1
|
Agrinier AL, Pilon G, Marette A. A low-cost, easy-to-use prototype bioreactor model for the investigation of human gut microbiota: validation using a prebiotic treatment. Front Microbiol 2024; 15:1250366. [PMID: 38779503 PMCID: PMC11110930 DOI: 10.3389/fmicb.2024.1250366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/15/2024] [Indexed: 05/25/2024] Open
Abstract
In vitro gut models allow for the study of the impact of molecules on human gut microbiota composition and function without the implication of the host. However, current models, such as the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), are expensive, time-consuming, and require specialized personnel. Homemade in vitro models that lessen these issues have limited evidence of their humanlike functionality. In this study, we present the development of a low-cost and easy-to-use bioreactor with the proven functionality of human microbiota. In our model, we evaluated the capability of replicating human gut microbiota growth and the response of the human bacterial community to a prebiotic, resistant starch, particularly resistant starch type 2 (RS2). Our bioreactor produced an environment that was stable for pH, temperature, and anaerobic conditions. The bioreactor consistently cultivated bacterial communities over a 48 h time period, replicating the composition of the gut microbiota and the associated metabolite production response to RS2, in line with prior human studies. In response to the RS2 prebiotic, we observed an increase in Bifidobacterium adolescentis and Bifidobacterium faecale and an increase in the production of the short-chain fatty acids such as acetate, propionate, and isobutyrate. Taken together, these data demonstrate that our low-cost and user-friendly prototype bioreactor model provides a favorable environment for the growth of human gut microbiota and can mimic its response to a prebiotic.
Collapse
Affiliation(s)
- Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, Canada
- Center for Nutrition, Health and Society (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval Québec, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, Canada
- Center for Nutrition, Health and Society (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval Québec, Québec, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, Canada
- Center for Nutrition, Health and Society (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval Québec, Québec, QC, Canada
| |
Collapse
|
2
|
Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, den Abbeele PV. HMOs Impact the Gut Microbiome of Children and Adults Starting from Low Predicted Daily Doses. Metabolites 2024; 14:239. [PMID: 38668367 PMCID: PMC11052010 DOI: 10.3390/metabo14040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5-20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species-2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), and 6'Sialyllactose (6'SL)-at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3-0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6'SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2'FL and 3'SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut-brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2'FL (children/adults).
Collapse
Affiliation(s)
- Danica Bajic
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Frank Wiens
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Eva Wintergerst
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
3
|
Tintoré M, Cuñé J, Vu LD, Poppe J, Van den Abbeele P, Baudot A, de Lecea C. A Long-Chain Dextran Produced by Weissella cibaria Boosts the Diversity of Health-Related Gut Microbes Ex Vivo. BIOLOGY 2024; 13:51. [PMID: 38248481 PMCID: PMC10813514 DOI: 10.3390/biology13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.
Collapse
Affiliation(s)
- Maria Tintoré
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Lam Dai Vu
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Jonas Poppe
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | | | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Carlos de Lecea
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| |
Collapse
|
4
|
Walsh L, Lavelle A, O’Connor PM, Hill C, Ross RP. Comparison of fidaxomicin, thuricin CD, vancomycin and nisin highlights the narrow spectrum nature of thuricin CD. Gut Microbes 2024; 16:2342583. [PMID: 38722061 PMCID: PMC11085969 DOI: 10.1080/19490976.2024.2342583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.
Collapse
Affiliation(s)
- L. Walsh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - A. Lavelle
- School of Microbiology, University College Cork, Cork, Ireland
| | - PM O’Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Mathur H, Mechoud MA, Matthews C, Lordan C, FitzGerald JA, Beresford T, Cotter PD. Methods to mitigate Escherichia coli blooms in human ex vivo colon model experiments using the high throughput micro-Matrix bioreactor fermentation system. MethodsX 2023; 11:102393. [PMID: 37846356 PMCID: PMC10577065 DOI: 10.1016/j.mex.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
Ex vivo colon model experiments are frequently employed as a means to assess the gut microbiome modulating potential of different foods, food ingredients and dietary supplements. A number of useful models already exist; however, they tend to be relatively low in terms of throughput (3-4 samples per experiment) with a long experiment duration of one to a number of weeks. Therefore, a need for a high-throughput system with a short duration time is required to enable screening of large numbers of samples. Therefore, we report here on the development of a system based on the Applikon micro-Matrix bioreactor which has the capacity to run 24 samples with an experiment duration of 48 h. However, Escherichia coli blooms are a common problem encountered in this model. Here, we describe the factors that contribute to such blooms and provide approaches to address them, providing:•Step by step optimisation of processes involved in conducting ex vivo distal colon experiments using the micro-Matrix bioreactor fermentation platform•Recommended steps for users on how to attenuate E. coli blooms in such ex vivo colon model experiments.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Monica A. Mechoud
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Chloe Matthews
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Cathy Lordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jamie A. FitzGerald
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Tom Beresford
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Van den Abbeele P, Poppe J, Deyaert S, Laurie I, Otto Gravert TK, Abrahamsson A, Baudot A, Karnik K, Risso D. Low-no-calorie sweeteners exert marked compound-specific impact on the human gut microbiota ex vivo. Int J Food Sci Nutr 2023; 74:630-644. [PMID: 37537786 DOI: 10.1080/09637486.2023.2240037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Low-no-calorie sweeteners (LNCS) are used as sugar substitutes as part of strategies to reduce the risk of chronic diseases related to high sugar intake (e.g. type 2 diabetes (T2D)). This study investigated how a range of sweeteners [tagatose (TA)/maltitol (MA)/sorbitol (SO)/stevia (ST)/sucralose (SU)/acesulfame K (ACK)] impact the gut microbiota of T2D subjects and healthy human adults using the ex vivo SIFR® technology (n = 12). The cohort covered clinically relevant interpersonal and T2D-related differences. ACK/SU remained intact while not impacting microbial composition and metabolite production. In contrast, TA/SO and ST/MA were respectively readily and gradually fermented. ST and particularly TA/SO/MA increased bacterial density and SCFA production product-specifically: SO increased acetate (∼Bifidobacterium adolescentis), whilst MA/ST increased propionate (∼Parabacteroides distasonis). TA exerted low specificity as it increased butyrate for healthy subjects, yet propionate for T2D subjects. Overall, LNCS exerted highly compound-specific effects stressing that results obtained for one LNCS cannot be generalised to other LNCS.
