1
|
Xu B, Wang Z, Wang Y, Zhang K, Li J, Zhou L, Li B. Milk-derived Lactobacillus with high production of short-chain fatty acids relieves antibiotic-induced diarrhea in mice. Food Funct 2024; 15:5329-5342. [PMID: 38625681 DOI: 10.1039/d3fo04706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.
Collapse
Affiliation(s)
- Baofeng Xu
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zengbo Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Jinxiang Biochemical Co., LTD, Harbin 150030, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Jian Li
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Linyi Zhou
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, 430000, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, 430000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Du W, Wang X, Hu M, Hou J, Du Y, Si W, Yang L, Xu L, Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Front Microbiol 2023; 14:1181545. [PMID: 37362944 PMCID: PMC10286795 DOI: 10.3389/fmicb.2023.1181545] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The calf stage is a critical period for the development of heifers. Newborn calves have low gastrointestinal barrier function and immunity before weaning, making them highly susceptible to infection by various intestinal pathogens. Diarrhea in calves poses a significant threat to the health of young ruminants and may cause serious economic losses to livestock farms. Antibiotics are commonly used to treat diarrhea and promote calf growth, leading to bacterial resistance and increasing antibiotic residues in meat. Therefore, finding new technologies to improve the diarrhea of newborn calves is a challenge for livestock production and public health. The operation of the gut microbiota in the early stages after birth is crucial for optimizing immune function and body growth. Microbiota colonization of newborn animals is crucial for healthy development. Early intervention of the calf gastrointestinal microbiota, such as oral probiotics, fecal microbiota transplantation and rumen microbiota transplantation can effectively relieve calf diarrhea. This review focuses on the role and mechanisms of oral probiotics such as Lactobacillus, Bifidobacterium and Faecalibacterium in relieving calf diarrhea. The aim is to develop appropriate antibiotic alternatives to improve calf health in a sustainable and responsible manner, while addressing public health issues related to the use of antibiotics in livestock.
Collapse
|
3
|
Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacillus subtilis CU1 is a probiotic strain with beneficial effects on immune health in elderly subjects and diarrhea. Commercialized under spore form, new strategies to improve the germination, fitness and beneficial effects of the probiotic once in the gut have to be explored. For this purpose, functional food ingredients, such as isomaltooligosaccharides (IMOSs), could improve the fitness of Bacillus probiotics. IMOSs are composed of α(1 → 6)- and α(1 → 4)-linked oligosaccharides and are partially indigestible. Dietary IMOSs stimulate beneficial members of intestinal microbiota, but the effect of a combination of IMOSs with probiotics, such as B. subtilis CU1, is unknown. In this study, we evaluate the potential effect of IMOSs in B. subtilis CU1 and identify the metabolic pathways involved. The biochemical analysis of the commercial IMOSs highlights a degree of polymerization (DP) comprised between 1 and 29. The metabolism of IMOSs in CU1 was attributed to an α-glucosidase, secreted in the extracellular compartment one hundred times more than with glucose, and which seems to hydrolyze high DP IMOSs into shorter oligosaccharides (DP1, DP2 and DP3) in the culture medium. Proteomic analysis of CU1 after growth on IMOSs showed a reshaping of B. subtilis CU1 metabolism and functions, associated with a decreased production of lactic acid and acetic acid by two times. Moreover, we show for the first time that IMOSs could improve the germination of a Bacillus probiotic in the presence of bile salts in vitro, with an 8 h reduced lag-time when compared to a glucose substrate. Moreover, bacterial concentration (CFU/mL) was increased by about 1 log in IMOS liquid cultures after 48 h when compared to glucose. In conclusion, the use of IMOSs in association with probiotic B. subtilis CU1 in a synbiotic product could improve the fitness and benefits of the probiotic.
