1
|
Ohdate K, Sakata M, Maeda K, Sakamaki Y, Nimura-Matsune K, Ohbayashi R, Hess WR, Watanabe S. Discovery of novel replication proteins for large plasmids in cyanobacteria and their potential applications in genetic engineering. Front Microbiol 2024; 15:1311290. [PMID: 38419637 PMCID: PMC10899382 DOI: 10.3389/fmicb.2024.1311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous cyanobacteria capable of oxygenic photosynthesis possess multiple large plasmids exceeding 100 kbp in size. These plasmids are believed to have distinct replication and distribution mechanisms, as they coexist within cells without causing incompatibilities between plasmids. However, information on plasmid replication proteins (Rep) in cyanobacteria is limited. Synechocystis sp. PCC 6803 hosts four large plasmids, pSYSM, pSYSX, pSYSA, and pSYSG, but Rep proteins for these plasmids, except for CyRepA1 on pSYSA, are unknown. Using Autonomous Replication sequencing (AR-seq), we identified two potential Rep genes in Synechocystis 6803, slr6031 and slr6090, both located on pSYSX. The corresponding Rep candidates, Slr6031 and Slr6090, share structural similarities with Rep-associated proteins of other bacteria and homologs were also identified in various cyanobacteria. We observed autonomous replication activity for Slr6031 and Slr6090 in Synechococcus elongatus PCC 7942 by fusing their genes with a construct expressing GFP and introducing them via transformation. The slr6031/slr6090-containing plasmids exhibited lower copy numbers and instability in Synechococcus 7942 cells compared to the expression vector pYS. While recombination occurred in the case of slr6090, the engineered plasmid with slr6031 coexisted with plasmids encoding CyRepA1 or Slr6090 in Synechococcus 7942 cells, indicating the compatibility of Slr6031 and Slr6090 with CyRepA1. Based on these results, we designated Slr6031 and Slr6090 as CyRepX1 (Cyanobacterial Rep-related protein encoded on pSYSX) and CyRepX2, respectively, demonstrating that pSYSX is a plasmid with "two Reps in one plasmid." Furthermore, we determined the copy number and stability of plasmids with cyanobacterial Reps in Synechococcus 7942 and Synechocystis 6803 to elucidate their potential applications. The novel properties of CyRepX1 and 2, as revealed by this study, hold promise for the development of innovative genetic engineering tools in cyanobacteria.
Collapse
Affiliation(s)
- Kazuma Ohdate
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Minori Sakata
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaisei Maeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yutaka Sakamaki
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaori Nimura-Matsune
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryudo Ohbayashi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Satoru Watanabe
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
2
|
Jin H, Zhang J, Wang Y, Ge W, Jing Y, Cao X, Huo Y, Fu Y. A codon-based live-cell biomonitoring system for assessing intracellular phenylalanine bioavailability in cyanobacteria. Biosens Bioelectron 2024; 244:115792. [PMID: 37922807 DOI: 10.1016/j.bios.2023.115792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Phenylalanine, as an essential aromatic amino acid, is not only needed for protein and vital molecules such as neurotransmitter and hormone synthesis but also a substrate for the biosynthesis of phenylpropanoids and various bioactive compounds. The metabolism of phenylalanine is dynamic and transitory, which would otherwise inhibit cell growth. Therefore, it is challenging and imperative to monitor intracellular phenylalanine bioavailability in real time, which has great significance for evaluating the effectiveness of introducing pathway-specific genetic modifications to enhance phenylalanine generation. In this study, we proposed a live-cell biomonitoring system to assess phenylalanine bioavailability in real time in cyanobacteria based on codon degeneracy and species-specific usage bias. The biomonitoring system was generated through genetic modification of phenylalanine codons in the chloramphenicol antibiotic resistance gene to wholly preferred and rare codons, in combination with an orthogonal constitutive promoter Trc to express these genes. Cyanobacterial cells equipped with a preferred codon-based gene showed a significant growth advantage over those with rare codons under antibiotic pressure, while the delayed growth caused by rare codon-based genes could be rescued by supplementing phenylalanine in the cultivation medium. Increasing intracellular phenylalanine bioavailability could promote rare codon-based gene containing cell growth to a similar level as wild-type strains harboring preferred codon-based gene, providing a live-cell visualized screening method to relatively define phenylalanine content from either random mutation libraries or pathway-specific engineering cyanobacterial chassis before conducting labor-intensive quantitative measurements.
