-Diaz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
14
|
Mendonça LSO, Santos JM, Kaneto CM, de Carvalho LD, Lima-Santos J, Augusto DG, Carvalho SMS, Soares-Martins JAP, Silva-Jardim I. Characterization of serum cytokines and circulating microRNAs that are predicted to regulate inflammasome genes in cutaneous leishmaniasis patients. Exp Parasitol 2020; 210:107846. [PMID: 32001303 DOI: 10.1016/j.exppara.2020.107846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023]
Abstract
Leishmaniasis is a neglected disease caused by an intracellular protozoan parasite of the genus Leishmania. Infection starts when this protozoan replicates in a phagolysosomal compartment in macrophages, after evading host immune responses. The balance of Th1 and Th2 immune responses is crucial in leishmaniasis because it will determine whether the infection will be under control or if clinical complications will occur. The inflammasome, which is activated during Leishmania infection, involves the action of caspase-1 and release of the proinflammatory cytokines interleukin-1β and interleukin-18. Together, they contribute to the maintenance of an inflammatory response and pyroptosis. Here, we evaluated the serum levels of cytokines and the expression of circulating microRNAs related to inflammasome regulation in twenty-seven patients with cutaneous leishmaniasis in comparison to nine healthy individuals, in the context of the inflammasome activation. Evaluation of serum cytokines activation (IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-17) was performed by flow cytometry using CBA kits (cytometric beads array) while the expression of circulating microRNAs (miR-7, miR-133a, miR-146b, miR-155, miR-223, miR-328, and miR-342) in plasma was measured by quantitative polymerase chain reaction. Our results showed an increase of the expression of miR-7-5p (p < 10-5), miR-133a (p = 0.034), miR-146b (p = 0.003), miR-223-3p (p = 10-5), and miR-328-3p (p = 0.002), and cytokine levels for IL-1β (p = 0.0005), IL-6 (p = 0.001), and IL-17 (p = 0.001) in patients with cutaneous leishmaniasis compared to the controls. These results suggest that microRNAs and cytokines can play an important role in regulating the human immune responses to Leishmania infection. Our findings may contribute to the understanding of the mechanisms of the gene regulation during the cutaneous leishmaniasis and to the identification of possible biomarkers of the infection.
Collapse
Affiliation(s)
| | | | - Carla Martins Kaneto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | | | - Jane Lima-Santos
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | - Danillo G Augusto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil; Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Izaltina Silva-Jardim
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil.
| |
Collapse
|
15
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Bensaoud C, Hackenberg M, Kotsyfakis M. Noncoding RNAs in Parasite–Vector–Host Interactions. Trends Parasitol 2019; 35:715-724. [DOI: 10.1016/j.pt.2019.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
|