Collapse
|
4
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
5
|
Sheng K, Xu Y, Kong X, Wang J, Zha X, Wang Y. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14810-14823. [PMID: 34677958 DOI: 10.1021/acs.jafc.1c03375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dysbiosis leads to continuous progress of inflammatory bowel disease (IBD). However, current therapeutic approaches for IBD have limited efficacy and are associated with various side effects. This study focused on exploring the positive effect of a new Bacillus cereus (B. cereus) strain (HMPM18123) in a colitis mouse model and elucidate the underlying molecular mechanisms. The colitis symptoms were alleviated by the B. cereus administration as evidenced by decreased body weight loss, colon length shortening, disease activity index score, and histopathological score. The B. cereus mitigated intestinal epithelial barrier damage by upregulating tight junction protein expression. Moreover, B. cereus exerted anti-inflammatory effects by regulating macrophage polarization and suppressing the TLR4-NF-κB-NLRP3 inflammasome signaling pathways. B. cereus also rebalanced the damaged gut microbiota. Thus, the molecular mechanism of alleviating colitis by B. cereus treatment involved the regulation of the TLR4-NF-κB-NLRP3 inflammasome signaling pathways in intestinal mucosal barriers by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Guo H, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Effects of Bacteroides-Based Microecologics against Antibiotic-Associated Diarrhea in Mice. Microorganisms 2021; 9:microorganisms9122492. [PMID: 34946094 PMCID: PMC8705046 DOI: 10.3390/microorganisms9122492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic-associated diarrhea (AAD) is a self-limiting disease mediated by antibiotic therapy. In clinical practice, several types of probiotics are used in treating AAD, but minimal research has been done on Bacteroides-based microecologics. Our aim was to evaluate the therapeutic effects of Bacteroidetes uniformis FGDLZ48B1, B. intestinalis FJSWX61K18, Bifidobacterium adolescentis FHNFQ48M5, and B. bifidum FGZ30MM3 and their mixture on AAD in mice. The lincomycin hydrochloride-induced AAD models were gavaged with a single strain or a probiotic mixture for a short period to assess the changes in colonic histopathology and cytokine concentrations, intestinal epithelial permeability and integrity, short-chain fatty acids (SCFAs), and the diversity of intestinal microbiota. Our data indicated that both the sole use of Bacteroides and the combination of Bacteroides and Bifidobacterium beneficially weakened systemic inflammation, increased the recovery rate of tissue structures, increased the concentrations of SCFAs, and restored the gut microbiota. Moreover, the probiotic mixture was more effective than the single strain. Specifically, B. uniformis FGDLZ48B1 combined with the B. adolescentis FHNFQ48M5 group was more effective in alleviating the pathological features of the colon, downregulating the concentrations of interleukin (IL)-6, and upregulating the expression of occludin. In summary, our research suggests that administration of a mixture of B. uniformis FGDLZ48B1 and B. adolescentis FHNFQ48M5 is an effective approach for treating AAD.
Collapse
Affiliation(s)
- Hang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.G.); (L.Y.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-8591-2155
| |
Collapse
|
7
|
Ghosh A, Sundaram B, Bhattacharya P, Mohanty N, Dheivamani N, Mane S, Acharyya B, Kamale V, Poddar S, Khobragade A, Thomas W, Prabhudesai S, Choudhary A, Mitra M. Effect of Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 on Acute Watery Diarrhea: A Randomized Double-Blind Placebo-Controlled Study in Indian Children. Pediatr Gastroenterol Hepatol Nutr 2021; 24:423-431. [PMID: 34557395 PMCID: PMC8443851 DOI: 10.5223/pghn.2021.24.5.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
PURPOSE To assess the effect of combination probiotic Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 in outpatient management of acute watery diarrhea in children. METHODS A randomized double-blind placebo-controlled study was conducted in 180 participants aged six months to five years with acute mild to moderate diarrhea. All were enrolled from six centers across India and centrally randomized to receive S. boulardii CNCM-I 3799 and B. subtilis CU-1 or a placebo along with oral rehydration salts and zinc supplementation. Each participant was followed up for three months to assess recurrence of diarrhea. RESULTS The mean duration of diarrhea in the probiotic and placebo groups were 54.16 hours and 59.48 hours, respectively. The difference in the duration of diarrhea in those administered with probiotic or placebo within 24 hours of diarrhea onset was 25.21 hours. Furthermore, the difference in duration of diarrhea was 13.84 hours (p<0.05) for participants who were administered with probiotics within 48 hours. There were no significant differences in the stool frequencies between the two arms. After three months, 15% in the probiotic group and 18.5% in the placebo group reported episodes of diarrhea. The mean duration of diarrhea was considerably lower in the probiotic group, 31.02 hours versus 48 hours in placebo (p=0.017). CONCLUSION S. boulardii CNCM-I 3799 and B. subtilis CU-1 combination was effective in reducing the duration of diarrhea when administered within 48 hours of diarrhea onset. Similarly, it reduced recurrence of diarrhea and its intensity in the subsequent three months.
