1
|
Abstract
The mammalian gastrointestinal tract (GIT) hosts a diverse and highly active microbiota composed of bacteria, eukaryotes, archaea, and viruses. Studies of the GIT microbiota date back more than a century, although modern techniques, including mouse models, sequencing technology, and novel therapeutics in humans, have been foundational to our understanding of the roles of commensal microbes in health and disease. Here, we review the impacts of the GIT microbiota on viral infection, both within the GIT and systemically. GIT-associated microbes and their metabolites alter the course of viral infection through a variety of mechanisms, including direct interactions with virions, alteration of the GIT landscape, and extensive regulation of innate and adaptive immunity. Mechanistic understanding of the full breadth of interactions between the GIT microbiota and the host is still lacking in many ways but will be vital for the development of novel therapeutics for viral and nonviral diseases alike.
Collapse
Affiliation(s)
- Danielle E Campbell
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Yuhao Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Harshad Ingle
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Revel-Muroz A, Akulinin M, Shilova P, Tyakht A, Klimenko N. Stability of human gut microbiome: Comparison of ecological modelling and observational approaches. Comput Struct Biotechnol J 2023; 21:4456-4468. [PMID: 37745638 PMCID: PMC10511340 DOI: 10.1016/j.csbj.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
The gut microbiome plays a pivotal role in the human body, and perturbations in its composition have been linked to various disorders. Stability is an essential property of a healthy human gut microbiome, which allows it to maintain its functional richness under the external influences. This property has been explored through two distinct methodologies - mathematical modelling based on ecological principles and statistical analysis drawn from observations in interventional studies. Here we conducted a meta-analysis aimed to compare the two approaches utilising the data from 9 interventional and time series studies encompassing 3512 gut microbiome profiles obtained via 16S rRNA gene sequencing. By employing the previously published compositional Lotka-Volterra method, we modelled the dynamics of the microbial community and evaluated ecological stability measures. These measures were compared to those based on observed microbiome changes. There was a substantial correlation between the outcomes of the two approaches. Particularly, local stability assessed within the ecological paradigm was positively correlated with observational stability measures accounting for the compositional nature of microbiome data. Additionally, we were able to reproduce the previously reported inverse relationship between the community's robustness to microorganism loss and local stability, attributed to the distinct impacts of coefficient characterising the network decomposition on these two stability assessments. Our findings demonstrate harmonisation between the ecological and observational approaches to microbiome analysis, advancing the understanding of healthy gut microbiome concept. This paves the way to develop efficient microbiome-targeting interventions for disease prevention and treatment.
Collapse
Affiliation(s)
- Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Akulinin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Polina Shilova
- Department of Biology, Moscow State University, 1–12 Leninskie Gory, Moscow, Russia
| | - Alexander Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| |
Collapse
|
3
|
Altcheh J, Carosella MV, Ceballos A, D’Andrea U, Jofre SM, Marotta C, Mugeri D, Sabbaj L, Soto A, Josse C, Montestruc F, McFarland LV. Randomized, direct comparison study of Saccharomyces boulardii CNCM I-745 versus multi-strained Bacillus clausii probiotics for the treatment of pediatric acute gastroenteritis. Medicine (Baltimore) 2022; 101:e30500. [PMID: 36086703 PMCID: PMC9646502 DOI: 10.1097/md.0000000000030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The choice of an appropriate probiotic for pediatric acute gastroenteritis (PAGE) can be confusing. Our aim was to compare the efficacy and safety of 2 probiotics (Saccharomyces boulardii CNCM I-745 vs a 4-strain mixture of Bacillus clausii O/C, SIN, N/R, T) for the treatment of PAGE. METHODS A 2-arm parallel, randomized trial recruited children (6 months to 5 years old) with mild-moderate acute diarrhea, from 8 centers in Argentina. A total of 317 children were enrolled and blindly randomized to 5 days of either S boulardii CNCM I-745 (n = 159) or a 4-strain mixture of B clausii (n = 158), then followed for 7 days post-probiotic treatment. A stool sample was collected at inclusion for pathogen identification. The primary outcome was duration of diarrhea defined as the time from enrollment to the last loose stool followed by the first 24-hour period with stool consistency improvement. Secondary outcomes included frequency of loose stools/day, severity of diarrhea, number reporting no diarrhea at Day 6, time-to-first formed stool, recurrence of diarrhea by study end (Day 12) and safety outcomes. RESULTS Three hundred twelve (98%) children completed the study. S boulardii CNCM I-745 showed a significant reduction (P = .04) in the mean duration of diarrhea (64.6 hours, 95% confidence interval [CI] 56.5-72.8) compared to those given B clausii (78.0 hours, 95% CI 69.9-86.1). Both probiotics showed improvement in secondary outcomes and were well-tolerated. CONCLUSION In this study, S boulardii CNCM I-745 demonstrated better efficacy than B clausii mix for reducing the duration of pediatric acute diarrhea.