Collapse
|
7
|
Murphy CK, O’Donnell MM, Hegarty JW, Schulz S, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Novel, non-colonizing, single-strain live biotherapeutic product ADS024 protects against Clostridioides difficile infection challenge in vivo. World J Gastrointest Pathophysiol 2023; 14:71-85. [PMID: 37727283 PMCID: PMC10505952 DOI: 10.4291/wjgp.v14.i4.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The Centers for Disease Control and Prevention estimate that Clostridioides difficile (C. difficile) causes half a million infections (CDI) annually and is a major cause of total infectious disease death in the United States, causing inflammation of the colon and potentially deadly diarrhea. We recently reported the isolation of ADS024, a Bacillus velezensis (B. velezensis) strain, which demonstrated direct in vitro bactericidal activity against C. difficile, with minimal collateral impact on other members of the gut microbiota. In this study, we hypothesized that in vitro activities of ADS024 will translate in vivo to protect against CDI challenge in mouse models. AIM To investigate the in vivo efficacy of B. velezensis ADS024 in protecting against CDI challenge in mouse models. METHODS To mimic disruption of the gut microbiota, the mice were exposed to vancomycin prior to dosing with ADS024. For the mouse single-dose study, the recovery of ADS024 was assessed via microbiological analysis of intestinal and fecal samples at 4 h, 8 h, and 24 h after a single oral dose of 5 × 108 colony-forming units (CFU)/mouse of freshly grown ADS024. The single-dose study in miniature swine included groups that had been pre-dosed with vancomycin and that had been exposed to a dose range of ADS024, and a group that was not pre-dosed with vancomycin and received a single dose of ADS024. The ADS024 colonies [assessed by quantitative polymerase chain reaction (qPCR) using ADS024-specific primers] were counted on agar plates. For the 28-d miniature swine study, qPCR was used to measure ADS024 levels from fecal samples after oral administration of ADS024 capsules containing 5 × 109 CFU for 28 consecutive days, followed by MiSeq compositional sequencing and bioinformatic analyses to measure the impact of ADS024 on microbiota. Two studies were performed to determine the efficacy of ADS024 in a mouse model of CDI: Study 1 to determine the effects of fresh ADS024 culture and ADS024 spore preparations on the clinical manifestations of CDI in mice, and Study 2 to compare the efficacy of single daily doses vs dosing 3 times per day with fresh ADS024. C. difficile challenge was performed 24 h after the start of ADS024 exposure. To model the human distal colon, an anerobic fecal fermentation system was used. MiSeq compositional sequencing and bioinformatic analyses were performed to measure microbiota diversity changes following ADS024 treatment. To assess the potential of ADS024 to be a source of antibiotic resistance, its susceptibility to 18 different antibiotics was tested. RESULTS In a mouse model of CDI challenge, single daily doses of ADS024 were as efficacious as multiple daily doses in protecting against subsequent challenge by C. difficile pathogen-induced disease. ADS024 showed no evidence of colonization based on the observation that the ADS024 colonies were not recovered 24 h after single doses in mice or 72 h after single doses in miniature swine. In a 28-d repeat-dose study in miniature swine, ADS024 was not detected in fecal samples using plating and qPCR methods. Phylogenetic analysis performed in the human distal colon model showed that ADS024 had a selective impact on the healthy human colonic microbiota, similarly to the in vivo studies performed in miniature swine. Safety assessments indicated that ADS024 was susceptible to all the antibiotics tested, while in silico testing revealed a low potential for off-target activity or virulence and antibiotic-resistance mechanisms. CONCLUSION Our findings, demonstrating in vivo efficacy of ADS024 in protecting against CDI challenge in mouse models, support the use of ADS024 in preventing recurrent CDI following standard antibiotic treatment.
Collapse
Affiliation(s)
- Christopher K Murphy
- Research and Development, Adiso Therapeutics Inc., Concord, MA 01742, United States
| | | | - James W Hegarty
- Teagasc Food Research Centre, Moorepark Fermoy, Cork P61 C996, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark Fermoy, Cork P61 C996, Ireland
| | - Ronald Farquhar
- Executive Leadership Team, Adiso Therapeutics Inc., Concord, MA 01742, United States
| | - Laurent Chesnel
- Research and Development, Adiso Therapeutics Inc., Concord, MA 01742, United States
| |
Collapse
|
8
|
Strain R, Tran TT, Mills S, Stanton C, Ross RP. A pilot study of dietary fibres on pathogen growth in an ex vivo colonic model reveals their potential ability to limit vancomycin-resistant Enterococcus expansion. MICROBIOME RESEARCH REPORTS 2023; 2:22. [PMID: 38046819 PMCID: PMC10688796 DOI: 10.20517/mrr.2022.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary fibre is important for shaping gut microbiota. The aim of this pilot study was to investigate the impact of dietary fibres on pathogen performance in the presence of gut microbiota. Methods: In an ex vivo gut model, pooled faecal samples were spiked with a cocktail of representative gastrointestinal pathogens and fermented with yeast β-glucan for 24 hours, after which 16S rRNA amplicon sequencing and short-chain and branched-chain fatty acid (SCFA and BCFA) analyses were performed. In addition, oat β-glucan, arabinoxylan, yeast β-glucan, and galactooligosaccharides were each tested against individual representative pathogens and pathogen growth was assessed via qPCR. Glucose served as a control carbon source. Results: Based on 16S rRNA amplicon sequencing, yeast β-glucan selected for higher proportions of Bacteroides (P = 0.0005, ~6 fold) and Clostridia (P = 0.005, ~3.6 fold) while species of Escherichia/Shigella (P = 0.021, ~2.8 fold) and Lactobacillus (P = 0.007, ~ 15.7-fold) were higher in glucose. Pathogen relative abundance did not differ between glucose and yeast β-glucan. In the absence of pathogens, higher production of BCFAs (P = 0.002) and SCFAs (P = 0.002) fatty acids was observed for fibre group(s). For individual pathogens, yeast β-glucan increased growth of Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes (P < 0.05), arabinoxylan increased S. typhimurium (P < 0.05). Tested fibres decreased vancomycin-resistant Enterococcus faecium (P < 0.05), with yeast β-glucan causing a 1-log reduction (P < 0.01), while galactooligosaccharides decreased L. monocytogenes (P < 0.05). Conclusion: Tested fibres differentially influenced the growth of pathogens, but yeast β-glucan could represent a dietary strategy to help limit vancomycin-resistant enterococci (VRE) expansion in the gut.