Collapse
Affiliation(s)
- Apurba Ghosh
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| | | | - Piyali Bhattacharya
- Department of Pediatrics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Nimain Mohanty
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Nirmala Dheivamani
- Department of Pediatric Gastroenterology, Institute of Child Health, Chennai, India
| | - Sushant Mane
- Department of Pediatrics, Grant Govt. Medical College & Sir J.J. Group of Hospitals, Mumbai, India
| | - Bhaswati Acharyya
- Department of Pediatric Gastroenterology, Institute of Child Health, Kolkata, India
| | - Vijay Kamale
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Sumon Poddar
- Department of Microbiology, Institute of Child Health, Kolkata, India
| | - Akash Khobragade
- Department of Medical & Clinical Pharmacology, Grant Govt. Medical College & Sir J.J. Group of Hospitals, Mumbai, India
| | - Winston Thomas
- Department of Pediatrics, Institute of Child Health, Chennai, India
| | - Sumant Prabhudesai
- Department of Pediatric Intensive Care Unit, Kanchi Kamakoti Childs Trust Hospital, Chennai, India
| | - Ankita Choudhary
- Department of Pediatrics, MGM Medical College, Navi Mumbai, India
| | - Monjori Mitra
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| |
Collapse
|
8
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Chen K, Gao C, Han X, Li D, Wang H, Lu F. Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. J Food Sci 2020; 86:475-483. [PMID: 32964467 DOI: 10.1111/1750-3841.15349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
We identified lentil products with both nutritional value and antioxidant capacity by studying the changes of probiotics and functional substances during single fermentation with lactic acid bacteria (LAB) or co-fermentation using LAB and Bacillus subtilis natto. After fermentation, the best growth of LAB was observed in anaerobic solid-state co-fermentation, whereby the viable counts of Lactobacillus plantarum TK9 and Lactobacillus paracasei TK1501 reached 2.77 × 109 and 2.78 × 109 CFU/g, respectively. Furthermore, the total phenol and genistin content produced by the two mixed groups, respectively, increased by 0.52- and 0.66-fold, as well as 0.63- and 0.64-fold, compared with unfermented samples. Similarly, the free amino acid content increased by 0.53- and 0.49-fold, respectively. The 50% inhibitory concentrations for the radical-scavenging against 1,1-diphenyl-2-picrylhydrazyl and α-glucosidase inhibitory activity were lower following anaerobic co-fermentation. Consistently, products of anaerobic mixed solid-state fermentation had higher oxygen radical absorbance capacity. Therefore, anaerobic solid-state co-fermentation of lentils using B. subtilis natto may promote the multiplication of LAB and enhance the antioxidant activity of fermented lentil products. PRACTICAL APPLICATION: Simple and efficient food handling is more suitable for industrial production. Co-fermentation is a good method to optimize the fermentation process. Co-culture technology has high potential in terms of functionality and antioxidant capacity.
