1
|
Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168210. [PMID: 37924876 DOI: 10.1016/j.scitotenv.2023.168210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology, Klongluang, Pathumthani, Thailand
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland 4102, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Okazaki Y, Nguyen TT, Nishihara A, Endo H, Ogata H, Nakano SI, Tamaki H. A Fast and Easy Method to Co-extract DNA and RNA from an Environmental Microbial Sample. Microbes Environ 2023; 38. [PMID: 36928278 PMCID: PMC10037101 DOI: 10.1264/jsme2.me22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15 kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50 ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | | | | | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
3
|
Vega M, Ontiveros-Valencia A, Vargas IT, Nerenberg R. Chlorate addition enhances perchlorate reduction in denitrifying membrane-biofilm reactors. Appl Microbiol Biotechnol 2022; 106:4341-4350. [PMID: 35612628 DOI: 10.1007/s00253-022-11976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Perchlorate is a widespread drinking water contaminant with regulatory standards ranging from 2 to 18 μg/L. The hydrogen-based membrane-biofilm reactor (MBfR) can effectively reduce perchlorate, but it is challenging to achieve low-µg/L levels. We explored chlorate addition to increase the abundance of perchlorate-reducing bacteria (PRB) and improve removals. MBfR reactors were operated with and without chlorate addition. Results show that chlorate doubled the abundance of putative PRB (e.g., Rhodocyclales) and improved perchlorate reduction to 23 ± 17 µg/L, compared to 53 ± 37 µg/L in the control. Sulfate reduction was substantially inhibited during chlorate addition, but quickly recovered once suspended. Our results suggest that chlorate addition can enhance perchlorate reduction by providing a selective pressure for PRB. It also decreases net sulfate reduction. KEY POINTS: • Chlorate increased the abundance of perchlorate-reducing bacteria • Chlorate addition improved perchlorate removal • Chlorate appeared to suppress sulfate reduction.
Collapse
Affiliation(s)
- Marcela Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.,Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN, 46556, USA.,Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Aura Ontiveros-Valencia
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN, 46556, USA.,División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, CP 78216, San Luis Potosí, México
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.,Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN, 46556, USA.
| |
Collapse
|
4
|
Abbasi B, Harper J, Ahmadvand S. A short critique on biomining technology for critical materials. World J Microbiol Biotechnol 2021; 37:87. [PMID: 33881629 DOI: 10.1007/s11274-021-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Being around for several decades, there is a vast amount of academic research on biomining, and yet it contributes less to the mining industry compared to other conventional technologies. This critique briefly comments on the current status of biomining research, enumerates a number of primary challenges, and elaborates on some kinetically-oriented strategies and bottom-up policies to sustain biomining with focus on critical material extraction and rare earth elements (REEs). Finally, we present some edge cutting developments which may promote new potentials in biomining.
Collapse
Affiliation(s)
- Behrooz Abbasi
- Department of Mining and Metallurgical Engineering, University of Nevada, Reno, 89557, USA.
| | - Jeffrey Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA.
| | | |
Collapse
|
5
|
Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME JOURNAL 2019; 14:450-462. [PMID: 31659234 DOI: 10.1038/s41396-019-0540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.
Collapse
|
6
|
Stoeva MK, Nalula G, Garcia N, Cheng Y, Engelbrektson AL, Carlson HK, Coates JD. Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. Front Microbiol 2019; 10:654. [PMID: 31001230 PMCID: PMC6454106 DOI: 10.3389/fmicb.2019.00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Gilbert Nalula
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Nicholas Garcia
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna L Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, Berkeley, CA, United States.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Mehta‐Kolte MG, Stoeva MK, Mehra A, Redford SA, Youngblut MD, Zane G, Grégoire P, Carlson HK, Wall J, Coates JD. Adaptation ofDesulfovibrio alaskensisG20 to perchlorate, a specific inhibitor of sulfate reduction. Environ Microbiol 2019; 21:1395-1406. [DOI: 10.1111/1462-2920.14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Magdalena K. Stoeva
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| | - Anchal Mehra
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| | - Steven A. Redford
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | | | - Grant Zane
- Departments of Biochemistry and Molecular Microbiology and ImmunologyUniversity of Missouri—Columbia Columbia MO USA
| | - Patrick Grégoire
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | - Hans K. Carlson
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
| | - Judy Wall
- Departments of Biochemistry and Molecular Microbiology and ImmunologyUniversity of Missouri—Columbia Columbia MO USA
| | - John D. Coates
- Energy Biosciences InstituteUniversity of California‐ Berkeley, Berkeley CA USA
- Department of Plant and Microbial BiologyUniversity of California‐ Berkeley Berkeley CA USA
| |
Collapse
|
8
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Engelbrektson A, Briseno V, Liu Y, Figueroa I, Yee M, Shao GL, Carlson H, Coates JD. Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. Front Microbiol 2018; 9:2305. [PMID: 30337913 PMCID: PMC6180152 DOI: 10.3389/fmicb.2018.02305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Sulfide biogenesis (souring) in oil reservoirs is an extensive and costly problem. Nitrate is currently used as a souring inhibitor but often requires high concentrations and yields inconsistent results. Recently, perchlorate has displayed promise as a more potent inhibitor in lab scale studies. However, combining the two treatments to determine synergy and effectiveness in a dynamic system has never been tested. Nitrate inhibits perchlorate consumption by perchlorate reducing bacteria, suggesting that the combined treatment may allow deeper penetration of the perchlorate into the reservoir matrix. Furthermore, the metabolic intermediates of perchlorate and nitrate reduction (nitrite and chlorite, respectively) are synergistic with the primary electron acceptors for inhibition of sulfate reduction. To assess the possible synergies between nitrate and perchlorate treatments, triplicate glass columns packed with pre-soured marine sediment were flushed with media containing sulfate and an inhibitor treatment [(i) perchlorate; (ii) nitrate; (iii) perchlorate and nitrate; or (iv) none]. Internal geochemistry and microbial community changes were monitored along the length of the columns during six phases of increasing treatment concentrations. In a final phase all treatments were removed. Sulfide production decreased in all treated columns in conjunction with increased inhibitor concentrations relative to the untreated control. Interestingly, the potency of the "mixed" treatment was additive relative to the individual treatments suggesting no interaction. Microbial community analyses indicated community shifts and clustering by treatment. The mixed treatment column community's trajectory closely resembled that of the community found in the perchlorate only treatment, suggesting that perchlorate was the dominant control on the "mixed" community structure. In contrast, the nitrate and untreated column communities had unique trajectories. This study indicates that concurrent nitrate and perchlorate treatment is not more effective than perchlorate treatment alone but is more effective than nitrate treatment. As such, treatment decisions may be based on economic factors.
Collapse
Affiliation(s)
- Anna Engelbrektson
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Vanessa Briseno
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Yi Liu
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Israel Figueroa
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Megan Yee
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Gong Li Shao
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hans Carlson
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - John D Coates
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|