Collapse
Affiliation(s)
- Ronan Strain
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Tam T.T. Tran
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
| |
Collapse
|
9
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
10
|
Van den Abbeele P, Deyaert S, Albers R, Baudot A, Mercenier A. Carrot RG-I Reduces Interindividual Differences between 24 Adults through Consistent Effects on Gut Microbiota Composition and Function Ex Vivo. Nutrients 2023; 15:2090. [PMID: 37432238 PMCID: PMC10180869 DOI: 10.3390/nu15092090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 07/12/2023] Open
Abstract
The human gut microbiota is characterized by large interpersonal differences, which are not only linked to health and disease but also determine the outcome of nutritional interventions. In line with the growing interest for developing targeted gut microbiota modulators, the selectivity of a carrot-derived rhamnogalacturonan I (cRG-I) was compared to substrates with demonstrated low (inulin, IN) and high selectivity (xanthan, XA), at a human equivalent dose (HED) of 1.5 g/d. The high throughput of the ex vivo SIFR® technology, validated to generate predictive insights for clinical findings, enabled the inclusion of 24 human adults. Such an unprecedented high number of samples in the context of in vitro gut microbiota modelling allowed a coverage of clinically relevant interpersonal differences in gut microbiota composition and function. A key finding was that cRG-I supplementation (already at an HED of 0.3 g/d) lowered interpersonal compositional differences due to the selective stimulation of taxa that were consistently present among human adults, including OTUs related to Bacteroides dorei/vulgatus and Bifidobacterium longum (suspected keystone species), Bacteroides thetaiotaomicron, Bifidobacterium adolescentis and butyrate-producing taxa such as Blautia sp., Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, both IN and XA treatments increased interpersonal compositional differences. For IN, this followed from its low specificity. For XA, it was rather the extremely high selectivity of XA fermentation that caused large differences between 15 responders and 9 nonresponders, caused by the presence/absence of highly specific XA-fermenting taxa. While all test compounds significantly enhanced acetate, propionate, butyrate, and gas production, cRG-I resulted in a significantly higher acetate (+40%), propionate (+22%), yet a lower gas production (-44%) compared to IN. cRG-I could thus result in overall more robust beneficial effects, while also being better tolerated. Moreover, owing to its remarkable homogenization effect on microbial composition and metabolite production, cRG-I could lead to more predictable outcomes compared to substrates that are less specific or overly specific.
Collapse
Affiliation(s)
| | - Stef Deyaert
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | - Ruud Albers
- Nutrileads BV, 6708 WH Wageningen, The Netherlands;
| | - Aurélien Baudot
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | | |
Collapse
|
11
|
Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P. HMOs Exert Marked Bifidogenic Effects on Children's Gut Microbiota Ex Vivo, Due to Age-Related Bifidobacterium Species Composition. Nutrients 2023; 15:1701. [PMID: 37049541 PMCID: PMC10097135 DOI: 10.3390/nu15071701] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Prebiotics are substrates that are selectively utilized by host microorganisms, thus conferring a health benefit. There is a growing awareness that interpersonal and age-dependent differences in gut microbiota composition impact prebiotic effects. Due to the interest in using human milk oligosaccharides (HMOs) beyond infancy, this study evaluated how HMOs [2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), 6'Sialyllactose (6'SL)] and blends thereof affect the microbiota of 6-year-old children (n = 6) and adults (n = 6), compared to prebiotics inulin (IN) and fructooligosaccharides (FOS). The ex vivo SIFR® technology was used, given its demonstrated predictivity in clinical findings. First, HMOs and HMO blends seemed to maintain a higher α-diversity compared to FOS/IN. Further, while 2'FL/LNnT were bifidogenic for both age groups, 3'SL/6'SL and FOS/IN were exclusively bifidogenic for children and adults, respectively. This originated from age-related differences in microbiota composition because while 3'SL/6'SL stimulated B. pseudocatenulatum (abundant in children), FOS/IN enhanced B. adolescentis (abundant in adults). Moreover, all treatments significantly increased acetate, propionate and butyrate (only in adults) with product- and age-dependent differences. Among the HMOs, 6'SL specifically stimulated propionate (linked to Bacteroides fragilis in children and Phocaeicola massiliensis in adults), while LNnT stimulated butyrate (linked to Anaerobutyricum hallii in adults). Indole-3-lactic acid and 3-phenyllactic acid (linked to immune health) and gamma-aminobutyric acid (linked to gut-brain axis) were most profoundly stimulated by 2'FL and HMO blends in both children and adults, correlating with specific Bifidobacteriaceae. Finally, 2'FL/LNnT increased melatonin in children, while 3'SL remarkably increased folic acid in adults. Overall, age-dependent differences in microbiota composition greatly impacted prebiotic outcomes, advocating for the development of age-specific nutritional supplements. HMOs were shown to be promising modulators in the adult, and particularly the children's microbiota. The observed HMO-specific effects, likely originating from their structural heterogeneity, suggest that blends of different HMOs could maximize treatment effects.