Collapse
Affiliation(s)
- Jaime Altcheh
- Consultorio de Pediatria Maza, Buenos Aires, Argentina
| | | | - Ana Ceballos
- Instituto Medico Rio Cuarto, Rio Cuarto, Argentina
| | | | | | | | | | | | - Adriana Soto
- Clinica Mayo SRL, San Miguel DE Tucuman, Argentina
| | | | | | | |
Collapse
|
4
|
Horne RG, Freedman SB, Johnson-Henry KC, Pang XL, Lee BE, Farion KJ, Gouin S, Schuh S, Poonai N, Hurley KF, Finkelstein Y, Xie J, Williamson-Urquhart S, Chui L, Rossi L, Surette MG, Sherman PM. Intestinal Microbial Composition of Children in a Randomized Controlled Trial of Probiotics to Treat Acute Gastroenteritis. Front Cell Infect Microbiol 2022; 12:883163. [PMID: 35774405 PMCID: PMC9238408 DOI: 10.3389/fcimb.2022.883163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Compositional analysis of the intestinal microbiome in pre-schoolers is understudied. Effects of probiotics on the gut microbiota were evaluated in children under 4-years-old presenting to an emergency department with acute gastroenteritis. Included were 70 study participants (n=32 placebo, n=38 probiotics) with stool specimens at baseline (day 0), day 5, and after a washout period (day 28). Microbiota composition and deduced functions were profiled using 16S ribosomal RNA sequencing and predictive metagenomics, respectively. Probiotics were detected at day 5 of administration but otherwise had no discernable effects, whereas detection of bacterial infection (P<0.001) and participant age (P<0.001) had the largest effects on microbiota composition, microbial diversity, and deduced bacterial functions. Participants under 1 year had lower bacterial diversity than older aged pre-schoolers; compositional changes of individual bacterial taxa were associated with maturation of the gut microbiota. Advances in age were associated with differences in gut microbiota composition and deduced microbial functions, which have the potential to impact health later in life.
Collapse
Affiliation(s)
- Rachael G. Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen B. Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children’s Hospital, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Xiao-Li Pang
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Bonita E. Lee
- Women and Children’s Research Institute, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - Ken J. Farion
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Serge Gouin
- Departments of Emergency Medicine and Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Schuh
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Naveen Poonai
- Division of Pediatric Emergency Medicine, London Children’s Hospital Health Science Centre, Department of Pediatrics, Western University, London, ON, Canada
| | - Katrina F. Hurley
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Yaron Finkelstein
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jianling Xie
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Sarah Williamson-Urquhart
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Philip M. Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Philip M. Sherman,
| |
Collapse
|
5
|
Armstrong G, Rahman G, Martino C, McDonald D, Gonzalez A, Mishne G, Knight R. Applications and Comparison of Dimensionality Reduction Methods for Microbiome Data. FRONTIERS IN BIOINFORMATICS 2022; 2:821861. [PMID: 36304280 PMCID: PMC9580878 DOI: 10.3389/fbinf.2022.821861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Dimensionality reduction techniques are a key component of most microbiome studies, providing both the ability to tractably visualize complex microbiome datasets and the starting point for additional, more formal, statistical analyses. In this review, we discuss the motivation for applying dimensionality reduction techniques, the special characteristics of microbiome data such as sparsity and compositionality that make this difficult, the different categories of strategies that are available for dimensionality reduction, and examples from the literature of how they have been successfully applied (together with pitfalls to avoid). We conclude by describing the need for further development in the field, in particular combining the power of phylogenetic analysis with the ability to handle sparsity, compositionality, and non-normality, as well as discussing current techniques that should be applied more widely in future analyses.