Collapse
Affiliation(s)
- Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, PR China
| | - Jiaqi Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Wanzhao Ge
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yike Jing
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Xiaoyu Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yixin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, PR China.
| |
Collapse
|
3
|
Nies F, Wein T, Hanke DM, Springstein BL, Alcorta J, Taubenheim C, Dagan T. Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:656-668. [PMID: 37794696 PMCID: PMC10667661 DOI: 10.1111/1758-2229.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid-encoded genes is similar to that of chromosome-encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited.
Collapse
Affiliation(s)
- Fabian Nies
- Institute of General MicrobiologyKiel UniversityKielGermany
| | - Tanita Wein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Benjamin L. Springstein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences FacultyPontifical Catholic University of ChileSantiagoChile
| | - Claudia Taubenheim
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Internal Medicine IIUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Tal Dagan
- Institute of General MicrobiologyKiel UniversityKielGermany
| |
Collapse
|
4
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Sakamaki Y, Maeda K, Nimura-Matsune K, Chibazakura T, Watanabe S. Characterization of a cyanobacterial rep protein with broad-host range and its utilization for expression vectors. Front Microbiol 2023; 14:1111979. [PMID: 37032853 PMCID: PMC10079941 DOI: 10.3389/fmicb.2023.1111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Owing to their photosynthetic capabilities, cyanobacteria are regarded as ecologically friendly hosts for production of biomaterials. However, compared to other bacteria, tools for genetic engineering, especially expression vector systems, are limited. In this study, we characterized a Rep protein, exhibiting replication activity in multiple cyanobacteria and established an expression vector using this protein. Our comprehensive screening using a genomic library of Synechocystis sp. PCC 6803 revealed that a certain region encoding a Rep-related protein (here named Cyanobacterial Rep protein A2: CyRepA2) exhibits high autonomous replication activity in a heterologous host cyanobacterium, Synechococcus elongatus PCC 7942. A reporter assay using GFP showed that the expression vector pYS carrying CyRepA2 can be maintained in not only S. 6803 and S. 7942, but also Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120. In S. 7942, GFP expression in the pYS-based system was tightly regulated by IPTG, achieving 10-fold higher levels than in the chromosome-based system. Furthermore, pYS could be used together with the conventional vector pEX, which was constructed from an endogenous plasmid in S. 7942. The combination of pYS with other vectors is useful for genetic engineering, such as modifying metabolic pathways, and is expected to improve the performance of cyanobacteria as bioproduction chassis.
Collapse
Affiliation(s)
- Yutaka Sakamaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaisei Maeda
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- *Correspondence: Satoru Watanabe,
| |
Collapse
|
7
|
Bourgade B, Stensjö K. Synthetic biology in marine cyanobacteria: Advances and challenges. Front Microbiol 2022; 13:994365. [PMID: 36188008 PMCID: PMC9522894 DOI: 10.3389/fmicb.2022.994365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The current economic and environmental context requests an accelerating development of sustainable alternatives for the production of various target compounds. Biological processes offer viable solutions and have gained renewed interest in the recent years. For example, photosynthetic chassis organisms are particularly promising for bioprocesses, as they do not require biomass-derived carbon sources and contribute to atmospheric CO2 fixation, therefore supporting climate change mitigation. Marine cyanobacteria are of particular interest for biotechnology applications, thanks to their rich diversity, their robustness to environmental changes, and their metabolic capabilities with potential for therapeutics and chemicals production without requiring freshwater. The