Collapse
Affiliation(s)
- Danica Bajic
- Glycom A/S-DSM Nutritional Products Ltd., Kogle Allé 4, 2970 Hørsholm, Denmark
| | - Frank Wiens
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Eva Wintergerst
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
12
|
Van den Abbeele P, Goggans M, Deyaert S, Baudot A, Van de Vliet M, Calatayud Arroyo M, Lelah M. Lacticaseibacillus rhamnosus ATCC 53103 and Limosilactobacillus reuteri ATCC 53608 Synergistically Boost Butyrate Levels upon Tributyrin Administration Ex Vivo. Int J Mol Sci 2023; 24:5859. [PMID: 36982942 PMCID: PMC10054277 DOI: 10.3390/ijms24065859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Modulation of the gut microbiota is a trending strategy to improve health. While butyrate has been identified as a key health-related microbial metabolite, managing its supply to the host remains challenging. Therefore, this study investigated the potential to manage butyrate supply via tributyrin oil supplementation (TB; glycerol with three butyrate molecules) using the ex vivo SIFR® (Systemic Intestinal Fermentation Research) technology, a highly reproducible, in vivo predictive gut model that accurately preserves in vivo-derived microbiota and enables addressing interpersonal differences. Dosing 1 g TB/L significantly increased butyrate with 4.1 (±0.3) mM, corresponding with 83 ± 6% of the theoretical butyrate content of TB. Interestingly, co-administration of Limosilactobacillus reuteri ATCC 53608 (REU) and Lacticaseibacillus rhamnosus ATCC 53103 (LGG) markedly enhanced butyrate to levels that exceeded the theoretical butyrate content of TB (138 ± 11% for REU; 126 ± 8% for LGG). Both TB + REU and TB + LGG stimulated Coprococcus catus, a lactate-utilizing, butyrate-producing species. The stimulation of C. catus with TB + REU was remarkably consistent across the six human adults tested. It is hypothesized that LGG and REU ferment the glycerol backbone of TB to produce lactate, a precursor of butyrate. TB + REU also significantly stimulated the butyrate-producing Eubacterium rectale and Gemmiger formicilis and promoted microbial diversity. The more potent effects of REU could be due to its ability to convert glycerol to reuterin, an antimicrobial compound. Overall, both the direct butyrate release from TB and the additional butyrate production via REU/LGG-mediated cross-feeding were highly consistent. This contrasts with the large interpersonal differences in butyrate production that are often observed upon prebiotic treatment. Combining TB with LGG and especially REU is thus a promising strategy to consistently supply butyrate to the host, potentially resulting in more predictable health benefits.
Collapse
Affiliation(s)
| | - Mallory Goggans
- NutriScience Innovations, 130C Old Gate Lane, Milford, CT 06460, USA
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Michiel Van de Vliet
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Marta Calatayud Arroyo
- Institute of Agrochemistry and Food Technology (IATA), Spanish Research Council (CSIC), Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980 Valencia, Spain
| | - Michael Lelah
- NutriScience Innovations, 130C Old Gate Lane, Milford, CT 06460, USA
| |
Collapse
|
13
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
14
|
Van den Abbeele P, Detzel C, Rose A, Deyaert S, Baudot A, Warner C. Serum-Derived Bovine Immunoglobulin Stimulates SCFA Production by Specific Microbes in the Ex Vivo SIFR ® Technology. Microorganisms 2023; 11:659. [PMID: 36985232 PMCID: PMC10053870 DOI: 10.3390/microorganisms11030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Serum-derived bovine immunoglobulins (SBI) exert health benefits mediated by their ability to bind microbial components, thereby preventing translocation and subsequent inflammation. While in vivo studies have shown that a fraction of SBI also reaches the colon, little is known about the impact of SBI on the dense colonic microbiota that has great potential to impact human health. This study, therefore, investigated the impact of three bovine plasma protein fractions (SBI, bovine plasma (BP) and albumin-enriched bovine plasma (ABP)) on the gut microbiota of six human adults using the novel ex vivo SIFR® technology, recently demonstrated to generate predictive findings for clinical studies. When dosed at an equivalent of 5 g/day, all protein fractions significantly increased health-related metabolites-acetate, propionate, and butyrate. Upon simulating small intestinal absorption, SBI still markedly increased acetate and propionate, demonstrating that SBI is more resistant to small intestinal digestion and absorption compared to the other protein sources. Despite noticeable interindividual differences in microbiota composition among human adults, SBI consistently stimulated a narrow spectrum of gut microbes, which largely differed from the ones that are typically involved in carbohydrate fermentation. The SBI-fermenting consortium included B. vulgatus and L. edouardi (correlating with acetate and propionate) along with Dorea longicatena, Coprococcus comes and the butyrate-producing bacterium SS3/4 (correlating with butyrate). Overall, this study revealed that protein bovine fractions can contribute to health benefits by specifically modulating the human gut microbiota. While health benefits could follow from the production of SCFA, a broader range of protein-derived metabolites could also be produced. This study also confirms that the concept of prebiotics (substrates selectively utilized by host microorganisms conferring a health benefit) could go beyond the use of ingestible carbohydrates and extend to partially indigestible proteins.