Collapse
Affiliation(s)
- Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Congcong Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Xuemei Han
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Dan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Haikuan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
10
|
Chen W, Peng X, Yu J, Chen X, Yuan M, Xiang R, He L, Yu D, Kang H, Pan Y, Xu Z. FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins in mice with castor oil-induced diarrhea. PLoS One 2020; 15:e0236511. [PMID: 32722717 PMCID: PMC7386626 DOI: 10.1371/journal.pone.0236511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The severe side effects of chemosynthetic anti-diarrhea drugs have created an interest in low-toxic alternative plant-derived compounds. FengLiao consists of Polygonum hydropiper Linn. and Daphniphyllum calycinum Bench., and is widely used in China to treat diarrhea due to low levels of toxicity. In this study, the effects of FengLiao were analyzed in a castor oil-induced diarrhea model, using the anti-diarrhea drug, loperamide, as the positive control. The effects were evaluated using stool characteristics and the expression levels of various diarrhea-related factors in the jejunum and liver, as well as changes in the microbiota of the jejunum. The symptoms of diarrhea and stool consistency were improved through FengLiao and loperamide treatment. Furthermore, FengLiao down-regulated alpha 1-acid glycoprotein (AGP) and C-reactive protein (CRP) levels, and up-regulated transferrin (TRF) mRNA levels in the liver, and down-regulated Aquaporin 3 (AQP3) and Na+/H+ exchanger isoform 8 (NHE8) expression in the epithelial cells of the jejunum. It also increased the relative abundance of Bifidobacterium, Aerococcus, Corynebacterium_1 and Pseudomonas, and lowered the Firmicutes/Bacteroidetes (F/B) ratio, which maintained the balance between immunity and intestinal health. Taken together, FengLiao alleviated castor oil-induced diarrhea by altering gut microbiota, and levels of jejunum epithelial transport proteins and acute phase proteins.
Collapse
Affiliation(s)
- Wenlu Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyu Peng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
- * E-mail:
| | - Jingxian Yu
- South China Agricultural University, Guangzhou, China
| | - Xuanxuan Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Yuan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Rong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Limei He
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Danni Yu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Yufang Pan
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Rubio APD, Martínez J, Palavecino M, Fuentes F, López CMS, Marcilla A, Pérez OE, Piuri M. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep 2020; 10:3120. [PMID: 32080346 PMCID: PMC7033168 DOI: 10.1038/s41598-020-60077-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcos Palavecino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christian Miquel Sánchez López
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Mekonnen SA, Merenstein D, Fraser CM, Marco ML. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 2020; 61:226-234. [PMID: 32087535 DOI: 10.1016/j.copbio.2020.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Antibiotic-associated diarrhea (AAD) is a common and unintended adverse effect of antibiotic treatment. It is characterized by the disruption of the gut microbiota, decreased intestinal short chain fatty acid (SCFA) concentrations, accumulation of luminal carbohydrates and colonic bile acids, altered water absorption, and ultimately diarrhea. Probiotics were shown to prevent AAD in numerous clinical trials. This review examines what is currently known about how probiotics reduce the risk for AAD via modulating the gut microbiota, altering nutrient and bile acid metabolism, inducing epithelial solute transporter activity, supporting intestinal barrier function, and influencing the immune system. Although probiotics are frequently prescribed with antibiotic use, mechanistic evidence verifying how they confer protection against AAD is extremely limited. This information is urgently needed for improving recommendations for sustaining probiotic development and for implementing probiotics in clinical settings.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Claire M Fraser
- Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Soares MB, Santos-Junior VA, Tavares Filho ER, Lollo PCB, Morato PN, Amaya-Farfan J, Pereira EPR, Balthazar CF, Cruz AG, Martinez RCR, Sant'Ana AS. The Step of Incorporation of Bacillus coagulans GBI-30 6086 Into "requeijão cremoso" Processed Cheese Does Not Affect Metabolic Homeostasis of Rats. Front Microbiol 2019; 10:2332. [PMID: 31695686 PMCID: PMC6817512 DOI: 10.3389/fmicb.2019.02332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dairy product consumption is a common habit in Brazil. These products present a good matrix for probiotic incorporation. Thus, in this study the feasibility of producing a probiotic “requeijão cremoso” incorporated with Bacillus coagulans GBI-30 6086 in three different steps and its metabolic effect in an animal model for 2 weeks has been evaluated. Wistar adult health rats were randomized into one to five groups (n = 8 for each group): Control (C); “requeijão cremoso” without probiotic (RC); probiotic inoculated in the milk before pasteurization at 65°C/30 min (RPP); “requeijão cremoso” inoculated before the fusion step and consequently exposed to 90°C/5 min (RPF); and “requeijão cremoso” inoculated after fusion step, i.e., once the product temperature reached 50°C (RPAF). At the end of treatment, analysis of molecular markers of proteins of stress and antioxidant system, HSP 25, 60, 70 and 90, SOD and catalase were performed in the animals’ muscles by Western Blot technique. The HSP25, HSP90 and catalase levels of C, RPP, RPF, and RPAF were similar, indicating that the homeostasis remained unchanged. The incorporation of B. coagulans GBI-30 6086 in the “requeijão cremoso” was shown to be stable and the microorganism remained viable in all steps tested. The incorporation of the probiotic strain in the fusion stage facilitated the technological process, since it allowed a better homogenization of the product and did not affect the maintenance of the metabolic homeostasis of rats.