Collapse
Affiliation(s)
- George Armstrong
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Antonio Gonzalez
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Rob Knight,
| |
Collapse
|
6
|
Dynamic of the human gut microbiome under infectious diarrhea. Curr Opin Microbiol 2022; 66:79-85. [PMID: 35121284 DOI: 10.1016/j.mib.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
Despite the widespread implementation of sanitation, immunization and appropriate treatment, infectious diarrheal diseases still inflict a great health burden to children living in low resource settings. Conventional microbiology research in diarrhea have focused on the pathogen's biology and pathogenesis, but initial enteric infections could trigger subsequent perturbations in the gut microbiome, leading to short-term or long-term health effects. Conversely, such pre-existing perturbations could render children more vulnerable to enteropathogen colonization and diarrhea. Recent advances in DNA sequencing and bioinformatic analyses have been integrated in well-designed clinical and epidemiological studies, which allow us to track how the gut microbiome changes from disease onset to recovery. Here, we aim to summarize the current understanding on the diarrheal gut microbiome, stratified into different disease stages. Furthermore, we discuss how such perturbations could have impacts beyond an acute diarrhea episode, specifically on the child's nutritional status and the facilitation of antimicrobial resistance.
Collapse
|
7
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Appl Microbiol Biotechnol 2022; 106:1325-1339. [PMID: 35037997 PMCID: PMC8816758 DOI: 10.1007/s00253-022-11775-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut microbiota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild. KEY POINTS: • Alpha diversity of gut microbiota was higher in FMD than that in AMD • Expression of metabolic and disease-related functions was higher in AMD than in FMD.
Collapse
|
9
|
Zhao W, Yu ML, Tao X, Cheng MH, Liu CC, Liu Y, Li YG. Analysis of the intestinal microbial community altered during rotavirus infection in suckling mice. Virol J 2021; 18:254. [PMID: 34930341 PMCID: PMC8686622 DOI: 10.1186/s12985-021-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus (RV) is a principal cause of diarrhea. However, there is a limited understanding regarding alteration of the gut microbial community structure and abundance during RV infection. This study was to characterize any potential associations between RV infection and the intestinal microbiota.
Methods Suckling mice were divided into normal group (NC) and infected group (RV) randomly. All of the suckling mice were euthanized four days post-RV infection. The virus titer was counted as fluorescent focus assay, and viral load was quantified by QPCR. Five sucking mice were randomly selected from each RV group and NC group for sample collection and pathological analysis. Mixed intestinal contents of the colon and rectum were collected from all of the suckling mice. To investigate the detailed relationship between RV infection and intestinal microbiota, the composition and distribution of intestinal microbiota from suckling mice were first analyzed using 16S rRNA sequencing technology. Results The results of the pathological characteristics showed that vacuolar degeneration, vasodilation, hyperemia, and destruction of the intestinal epithelium were apparent in the RV group. Representative genera from Lactobacillus and Fusobacterium were enriched in the NC group, while the Enterococcus and Escherichia/Shigella genera were enriched in the RV group. Helicobacter, Alloprevotrlla, Brevundimonas, Paenibacillus, and Parabacteroides were completely undetectable in the RV group. The predicted intestinal flora metabolic function results showed that “carbohydrate metabolism” and “lipid metabolism” pathways were significantly enriched within the NC group. A significant difference has been observed in the gut microbiota composition between the two groups. Conclusions Our results demonstrated a significant difference in the gut microbiota composition in RV-infected suckling mice as compared to the RV un-infected suckling mice group. This work may provide meaningful information regarding the bacterial genera changed during RV infection. Moreover, the changes in these bacteria may be related with the replication and pathogenesis of RV infection.