Collapse
Affiliation(s)
| | | | - Alexis Rose
- Proliant Health & Biologicals, LLC., Des Moines, IA 50021, USA
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
15
|
Infant Fecal Fermentations with Galacto-Oligosaccharides and 2′-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. CHILDREN 2023; 10:children10030430. [PMID: 36979988 PMCID: PMC10047592 DOI: 10.3390/children10030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The objective of the current study was to evaluate the potential of 2′-FL and GOS, individually and combined, in beneficially modulating the microbial composition of infant and toddler (12–18 months) feces using the micro-Matrix bioreactor. In addition, the impacts of GOS and 2′-FL, individually and combined, on the outgrowth of fecal bifidobacteria at (sub)species level was investigated using the baby M-SHIME® model. For young toddlers, significant increases in the genera Bifidobacterium, Veillonella, and Streptococcus, and decreases in Enterobacteriaceae, Clostridium XIVa, and Roseburia were observed in all supplemented fermentations. In addition, GOS, and combinations of GOS and 2′-FL, increased Collinsella and decreased Salmonella, whereas 2′-FL, and combined GOS and 2′-FL, decreased Dorea. Alpha diversity increased significantly in infants with GOS and/or 2′-FL, as well as the relative abundances of the genera Veillonella and Akkermansia with 2′-FL, and Lactobacillus with GOS. Combinations of GOS and 2′-FL significantly stimulated Veillonella, Lactobacillus, Bifidobacterium, and Streptococcus. In all supplemented fermentations, Proteobacteria decreased, with the most profound decreases accomplished by the combination of GOS and 2′-FL. When zooming in on the different (sub)species of Bifidobacterium, GOS and 2’-FL were shown to be complementary in stimulating breast-fed infant-associated subspecies of Bifidobacterium longum in a dose-dependent manner: GOS stimulated Bifidobacterium longum subsp. longum, whereas 2′-FL supported outgrowth of Bifidobacterium longum subsp. infantis.
Collapse
|
16
|
Van den Abbeele P, Deyaert S, Thabuis C, Perreau C, Bajic D, Wintergerst E, Joossens M, Firrman J, Walsh D, Baudot A. Bridging preclinical and clinical gut microbiota research using the ex vivo SIFR ® technology. Front Microbiol 2023; 14:1131662. [PMID: 37187538 PMCID: PMC10178071 DOI: 10.3389/fmicb.2023.1131662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction While modulation of the human adult gut microbiota is a trending strategy to improve health, the underlying mechanisms are poorly understood. Methods This study aimed to assess the predictive value of the ex vivo, reactor-based, high-throughput SIFR® (Systemic Intestinal Fermentation Research) technology for clinical findings using three structurally different prebiotics [inulin (IN), resistant dextrin (RD) and 2'-fucosyllactose (2'FL)]. Results The key finding was that data obtained within 1-2 days were predictive for clinical findings upon repeated prebiotic intake over weeks: among hundreds of microbes, IN stimulated Bifidobacteriaceae, RD boosted Parabacteroides distasonis, while 2'FL specifically increased Bifidobacterium adolescentis and Anaerobutyricum hallii. In line with metabolic capabilities of these taxa, specific SCFA (short-chain fatty acids) were produced thus providing insights that cannot be obtained in vivo where such metabolites are rapidly absorbed. Further, in contrast to using single or pooled fecal microbiota (approaches used to circumvent low throughput of conventional models), working with 6 individual fecal microbiota enabled correlations that support mechanistic insights. Moreover, quantitative sequencing removed the noise caused by markedly increased cell densities upon prebiotic treatment, thus allowing to even rectify conclusions of previous clinical trials related to the tentative selectivity by which prebiotics modulate the gut microbiota. Counterintuitively, not the high but rather the low selectivity of IN caused only a limited number of taxa to be significantly affected. Finally, while a mucosal microbiota (enriched with Lachnospiraceae) can be integrated, other technical aspects of the SIFR® technology are a high technical reproducibility, and most importantly, a sustained similarity between the ex vivo and original in vivo microbiota. Discussion By accurately predicting in vivo results within days, the SIFR® technology can help bridge the so-called "Valley of Death" between preclinical and clinical research. Facilitating development of test products with better understanding of their mode of action could dramatically increase success rate of microbiome modulating clinical trials.Graphical Abstract.