additional cyanobacterial properties, such as efficient photosynthesis, are also highly beneficial for biotechnological processes. Due to their capabilities, research efforts have developed several genetic tools for direct metabolic engineering applications. While progress toward a robust genetic toolkit is continuously achieved, further work is still needed to routinely modify these species and unlock their full potential for industrial applications. In contrast to the understudied marine cyanobacteria, genetic engineering and synthetic biology in freshwater cyanobacteria are currently more advanced with a variety of tools already optimized. This mini-review will explore the opportunities provided by marine cyanobacteria for a greener future. A short discussion will cover the advances and challenges regarding genetic engineering and synthetic biology in marine cyanobacteria, followed by a parallel with freshwater cyanobacteria and their current genetic availability to guide the prospect for marine species.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Simple transformation of the filamentous thermophilic cyanobacterium Leptolyngbya sp. KC45. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Baldanta S, Guevara G, Navarro-Llorens JM. SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microb Cell Fact 2022; 21:103. [PMID: 35643551 PMCID: PMC9148489 DOI: 10.1186/s12934-022-01830-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cyanobacteria are photosynthetic autotrophs that have tremendous potential for fundamental research and industrial applications due to their high metabolic plasticity and ability to grow using CO2 and sunlight. CRISPR technology using Cas9 and Cpf1 has been applied to different cyanobacteria for genome manipulations and metabolic engineering. Despite significant advances with genome editing in several cyanobacteria strains, the lack of proper genetic toolboxes is still a limiting factor compared to other model laboratory species. Among the limitations, it is essential to have versatile plasmids that could ease the benchwork when using CRISPR technology. Results In the present study, several CRISPR-Cpf1 vectors were developed for genetic manipulations in cyanobacteria using SEVA plasmids. SEVA collection is based on modular vectors that enable the exchangeability of diverse elements (e.g. origins of replication and antibiotic selection markers) and the combination with many cargo sequences for varied end-applications. Firstly, using SEVA vectors containing the broad host range RSF1010 origin we demonstrated that these vectors are replicative not only in model cyanobacteria but also in a new cyanobacterium specie, Chroococcidiopsis sp., which is different from those previously published. Then, we constructed SEVA vectors by harbouring CRISPR elements and showed that they can be easily assimilated not only by conjugation, but also by natural transformation. Finally, we used our SEVA-Cpf1 tools to delete the nblA gene in Synechocystis sp. PCC 6803, demonstrating that our plasmids can be applied for CRISPR-based genome editing technology. Conclusions The results of this study provide new CRISPR-based vectors based on the SEVA (Standard European Vector Architecture) collection that can improve editing processes using the Cpf1 nuclease in cyanobacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01830-4.
Collapse
|
10
|
Opel F, Siebert NA, Klatt S, Tüllinghoff A, Hantke JG, Toepel J, Bühler B, Nürnberg DJ, Klähn S. Generation of Synthetic Shuttle Vectors Enabling Modular Genetic Engineering of Cyanobacteria. ACS Synth Biol 2022; 11:1758-1771. [PMID: 35405070 DOI: 10.1021/acssynbio.1c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nina A. Siebert
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Klatt
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Adrian Tüllinghoff
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Janis G. Hantke
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
11
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Abstract
Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive “twitching” or “gliding” motility. This, along with the extrusion of polysaccharides or “slime” by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of “active matter” approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.