Collapse
Affiliation(s)
- Wei Zhao
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - Mei Ling Yu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - XiaoLi Tao
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - Mei Hui Cheng
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - Chang Cheng Liu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - Yang Liu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China
| | - Yong Gang Li
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121200, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Peña-Gil N, Santiso-Bellón C, Gozalbo-Rovira R, Buesa J, Monedero V, Rodríguez-Díaz J. The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. Int J Mol Sci 2021; 22:13473. [PMID: 34948268 PMCID: PMC8704558 DOI: 10.3390/ijms222413473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain;
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| |
Collapse
|
11
|
Ghosh A, Sundaram B, Bhattacharya P, Mohanty N, Dheivamani N, Mane S, Acharyya B, Kamale V, Poddar S, Khobragade A, Thomas W, Prabhudesai S, Choudhary A, Mitra M. Effect of Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 on Acute Watery Diarrhea: A Randomized Double-Blind Placebo-Controlled Study in Indian Children. Pediatr Gastroenterol Hepatol Nutr 2021; 24:423-431. [PMID: 34557395 PMCID: PMC8443851 DOI: 10.5223/pghn.2021.24.5.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
PURPOSE To assess the effect of combination probiotic Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 in outpatient management of acute watery diarrhea in children. METHODS A randomized double-blind placebo-controlled study was conducted in 180 participants aged six months to five years with acute mild to moderate diarrhea. All were enrolled from six centers across India and centrally randomized to receive S. boulardii CNCM-I 3799 and B. subtilis CU-1 or a placebo along with oral rehydration salts and zinc supplementation. Each participant was followed up for three months to assess recurrence of diarrhea. RESULTS The mean duration of diarrhea in the probiotic and placebo groups were 54.16 hours and 59.48 hours, respectively. The difference in the duration of diarrhea in those administered with probiotic or placebo within 24 hours of diarrhea onset was 25.21 hours. Furthermore, the difference in duration of diarrhea was 13.84 hours (p<0.05) for participants who were administered with probiotics within 48 hours. There were no significant differences in the stool frequencies between the two arms. After three months, 15% in the probiotic group and 18.5% in the placebo group reported episodes of diarrhea. The mean duration of diarrhea was considerably lower in the probiotic group, 31.02 hours versus 48 hours in placebo (p=0.017). CONCLUSION S. boulardii CNCM-I 3799 and B. subtilis CU-1 combination was effective in reducing the duration of diarrhea when administered within 48 hours of diarrhea onset. Similarly, it reduced recurrence of diarrhea and its intensity in the subsequent three months.
Collapse
Affiliation(s)
- Apurba Ghosh
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| | | | - Piyali Bhattacharya
- Department of Pediatrics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Nimain Mohanty
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Nirmala Dheivamani
- Department of Pediatric Gastroenterology, Institute of Child Health, Chennai, India
| | - Sushant Mane
- Department of Pediatrics, Grant Govt. Medical College & Sir J.J. Group of Hospitals, Mumbai, India
| | - Bhaswati Acharyya
- Department of Pediatric Gastroenterology, Institute of Child Health, Kolkata, India
| | - Vijay Kamale
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Sumon Poddar
- Department of Microbiology, Institute of Child Health, Kolkata, India
| | - Akash Khobragade
- Department of Medical & Clinical Pharmacology, Grant Govt. Medical College & Sir J.J. Group of Hospitals, Mumbai, India
| | - Winston Thomas
- Department of Pediatrics, Institute of Child Health, Chennai, India
| | - Sumant Prabhudesai
- Department of Pediatric Intensive Care Unit, Kanchi Kamakoti Childs Trust Hospital, Chennai, India
| | - Ankita Choudhary
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Monjori Mitra
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| |
Collapse
|
12
|