Collapse
Affiliation(s)
| | | | | | | | - Danica Bajic
- Glycom A/S-DSM Nutritional Products Ltd., Hørsholm, Denmark
| | | | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | | | | |
Collapse
|
17
|
Biagini F, Daddi C, Calvigioni M, De Maria C, Zhang YS, Ghelardi E, Vozzi G. Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe human gut microbiota is widely considered to be a metabolic organ hidden within our bodies, playing a crucial role in the host’s physiology. Several factors affect its composition, so a wide variety of microbes residing in the gut are present in the world population. Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies, and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed. In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns, community composition, and host-microbe interactions. Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with. In this review, we will describe the overall elements required to create a functioning, reproducible, and accurate in vitro culture of the human gut microbiota. In addition, we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
Graphic abstract
Collapse
|
18
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
19
|
Lawrence GW, McCarthy N, Walsh CJ, Kunyoshi TM, Lawton EM, O’Connor PM, Begley M, Cotter PD, Guinane CM. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022; 14:2100203. [PMID: 35877697 PMCID: PMC9318236 DOI: 10.1080/19490976.2022.2100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/μl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Niamh McCarthy
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Calum J. Walsh
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | - Paula M. O’Connor
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland,Paul D. Cotter Food Biosciences, Teagasc Food Research Centre Moorepark, APC Microbiome Ireland, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland,CONTACT Caitriona M. Guinane Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
20
|
Jin Z, Ng A, Maurice CF, Juncker D. The Mini Colon Model: a benchtop multi-bioreactor system to investigate the gut microbiome. Gut Microbes 2022; 14:2096993. [PMID: 35844189 PMCID: PMC9291644 DOI: 10.1080/19490976.2022.2096993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vitro fermentation systems allow for the investigation of gut microbial communities with precise control of various physiological parameters while decoupling confounding factors from the human host. Current systems, such as the SHIME and Robogut, are large in footprint, lack multiplexing, and have low experimental throughput. Alternatives which address these shortcomings, such as the Mini Bioreactor Array system, are often reliant on expensive specialized equipment, which hinders wide replication across labs. Here, we present the Mini Colon Model (MiCoMo), a low-cost, benchtop multi-bioreactor system that simulates the human colon environment with physiologically relevant conditions. The device consists of triplicate bioreactors working independently of an anaerobic chamber and equipped with automated pH, temperature, and fluidic control. We conducted 14-d experiments and found that MiCoMo was able to support a stable complex microbiota community with a Shannon Index of 3.17 ± 0.65, from individual fecal samples after only 3-5 d of inoculation. MiCoMo also retained inter-sample microbial differences by developing closely related communities unique to each donor, while maintaining both minimal variations between replicate reactors (average Bray-Curtis similarity 0.72 ± 0.13) andday-to-day variations (average Bray-Curtis similarity 0.81±0.10) after this short stabilization period. Together, these results establish MiCoMo as an accessible system for studying gut microbial communities with high throughput and multiplexing capabilities.
Collapse
Affiliation(s)
- Zijie Jin
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Andy Ng
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QCCanada,CONTACT Corinne F. Maurice Life Sciences Complex Room 332, Bellini Building 3649 Promenade Sir William Osler Montreal, QC, H3G 0B1, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QuebecCanada,McGill Genome Centre, McGill University, Montreal, QC, Canada,David JunckerMcgill Genome Center, 740 Dr. Penfield Ave, Room 6500Montreal, QC, H3A 0G1, Canada
| |
Collapse
|
21
|
Berkhout M, Zoetendal E, Plugge C, Belzer C. Use of synthetic communities to study microbial ecology of the gut. MICROBIOME RESEARCH REPORTS 2022; 1:4. [PMID: 38089065 PMCID: PMC10714298 DOI: 10.20517/mrr.2021.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2024]
Abstract
The application of in vitro synthetic microbial communities is an excellent approach to model the ecological interactions between microbes in the human gastrointestinal tract. Although DNA-based studies have provided a wealth of information, they do not consider the ecological properties of the human gut microbiota. Ecological interactions between gut microbes of interest can be studied by applying synthetic communities. This review describes the considerations that should be taken into account when constructing a synthetic community by discussing example research questions that can be answered by using a synthetic microbial community, the choice of microbial species, the growth conditions, possible reactor setups, and the parameters to analyze.
Collapse
Affiliation(s)
| | | | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, Gelderland, The Netherland
| |
Collapse
|
22
|
Kuniyoshi TM, O’Connor PM, Lawton E, Thapa D, Mesa-Pereira B, Abulu S, Hill C, Ross RP, Oliveira RPS, Cotter PD. An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti- Listeria activity in a model human gut environment. Gut Microbes 2022; 14:2004071. [PMID: 35104196 PMCID: PMC8812795 DOI: 10.1080/19490976.2021.2004071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
Pediocin PA-1 is a class IIa bacteriocin that is particularly effective against the foodborne pathogen Listeria monocytogenes. The loss of activity of PA-1 pediocin due to methionine oxidation is one of the challenges that limit the wider application of the bacteriocin. In this study, we heterologously expressed an oxidation resistant form of pediocin PA-1, i.e., pediocin M31L, and compared its activity to that of native pediocin PA-1 and to penocin A, a pediocin-like bacteriocin that displays a narrower antimicrobial spectrum. Minimal inhibitory concentration assays revealed that pediocin M31L was as effective as PA-1 and more effective than synthetic penocin A against Listeria with negligible activity against a range of obligate anaerobic commensal gut bacterial species. The anti-Listeria activity of these pediocins was also assessed in a simulated human distal colon model assay using the L. monocytogenes, spiked at 6.5 ± 0.13 Log CFU/mL, as a bioindicator. At 24 h, pediocin M31L and penocin A (2.6 μM) reduced Listeria counts to 3.5 ± 0.4 and 3.64 ± 0.62 Log CFU/mL, respectively, whereas Listeria counts were considerably higher, i.e. 7.75 ± 0.43 Log CFU/mL, in the non-bacteriocin-containing control. Ultimately, it was established that synthetic penocin A and the stable pediocin M31L derivative, heterologously produced, display effective anti-Listeria activity in a human gut environment.
Collapse
Affiliation(s)
- Taís M. Kuniyoshi
- Biochemical and Pharmaceutical Technology Department, University of São Paulo, São Paulo, Brazil
| | - Paula M. O’Connor
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elaine Lawton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dinesh Thapa
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Beatriz Mesa-Pereira
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sara Abulu
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ricardo P. S. Oliveira
- Biochemical and Pharmaceutical Technology Department, University of São Paulo, São Paulo, Brazil
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021; 12:3040-3064. [PMID: 34187302 PMCID: PMC8806420 DOI: 10.1080/21655979.2021.1940769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 10/28/2022] Open
Abstract
Digestive systems in human, animals, and fish are biological reactors and membranes to digest food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are developed to study e.g. novel food and feed before in-vivo studies. Such models are well developed for human, but not to the same extent for animals and fish. On the other hand, recent advances in aquaculture nutrition have created several potential fish meal replacements, and the assessment of their nutrient digestibility is critical in the application as a fish meal replacement. Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to assess food nutrient digestibility for humans; however, its application for fish is still in the early stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; thus, the concept from the application for humans could be applied for fish. This review aims to improve the in-vitro digestion protocol for fish by adapting the concept from then study for humans, summarizing the current available in-vitro digestion model developed for human and fish in-vitro digestion study, identifying challenges specifically for fish required to be tackled and suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. Protocols to conduct in-vitro digestion study for fish are then proposed.