Collapse
|
13
|
Juteršek M, Dolinar M. A chimeric vector for dual use in cyanobacteria and Escherichia coli, tested with cystatin, a nonfluorescent reporter protein. PeerJ 2021; 9:e12199. [PMID: 34760347 PMCID: PMC8571960 DOI: 10.7717/peerj.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Developing sustainable autotrophic cell factories depends heavily on the availability of robust and well-characterized biological parts. For cyanobacteria, these still lag behind the more advanced E. coli toolkit. In the course of previous protein expression experiments with cyanobacteria, we encountered inconveniences in working with currently available RSF1010-based shuttle plasmids, particularly due to their low biosafety and low yields of recombinant proteins. We also recognized some drawbacks of the commonly used fluorescent reporters, as quantification can be affected by the intrinsic fluorescence of cyanobacteria. To overcome these drawbacks, we envisioned a new chimeric vector and an alternative reporter that could be used in cyanobacterial synthetic biology and tested them in the model cyanobacterium Synechocystis sp. PCC 6803. Methods We designed the pMJc01 shuttle plasmid based on the broad host range RSFmob-I replicon. Standard cloning techniques were used for vector construction following the RFC10 synthetic biology standard. The behavior of pMJC01 was tested with selected regulatory elements in E. coli and Synechocystis sp. PCC 6803 for the biosynthesis of the established GFP reporter and of a new reporter protein, cystatin. Cystatin activity was assayed using papain as a cognate target. Results With the new vector we observed a significantly higher GFP expression in E. coli and Synechocystis sp. PCC 6803 compared to the commonly used RSF1010-based pPMQAK1. Cystatin, a cysteine protease inhibitor, was successfully expressed with the new vector in both E. coli and Synechocystis sp. PCC 6803. Its expression levels allowed quantification comparable to the standardly used fluorescent reporter GFPmut3b. An important advantage of the new vector is its improved biosafety due to the absence of plasmid regions encoding conjugative transfer components. The broadhost range vector pMJc01 could find application in synthetic biology and biotechnology of cyanobacteria due to its relatively small size, stability and ease of use. In addition, cystatin could be a useful reporter in all cell systems that do not contain papain-type proteases and inhibitors, such as cyanobacteria, and provides an alternative to fluorescent reporters or complements them.
Collapse
Affiliation(s)
- Mojca Juteršek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.,Current Affiliation: National Institute of Biology, Ljubljana, Slovenia
| | - Marko Dolinar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
15
|
Jin H, Wang Y, Fu Y, Bhaya D. The role of three-tandem Pho Boxes in the control of the C-P lyase operon in a thermophilic cyanobacterium. Environ Microbiol 2021; 23:6433-6449. [PMID: 34472186 DOI: 10.1111/1462-2920.15750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria have an inherited advantage in phosphonate phytoremediation. However, studies on phosphonate metabolism in cyanobacteria are rare and mostly focus on physiology and ecology. Here, C-P lyase gene cluster regulation in an undomesticated thermophilic Synechococcus OS-B' was examined in Synechocystis sp. PCC6803, a unicellular cyanobacterial model. Phylogenetic and cluster synteny analysis of C-P lyase genes revealed a closer relationship between Syn OS-B' and Thermus thermophilus, than with other cyanobacteria. Pho boxes were identified in the 5'-end-flanking region of the C-P lyase gene cluster, through which the downstream gene expression was regulated in a phosphate concentration-dependent manner. Unexpectedly, the phosphate concentration that thoroughly inhibited Pho boxes was almost two orders of magnitude higher than that of any natural or anthropogenic wastewater reported so far. The Pho boxes mediated regulation was achieved through the Pho regulon two-component system, and the absence of either SphS or SphR ablated the cell's ability to sense ambient phosphate changes. The three tandems of Pho boxes maintained inequivalent roles, of which the third tandem was not essential; however, it played a role in adjusting Pho boxes response in both positive and negative manner under phosphorus limitation.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
17
|
Nagy C, Thiel K, Mulaku E, Mustila H, Tamagnini P, Aro EM, Pacheco CC, Kallio P. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Fact 2021; 20:130. [PMID: 34246263 PMCID: PMC8272380 DOI: 10.1186/s12934-021-01622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. Results An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. Conclusions This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01622-2.
Collapse
Affiliation(s)
- Csaba Nagy
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Kati Thiel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Edita Mulaku
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Henna Mustila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Catarina C Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland.