Collapse
Affiliation(s)
- Mariana B Soares
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Valfredo A Santos-Junior
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - E R Tavares Filho
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Pablo C B Lollo
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Priscila N Morato
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Jaime Amaya-Farfan
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Eliene P R Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso F Balthazar
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, Brazil
| | - Adriano G Cruz
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, Brazil.,Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael C R Martinez
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019; 11:E635. [PMID: 30875987 PMCID: PMC6470608 DOI: 10.3390/nu11030635] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic complex to treat due to its multifactorial pathogenesis-an unhealthy lifestyle, neuronal and hormonal mechanisms, and genetic and epigenetic factors are involved. Scientific evidence supports the idea that obesity and metabolic consequences are strongly related to changes in both the function and composition of gut microbiota, which exert an essential role in modulating energy metabolism. Modifications of gut microbiota composition have been associated with variations in body weight and body mass index. Lifestyle modifications remain as primary therapy for obesity and related metabolic disorders. New therapeutic strategies to treat/prevent obesity have been proposed, based on pre- and/or probiotic modulation of gut microbiota to mimic that found in healthy non-obese subjects. Based on human and animal studies, this review aimed to discuss mechanisms through which gut microbiota could act as a key modifier of obesity and related metabolic complications. Evidence from animal studies and human clinical trials suggesting potential beneficial effects of prebiotic and various probiotic strains on those physical, biochemical, and metabolic parameters related to obesity is presented. As a conclusion, a deeper knowledge about pre-/probiotic mechanisms of action, in combination with adequately powered, randomized controlled follow-up studies, will facilitate the clinical application and development of personalized healthcare strategies.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - José Antonio García-Santos
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Mercedes G Bermúdez
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Yang J, Zhang M, Zhou Y. Effects of selenium-enriched Bacillus sp. compounds on growth performance, antioxidant status, and lipid parameters breast meat quality of Chinese Huainan partridge chicks in winter cold stress. Lipids Health Dis 2019; 18:63. [PMID: 30871550 PMCID: PMC6417213 DOI: 10.1186/s12944-019-1015-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both selenium (Se) and probiotic Bacillus regulate the metabolism to help defense clod stress and improve the meat quality in breeding chicks. The purpose of this study was to evaluate the effect of supplemental Se and Bacillus in the form of Se-enriched Bacillus (SECB) on the growth performance, lipid parameters, breast Se and antibiotic levels, and breast meat quality of chicken in winter cold stress. METHODS Five hundred 1-d-old chickens were divided into five groups randomly: Control, inorganic Se, compound Bacillus, SECB, and antibiotic. The feed duration was 56 d. RESULTS After 28 d of treatment, chicks feed SECB or compound Bacillus had higher body weights than the control, and after 56 d, chicks given either SECB or compound Bacillus had higher body weights than the control chicks or those given inorganic Se. Adding SECB to feed significantly increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, and reduced the shear force and cooking loss. The concentration of Se in the breast muscle very significantly increased after SECB and inorganic Se supplementation, which was opposite to the concentration of flavomycin in antibiotic supplemented chicks. The antioxidative status of plasma and breast meat was significantly improved with added compound Bacillus and SECB: the total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase ability in the breast muscle significantly improved, and the malondialdehyde concentration in plasma decreased. The levels of total cholesterol plasma triglyceride and very-low-density lipoprotein cholesterol in the plasma and breast muscle was decreased compared to that of the control, while the plasma high-density lipoprotein cholesterol concentration increased. CONCLUSIONS In conclusion, SECB supplementation promoted the body growth, antioxidative status, and Se concentrations in the plasma and breast meat, and also improved the breast meat quality.
Collapse
Affiliation(s)
- Jiajun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, NongKe South of Road, Hefei, 230031, Anhui, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China.
| | - Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
| |
Collapse
|