Collapse
Affiliation(s)
- Ricky Wang
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Mahtab Mohammadi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | | |
Collapse
|
24
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
25
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
26
|
O'Reilly C, O'Connor PM, O'Sullivan Ó, Rea MC, Hill C, Ross RP. Impact of nisin on Clostridioides difficile and microbiota composition in a faecal fermentation model of the human colon. J Appl Microbiol 2021; 132:1397-1408. [PMID: 34370377 DOI: 10.1111/jam.15250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
AIMS Nisin is a bacteriocin with a broad spectrum of activity against Gram-positive bacteria. The aims were to assess nisin activity against Clostridioides difficile in a complex microbial environment and determine the minimum inhibitory concentration at which C. difficile growth is suppressed whilst having minimal impact on the faecal microbiota. METHODS AND RESULTS Faecal slurries were prepared from fresh faecal samples and spiked with C. difficile (106 CFU per ml). Nisin was added to each fermentation at a range of concentrations from 0 to 500 µM. Following 24 h, 16S rRNA gene sequencing was performed, and the presence of viable C. difficile was assessed. There was no viable C. difficile detected in the presence of 50-500 µM nisin. There was a decrease in the diversity of the microbiota in a nisin dose-dependent manner. Nisin predominantly depleted the relative abundance of the Gram-positive bacteria whilst the relative abundance of Gram-negative bacteria such as Escherichia Shigella and Bacteroides increased. CONCLUSIONS Using an ex vivo model of the colon, this study demonstrates the ability of purified nisin to selectively deplete C. difficile in a faecal microbial environment and establishes the minimum concentration at which this occurs whilst having a minimal impact on the composition of the microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study opens up the potential to use nisin as a therapeutic for clostridial gut infections.
Collapse
Affiliation(s)
- Catherine O'Reilly
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Órla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
D'ambrosio S, Ventrone M, Alfano A, Schiraldi C, Cimini D. Microbioreactor (micro-Matrix) potential in aerobic and anaerobic conditions with different industrially relevant microbial strains. Biotechnol Prog 2021; 37:e3184. [PMID: 34180150 PMCID: PMC8596446 DOI: 10.1002/btpr.3184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Microscale fermentation systems are important high throughput tools in clone selection, and bioprocess set up and optimization, since they provide several parallel experiments in controlled conditions of pH, temperature, agitation, and gas flow rate. In this work we evaluated the performance of biotechnologically relevant strains with different respiratory requirements in the micro‐Matrix microbioreactor. In particular Escherichia coli K4 requires well aerated fermentation conditions to improve its native production of chondroitin‐like capsular polysaccharide, a biomedically attractive polymer. Results from batch and fed‐batch experiments demonstrated high reproducibility with those obtained on 2 L reactors, although highlighting a pronounced volume loss for longer‐term experiments. Basfia succiniciproducens and Actinobacillus succinogenes need CO2 addition for the production of succinic acid, a building block with several industrial applications. Different CO2 supply modes were tested for the two strains in 24 h batch experiments and results well compared with those obtained on lab‐scale bioreactors. Overall, it was demonstrated that the micro‐Matrix is a useful scale‐down tool that is suitable for growing metabolically different strains in simple batch process, however, a series of issues should still be addressed in order to fully exploit its potential.
Collapse
Affiliation(s)
- Sergio D'ambrosio
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Michela Ventrone
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania L. Vanvitelli, Caserta, Italy
| |
Collapse
|
28
|
Lynch KM, Strain CR, Johnson C, Patangia D, Stanton C, Koc F, Gil-Martinez J, O'Riordan P, Sahin AW, Ross RP, Arendt EK. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential. Eur J Nutr 2021; 60:4393-4411. [PMID: 34057578 PMCID: PMC8572209 DOI: 10.1007/s00394-021-02570-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Purpose Brewers’ spent grain (BSG) represents the largest by-product of the brewing industry. Its utilisation as an animal feed has become less practical today; however, its high fibre and protein content make it a promising untapped resource for human nutrition. BSG contains mainly insoluble fibre. This fibre, along with protein, is trapped with the complex lignocellulosic cell structure and must be solubilised to release components which may be beneficial to health through modulation of the gut microbiota. Methods In this study, the application of a simultaneous saccharification and fermentation process for the extraction and solubilisation of arabinoxylan from BSG is demonstrated. Results Processing of the BSG was varied to modulate the physicochemical and molecular characteristic of the released arabinoxylan. The maximum level of arabinoxylan solubilisation achieved was approximately 21%, compared to the unprocessed BSG which contained no soluble arabinoxylan (AX). Concentration of the solubilised material produced a sample containing 99% soluble AX. Samples were investigated for their microbiome modulating capacity in in-vitro faecal fermentation trials. Many samples promoted increased Lactobacillus levels (approx. twofold). One sample that contained the highest level of soluble AX was shown to be bifidogenic, increasing the levels of this genus approx. 3.5-fold as well as acetate (p = 0.018) and propionate (p < 0.001) production. Conclusion The findings indicate that AX extracted from BSG has prebiotic potential. The demonstration that BSG is a source of functional fibre is a promising step towards the application of this brewing side-stream as a functional food ingredient for human nutrition. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02570-8.