| |
Collapse
|
18
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Simultaneous transformation of five vectors in Gluconobacter oxydans. Plasmid 2021; 117:102588. [PMID: 34256060 DOI: 10.1016/j.plasmid.2021.102588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Gluconobacter oxydans is an obligate Gram-negative bacterium that belongs to the family Acetobacteraceae. It is one of the most frequently used microorganisms in industrial biotechnology to produce chemicals related to incomplete oxidation. However, the fine-tuning of G. oxydans is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. Thus, a series of shuttle vectors for G. oxydans inspired by a series of wild-type plasmids in different G. oxydans strains were constructed. Fifteen shuttle vectors were employed to express mCherry in G. oxydans WSH-003 using the replication origin of these wild-type plasmids. Among them, the intensity of fluorescent proteins expressed by p15-K-mCherry was about 10 times that of fluorescent proteins expressed by p5-K-mCherry. Quantitative real-time polymerase chain reaction showed that the relative copy number of p15-K-mCherry reached 19 and had high stability. In contrast, some of the plasmids had a relative copy number of less than 10. The co-expression of multiple shuttle vectors revealed five shuttle vectors that could be transformed into G. oxydans WSH-003 and could express five different fluorescent proteins. The shuttle vectors will facilitate genetic operations for Gluconobacter strains to produce useful compounds more efficiently.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
20
|
Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sebesta J, Peebles CAM. Improving heterologous protein expression in Synechocystis sp. PCC 6803 for alpha-bisabolene production. Metab Eng Commun 2020; 10:e00117. [PMID: 31908923 PMCID: PMC6940699 DOI: 10.1016/j.mec.2019.e00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacterial biofuels have the potential to reduce the cost and climate impacts of biofuel production because primary carbon fixation and conversion to fuel are completed together in the cultivation of the cyanobacteria. Cyanobacterial biofuels, therefore, do not rely on costly organic carbon feedstocks that heterotrophs require, which reduces competition for agricultural resources such as arable land and freshwater. However, the published product titer achieved for most molecules of interest using cyanobacteria lag behind what has been achieved using yeast and Escherichia coli (E. coli) cultures. In Synechocystis sp. PCC 6803 (S. 6803), we attempted to increase the product titer of the sesquiterpene, bisabolene, which may be converted to bisabolane, a possible diesel replacement. We tested 19 strains of genetically modified S. 6803 with five different codon usage sequences of the bisabolene synthase from the grand fir tree (Abies grandis). At least three ribosome binding sites (most designed using the RBS Calculator) were tested for each codon usage sequence. We also tested strains with and without the farnesyl pyrophosphate synthase gene from E. coli. Bisabolene titers after five days of growth in continuous light ranged from un-detected to 7.8 mg/L. Bisabolene synthase abundance was measured and found to be well correlated with titer. Select strains were also tested in 12:12 light:dark cycles, where similar titers were reached after the same amount of light exposure time. One engineered strain was also tested in photobioreactors exposed to a simulated outdoor light pattern with maximum light intensity of 1600 μmol photons m-2 s-1. Here, the bisabolene titer reached 22.2 mg/L after 36 days of growth. Dramatic improvements in our ability to control gene expression in cyanobacteria such as S. 6803, and the co-utilization of additional metabolic engineering methods, are needed in order for these titers to improve to the levels reported for engineered E. coli.
Collapse
Affiliation(s)
- Jacob Sebesta
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Christie AM. Peebles
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
22
|
Jin H, Kim R, Bhaya D. Deciphering proteolysis pathways for the error-prone DNA polymerase in cyanobacteria. Environ Microbiol 2020; 23:559-571. [PMID: 31908125 DOI: 10.1111/1462-2920.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19 ) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Rick Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| |
Collapse
|
23
|
Ganesan V, Raja R, Hemaiswarya S, Carvalho IS, Anand N. Isolation and characterization of two novel plasmids pCYM01 and pCYM02 of Cylindrospermum stagnale. Saudi J Biol Sci 2020; 27:535-542. [PMID: 31889879 PMCID: PMC6933252 DOI: 10.1016/j.sjbs.2019.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria play a vital role in supplying nitrogen into the soil and aquatic ecosystem. It has an extra chromosomal DNA, whose role is not yet defined well. Isolation and characterization of extra chromosomal DNA in cyanobacteria might help to understand its survival mechanism. Cylindrospermum stagnale isolated (and deposited in NRMCF 3001) from soil showed presence of four plasmids namely pCYLM01, pCYLM02, pCYLM03, and pCYLM04. The following plasmids pCYLM01 and pCYLM02 were subjected to restriction digestion using HindIII restriction enzyme and cloned into pBlueScriptSK(-) vector. The sequence of pCYLM01 contained 4 potential open reading frames (ORFs) that have amino acids in the range of 59–299. Among them, ORF1 shows high sequence homology to the bacterial replication initiator family protein as evident from BLASTP analysis. The analysis of 4359 bp plasmid pCYLM02 sequence revealed 7 ORFs which are longer than 50 amino acids in length. The ORF2 of pCYLM02 has 243 amino acids and is represented in the plasmid sequence from 3045 to 3776 bp. The ORF3 of pCYLM02 corresponds to the plasmid sequence from 2323 to 2976 and codes for a putative protein of 217 amino acids long. A number of small ORFs below 50 bp were also found in the sequence analysis.