Xiong L, Li Y, Li J, Yang J, Shang L, He X, Liu L, Luo Y, Xie X. Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study. Int J Infect Dis 2021; 111:76-84. [PMID: 34411719 DOI: 10.1016/j.ijid.2021.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/18/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To compare the intestinal microbiota profiles in infants following rotavirus (RV) and human norovirus (HNoV) infection. METHODS Faecal specimens from 18 infants {mean age 11.8 months [standard deviation (SD) 3.0] months} with acute gastroenteritis caused by RV (G9P8) and 24 infants [mean age 8.8 (SD 6.4) months] with acute gastroenteritis caused by HNoV (GII) infection were collected prospectively. The faecal microbiome was assessed by 16S rRNA amplicon pyrosequencing. Alpha diversity, beta diversity, deferentially abundant taxa and microbial functions were assessed by bioinformatic analysis. RESULTS The Chao1 index for the HNoV group was significantly higher compared with the control group (P=0.0003), and was lower for the RV group compared with the HNoV group (P=0.0078). No significant difference in beta diversity was observed between the RV and HNoV groups. The RV group showed greater abundance of Actinobacteria at phylum level and Bifidobacterium spp., Streptococcus spp., Enterococcus spp. and Lactobacillus spp. at genus level. The HNoV group showed richness in Fusobacteria and Cyanobacteria at phylum level, and Enterococcus spp. and Streptococcus spp. at genus level. Bacillus was the characteristic genus in infected infants. In comparison with the control group, the viral group (P≤0.01), the RV group (P=0.002) and the HNoV group (P≤0.01) showed significant differences in potentially pathogenic bacteria. CONCLUSIONS Changes in microbiotic structure were observed in infants following RV and HNoV infection. The Chao 1 index of alpha diversity increased significantly in the HNoV group. Bacillus was the characteristic genus in infected infants. An increase in pathogenic bacteria, particularly Streptococcus spp. and Enterococcus spp., was detected in infected infants.
Collapse
Affiliation(s)
- Lijing Xiong
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yang Li
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jing Li
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jing Yang
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lihong Shang
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoqing He
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lirong Liu
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yurong Luo
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoli Xie
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
13
|
Toro Monjaraz EM, Ignorosa Arellano KR, Loredo Mayer A, Palacios-González B, Cervantes Bustamante R, Ramírez Mayans JA. Gut Microbiota in Mexican Children With Acute Diarrhea: An Observational Study. Pediatr Infect Dis J 2021; 40:704-709. [PMID: 34250970 DOI: 10.1097/inf.0000000000003128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acute diarrhea is the second leading cause of preventable mortality and morbidity in children worldwide. This study aimed to identify the main pathogens associated with acute diarrhea and to describe changes in gut microbiota in Mexican children. METHODS This single-center observational study included 30 children (6 months to 5 years old) with acute diarrhea who were referred to the Instituto Nacional de Pediatría of Mexico City and 15 healthy volunteers (control group). Stool samples at day 0 (D0) and day 15 (D15) were collected for identification of microorganisms (reverse transcriptase-polymerase chain reaction analyses with xTAG gastrointestinal pathogen panel multiplex assay) and microbiota analysis (16S gene amplification sequencing). Prescription decisions were made by the treating clinician. RESULTS The main pathogens identified were norovirus and Campylobacter jejuni (20% each). The majority of patients (n = 24) were prescribed Saccharomyces boulardii CNCM I-745 for treatment of acute diarrhea. Diarrheic episodes resolved within 1 week of treatment. Compared with D15 and control samples, D0 samples showed significantly lower alpha diversity and a clear shift in overall composition (beta diversity). Alpha diversity was significantly increased in S. boulardii-treated group between D0 and D15 to a level similar to that of control group. CONCLUSIONS In these children, acute diarrhea was accompanied by significant alterations in gut microbiota. S. boulardii CNCM I-745 treatment may facilitate gut microbiota restoration in children with acute diarrhea, mostly through improvements in alpha diversity.
Collapse
Affiliation(s)
| | | | - Alejandro Loredo Mayer
- From the Pediatric Gastroenterology and Nutrition Department, Instituto Nacional de Pediatría
| | - Berenice Palacios-González
- Scientific Bonding Unit, Medicine Faculty UNAM, Instituto Nacional De Medicina Genómica, Mexico City, Mexico
| | | | | |
Collapse
|
14
|
McFarland LV, Srinivasan R, Setty RP, Ganapathy S, Bavdekar A, Mitra M, Raju B, Mohan N. Specific Probiotics for the Treatment of Pediatric Acute Gastroenteritis in India: A Systematic Review and Meta-Analysis. JPGN REPORTS 2021; 2:e079. [PMID: 37205949 PMCID: PMC10191489 DOI: 10.1097/pg9.0000000000000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
Pediatric acute gastroenteritis (PAGE) is a significant cause of morbidity, mortality and healthcare costs in many countries, but differences in PAGE vary from country-to-country; thus, we limited our analysis to 1 country. Probiotics have been recommended as an adjunct to standard treatment, but the choice of probiotic is unclear. PubMed, Google Scholar, and reviews were searched from inception to May 2020 for randomized controlled trials (RCTs) in India using probiotics for a treatment for PAGE. Meta-analyses using subgroups of identical probiotic types (≥2 RCT/type) were conducted for primary outcomes (duration of diarrhea, cured by day 3, rapidity of response, and length of hospital stay). Twenty-two RCTs were included in the systematic review (N = 4059 participants) including 5 single-strained probiotics and 3 multi-strained mixtures. For the meta-analyses, 17 RCT (20 treatment arms) were included. Saccharomyces boulardii CNCM I-745 had the strongest effect on shortening the duration of diarrhea (standardized mean difference, -1.86 d; 95% confidence interval, -2.8 to -0.9), while both Lactobacillus rhamnosus GG and a mixture of 4 Bacillus clausii strains (O/C, SIN, N/R, T) significantly reduced the duration of diarrhea (-1.7 and -1.4 d, respectively). S. boulardii and L. rhamnosus GG significantly reduced hospital stays (-1.8 and -1.1 d, respectively), while B. clausii had no effect. The frequency of stools/day was significantly reduced by day 4 for S. boulardii and by day 5 for L. rhamnosus GG. In India, 2 types of probiotics (S. boulardii CNCM I-745 and L. rhamnosus GG) significantly shortened both the duration of diarrhea and hospitalization stays in pediatric patients with PAGE. While these 2 probiotic strains were safe and effective for children in India, further research is needed to confirm if other probiotic strains or mixtures may be effective.
Collapse
Affiliation(s)
- Lynne V. McFarland
- From the Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Ramesh Srinivasan
- Department of Gastroenterology, Apollo Hospitals, Jubilee Hills, Hyderabad, India
| | - Rajendra P. Setty
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Pure Bliss Hospital, Panchkula, India
| | | | | | - Monjori Mitra
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| | - Bhaskar Raju
- Department of Gastroenterology, Dr. Mehta’s Children’s Hospital, Chennai, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Medanta Medicity, Gurgaon, India
| |
Collapse
|
15
|
Ma Y, Zhang Q, Liu W, Chen Z, Zou C, Fu L, Wang Y, Liu Y. Preventive Effect of Depolymerized Sulfated Galactans from Eucheuma serra on Enterotoxigenic Escherichia coli-Caused Diarrhea via Modulating Intestinal Flora in Mice. Mar Drugs 2021; 19:80. [PMID: 33535475 PMCID: PMC7912752 DOI: 10.3390/md19020080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