Collapse
Affiliation(s)
- Venkatesan Ganesan
- Acme ProGen Biotech (India) Private Limited, Balaji Nagar, Salem 636 004, India.,Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Rathinam Raja
- Food Science Laboratory, Center for Mediterranean Bioresources and Food, FCT, University of Algarve, Gambelas, Faro 8005 139, Portugal
| | | | - Isabel S Carvalho
- Food Science Laboratory, Center for Mediterranean Bioresources and Food, FCT, University of Algarve, Gambelas, Faro 8005 139, Portugal
| | - Narayanaswamy Anand
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
24
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
25
|
Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria. ENERGIES 2019. [DOI: 10.3390/en12183515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the public awareness for climate change has risen, increasing scientific effort has been made to find and develop alternative resources and production processes to reduce the dependency on petrol-based fuels and chemicals of our society. Among others, the biotechnological fuel production, as for example fermenting sugar-rich crops to ethanol, is one of the main strategies. For this purpose, various classical production systems like Escherichia coli or Saccharomyces cerevisiae are used and have been optimized via genetic modifications. Despite the progress made, this strategy competes for nutritional resources and agricultural land. To overcome this problem, various attempts were made for direct photosynthetic driven ethanol synthesis with different microalgal species including cyanobacteria. However, compared to existing platforms, the development of cyanobacteria as photoautotrophic cell factories has just started, and accordingly, the ethanol yield of established production systems is still unreached. This is mainly attributed to low ethanol tolerance levels of cyanobacteria and there is still potential for optimizing the cyanobacteria towards alternative gene expression systems. Meanwhile, several improvements were made by establishing new toolboxes for synthetic biology offering new possibilities for advanced genetic modifications of cyanobacteria. Here, current achievements and innovations of those new molecular tools are discussed.
Collapse
|
26
|
Vavitsas K, Crozet P, Vinde MH, Davies F, Lemaire SD, Vickers CE. The Synthetic Biology Toolkit for Photosynthetic Microorganisms. PLANT PHYSIOLOGY 2019; 181:14-27. [PMID: 31262955 PMCID: PMC6716251 DOI: 10.1104/pp.19.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/09/2019] [Indexed: 05/10/2023]
Abstract
Photosynthetic microorganisms offer novel characteristics as synthetic biology chassis, and the toolbox of components and techniques for cyanobacteria and algae is rapidly increasing.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Marcos Hamborg Vinde
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Fiona Davies
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| |
Collapse
|
27
|
Jin H, Lindblad P, Bhaya D. Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803. ACS Synth Biol 2019; 8:655-660. [PMID: 30935196 DOI: 10.1021/acssynbio.8b00515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop tightly regulated orthogonal gene expression circuits in the photoautotrophic cyanobacterium Synechocystis sp. PCC6803 (Syn6803), we designed a circuit in which a native inducible promoter drives the expression of phage T7 RNA polymerase (T7RNAP). T7RNAP, in turn, specifically recognizes the T7 promoter that is designed to drive GFP expression. In Syn6803, this T7RNAP/T7promoter-GFP circuit produces high GFP fluorescence, which was further enhanced by using mutant T7 promoters. We also tested two orthogonal inducible promoters, Trc1O and L03, but these promoters drive T7RNAP to levels that are toxic in E. coli. Introduction of a protein degradation tag alleviated this problem. However, in Syn6803, these circuits did not function successfully. This highlights the underappreciated fact that similar circuits work with varying efficiencies in different chassis organisms. This lays the groundwork for developing new orthogonally controlled phage RNA polymerase-dependent expression systems in Syn6803.
Collapse
Affiliation(s)
- Haojie Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE 75120, Uppsala, Sweden
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, United States
| |
Collapse
|