In this work, the preventive effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on bacterial diarrhea by regulating intestinal flora was investigated in vivo. Based on the enterotoxigenic Escherichia coli (ETEC)-infected mouse diarrhea model, DESP at doses ranging from 50 mg/kg to 200 mg/kg alleviated weight loss and decreased the diarrhea rate and diarrhea index. Serological tests showed that the levels of inflammation-related factors were effectively suppressed. Furthermore, the repaired intestinal mucosa was verified by morphology and pathological tissue section observations. Compared with the model group, the richness and diversity of the intestinal flora in the DESP group increased according to the 16S rRNA high-throughput sequencing of the gut microbiota. Specifically, Firmicutes and Actinobacteria increased, and Proteobacteria decreased after DESP administration. At the family level, DESP effectively improved the abundance of Lactobacillaceae, Bifidobacteriaceae, and Lachnospiraceae, while significantly inhibiting the growth of Enterobacteriaceae. Therefore, the antimicrobial diarrhea function of DESP may be related to the regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Qian Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yanbo Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| |
Collapse
|
16
|
Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. Int J Mol Sci 2021; 22:ijms22031010. [PMID: 33498321 PMCID: PMC7864024 DOI: 10.3390/ijms22031010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota has emerged as a key factor in the pathogenesis of intestinal viruses, including enteroviruses, noroviruses and rotaviruses (RVs), where stimulatory and inhibitory effects on infectivity have been reported. With the aim of determining whether members of the microbiota interact with RVs during infection, a combination of anti-RV antibody labeling, fluorescence-activated cell sorting and 16S rRNA amplicon sequencing was used to characterize the interaction between specific bacteria and RV in stool samples of children suffering from diarrhea produced by G1P[8] RV. The genera Ruminococcus and Oxalobacter were identified as RV binders in stools, displaying enrichments between 4.8- and 5.4-fold compared to samples nonlabeled with anti-RV antibodies. In vitro binding of the G1P[8] Wa human RV strain to two Ruminococcus gauvreauii human isolates was confirmed by fluorescence microscopy. Analysis in R. gauvreauii with antibodies directed to several histo-blood group antigens (HBGAs) indicated that these bacteria express HBGA-like substances on their surfaces, which can be the target for RV binding. Furthermore, in vitro infection of the Wa strain in differentiated Caco-2 cells was significantly reduced by incubation with R. gauvreauii. These data, together with previous findings showing a negative correlation between Ruminococcus levels and antibody titers to RV in healthy individuals, suggest a pivotal interaction between this bacterial group and human RV. These results reveal likely mechanisms of how specific bacterial taxa of the intestinal microbiota could negatively affect RV infection and open new possibilities for antiviral strategies.
Collapse
|
17
|
Kim AH, Hogarty MP, Harris VC, Baldridge MT. The Complex Interactions Between Rotavirus and the Gut Microbiota. Front Cell Infect Microbiol 2021; 10:586751. [PMID: 33489932 PMCID: PMC7819889 DOI: 10.3389/fcimb.2020.586751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Human rotavirus (HRV) is the leading worldwide cause of acute diarrhea-related death in children under the age of five. RV infects the small intestine, an important site of colonization by the microbiota, and studies over the past decade have begun to reveal a complex set of interactions between RV and the gut microbiota. RV infection can temporarily alter the composition of the gut microbiota and probiotic administration alleviates some symptoms of infection in vivo, suggesting reciprocal effects between the virus and the gut microbiota. While development of effective RV vaccines has offered significant protection against RV-associated mortality, vaccine effectiveness in low-income countries has been limited, potentially due to regional differences in the gut microbiota. In this mini review, we briefly detail research findings to date related to HRV vaccine cohorts, studies of natural infection, explorations of RV-microbiota interactions in gnotobiotic pig models, and highlight various in vivo and in vitro models that could be used in future studies to better define how the microbiota may regulate RV infection and host antiviral immune responses.
Collapse
Affiliation(s)
- Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Hogarty
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Vanessa C. Harris
- Department of Medicine, Division of Infectious Diseases and Department of Global Health (AIGHD), Amsterdam University Medical Center, Academic Medical Center, Amsterdam, Netherlands
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Hu Y, Chen J, Xu Y, Zhou H, Huang P, Ma Y, Gao M, Cheng S, Zhou H, Lv Z. Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front Immunol 2020; 11:569727. [PMID: 33162984 PMCID: PMC7580221 DOI: 10.3389/fimmu.2020.569727] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis, a widespread zoonotic parasitic disease. However, the mechanism of the balanced co-existence between the host immune system and S. japonicum as well as their complex interaction remains unclear. In this study, 16S rRNA gene sequencing, combined with metagenomic sequencing approach as well as ultraperformance liquid chromatography–mass spectrometry metabolic profiling, was applied to demonstrate changes in the gut microbiome community structure during schistosomiasis progression, the functional interactions between the gut bacteria and S. japonicum infection in BALB/c mice, and the dynamic metabolite changes of the host. The results showed that both gut microbiome and the metabolites were significantly altered at different time points after the infection. Decrease in richness and diversity as well as differed composition of the gut microbiota was observed in the infected status when compared with the uninfected status. At the phylum level, the gut microbial communities in all samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres, while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides, Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia, and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe demonstrated several bacterial taxa that could discriminate between each time point of S. japonicum infection. Besides that, metagenomic analysis illuminated that the AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling pathway were significantly perturbed after the infection. Phosphatidylcholine and colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic potential at the early stage of the infection. Alterations of glycerophospholipid and purine metabolism were also discovered in the infection. The present study might provide further understanding of the mechanisms during schistosome infection in aspects of gut microbiome and metabolites, and facilitate the discovery of new targets for early diagnosis and prognostic purposes. Further validations of potential biomarkers in human populations are necessary, and the exploration of interactions among S. japonicum, gut microbiome, and metabolites is to be deepened in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Xu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Minzhao Gao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shaoyun Cheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Mehrabani S, Esmaeili M, Moslemi L, Tarahomi R. Effects of Lactose-Restricted Regimen in Breastfeeding Children with Acute Diarrhea. Int J Prev Med 2020; 11:75. [PMID: 32939237 PMCID: PMC7478269 DOI: 10.4103/ijpvm.ijpvm_80_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute diarrhea is a major cause of mortality in children. Few studies have addressed the administration of lactose-restricted diets in breastfed children with acute diarrhea. The present study was conducted to investigate the effects of a lactose-restricted regimen on breastfed children with acute diarrhea treated with zinc supplements. METHODS The present single-blind randomized clinical trial was conducted on children aged 6-24 months in Amirkola Children's Hospital (2015-2017). 90 children were randomly assigned to two groups. Group A was daily treated with 20 mg of zinc and a lactose-restricted diet and breast milk for two weeks. Group B received 20 mg of zinc and breast milk and an age-appropriate diet for two weeks. The data collected in all the subjects included the frequency of diarrhea and the mean duration of hospitalization and recovery from diarrhea. RESULTS The two groups were not significantly different in terms of mean age, weight and ratio of males to females. The mean duration of hospitalization was found to be 3.1 ± 0.8 days in group A and 3.2 ± 0.6 in group B (P = 0.3), the mean duration of recovery to be 2.9 ± 0.8 in group A and 2.6 ± 1.1 in group B (P = 0.2) and the mean frequency of diarrhea 2.9 ± 0.7 in group A and 2.8 ± 0.8 days in group B (P = 0.5), suggesting no significant differences between the two groups. No adverse effects associated with zinc therapy were reported. CONCLUSIONS A lactose-restricted regimen was found not to be beneficial for children with acute diarrhea under continuous breastfeeding and zinc therapy.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammadreza Esmaeili
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Leila Moslemi
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Reza Tarahomi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
20
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
21
|
Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients 2019; 11:nu11040923. [PMID: 31022973 PMCID: PMC6520976 DOI: 10.3390/nu11040923] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is a highly complex community which evolves and adapts to its host over a lifetime. It has been described as a virtual organ owing to the myriad of functions it performs, including the production of bioactive metabolites, regulation of immunity, energy homeostasis and protection against pathogens. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated by a number of factors, including diet and host genetics. In this regard, the gut microbiome is malleable and varies significantly from host to host. These two features render the gut microbiome a candidate ‘organ’ for the possibility of precision microbiomics—the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal health. With this in mind, this two-part review investigates the current state of the science in terms of the influence of diet and specific dietary components on the gut microbiota and subsequent consequences for health status, along with opportunities to modulate the microbiota for improved health and the potential of the microbiome as a biomarker to predict responsiveness to dietary components. In particular, in Part I, we examine the development of the microbiota from birth and its role in health. We investigate the consequences of poor-quality diet in relation to infection and inflammation and discuss diet-derived microbial metabolites which negatively impact health. We look at the role of diet in shaping the microbiome and the influence of specific dietary components, namely protein, fat and carbohydrates, on gut microbiota composition.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|