Collapse
Affiliation(s)
- Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal Johnson
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fatma Koc
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Gil-Martinez
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000, Leuven, Belgium
| | - Patrick O'Riordan
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000, Leuven, Belgium
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Nissen L, Casciano F, Gianotti A. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol Lett 2021; 367:5854534. [PMID: 32510557 DOI: 10.1093/femsle/fnaa097] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
In vitro gut fermentation models were firstly introduced in nutrition and applied microbiology research back in the 1990s. These models have improved greatly during time, mainly over the resemblance to the complexity of digestion stages, the replication of experimental conditions, the multitude of ecological parameters to assay. The state of the science is that the most competitive models shall include a complex gut microbiota, small working volumes, distinct interconnected compartments and rigorous bio-chemical and ecological settings, controlled by a computer, as well as a free-hands accessibility, not to contaminate the mock microbiota. These models are a useful tool to study the impact of a given diet compound, e.g. prebiotics, on the human gut microbiota. The principal application is to focus on the shift of the core microbial groups and selected species together with their metabolites, assaying their diversity, richness and abundance in the community over time. Besides, it is possible to study how a compound is digested, which metabolic pathways are triggered, and the type and quantity of microbial metabolites produced. Further prospective should focus on challenges with pathogens as well as on ecology of gut syndromes. In this minireview an updated presentation of the most used intestinal models is presented, basing on their concept, technical features, as well as on research applications.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy
| | - Flavia Casciano
- DiSTAL-Department of Agricultural and Food Sciences, University of Bologna, V.le Fanin 50, 40127 Bologna, Italy
| | - Andrea Gianotti
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy.,DiSTAL-Department of Agricultural and Food Sciences, University of Bologna, V.le Fanin 50, 40127 Bologna, Italy
| |
Collapse
|
30
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
31
|
Gambino M, Brøndsted L. Looking into the future of phage-based control of zoonotic pathogens in food and animal production. Curr Opin Biotechnol 2020; 68:96-103. [PMID: 33186799 DOI: 10.1016/j.copbio.2020.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Using bacteriophages (phages) to control zoonotic pathogens in food and animal production is a realistic and promising antimicrobial approach. Recent studies have demonstrated their efficacy and safety, yet bringing phage products on the market remains a challenge. Here we summarize the procedure for advancing phage applications from the laboratory to simplified model systems and testing in pilot scale, to farms and food industries. We highlight the most important contributions concerning phages in food matrices and animal guts, and propose directions for future research required to understand interactions in such complex systems. Finally, we propose a holistic approach combining a data repository with modelling, multi-omic techniques and data analysis to modernize phage-based control of zoonotic pathogens.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
32
|
Duquenoy A, Bellais S, Gasc C, Schwintner C, Dore J, Thomas V. Assessment of Gram- and Viability-Staining Methods for Quantifying Bacterial Community Dynamics Using Flow Cytometry. Front Microbiol 2020; 11:1469. [PMID: 32676069 PMCID: PMC7333439 DOI: 10.3389/fmicb.2020.01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Over the past years, gut microbiota became a major field of interest with increasing reports suggesting its association with a large number of human diseases. In this context, there is a major interest to develop analysis tools allowing simple and cost-effective population pattern analysis of these complex ecosystems to follow changes over time. Whereas sequence-based metagenomics profiling is widely used for microbial ecosystems characterization, it still requires time and specific expertise for analysis. Flow cytometry overcomes these disadvantages, providing key information on communities within hours. In addition, it can potentially be used to select, isolate and cultivate specific bacteria of interest. In this study, we evaluated the culturability of strictly anaerobic bacteria that were stained with a classical Live/Dead staining, and then sorted using flow cytometry under anaerobic conditions. This sorting of “viable” fraction demonstrated that 10–80% of identified “viable” cells of pure cultures of strictly anaerobic bacteria were culturable. In addition, we tested the use of a combination of labeled vancomycin and Wheat Germ Agglutinin (WGA) lectin to discriminate Gram-positive from Gram-negative bacteria in complex ecosystems. After validation on both aerobic/anaerobic facultative and strictly anaerobic bacteria, the staining methods were applied on complex ecosystems, revealing differences between culture conditions and demonstrating that minor pH variations have strong impacts on microbial community structure, which was confirmed by 16S rRNA gene sequencing. This combination of staining methods makes it possible to follow-up evolutions of complex microbial communities, supporting its future use as a rapid analysis tool in various applications. The flow cytometry staining method that was developed has the potential to facilitate the analysis of complex ecosystems by highlighting changes in bacterial communities’ dynamics. It is assumed to be applicable as an efficient and fast approach to improve the control of processes linked to a wide range of ecosystems or known communities of bacterial species in both research and industrial contexts.
Collapse
Affiliation(s)
| | - Samuel Bellais
- Bioaster, Institut de Recherche Technologique, Paris, France
| | | | | | - Joël Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Vincent Thomas
- Bioaster, Institut de Recherche Technologique, Paris, France
| |
Collapse
|
33
|
Guthrie L, Kelly L. Bringing microbiome-drug interaction research into the clinic. EBioMedicine 2019; 44:708-715. [PMID: 31151933 PMCID: PMC6604038 DOI: 10.1016/j.ebiom.2019.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to relatively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review provides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of patient drug response and we describe clinical trials investigating approaches to modulate the microbiome with the goal of improving drug efficacy and safety. We discuss approaches to aggregate clinical and experimental microbiome features into predictive models and review open questions and future directions toward utilizing the gut microbiome to improve drug safety and efficacy.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.
| |
Collapse
|
34
|
A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations. Int J Mol Sci 2019; 20:ijms20081925. [PMID: 31003566 PMCID: PMC6514940 DOI: 10.3390/ijms20081925] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.
Collapse
|
35
|
Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Lomstein Pedersen B. In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics 2019; 11:E95. [PMID: 30813323 PMCID: PMC6410320 DOI: 10.3390/pharmaceutics11020095] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
The primary focus of this review is a discussion regarding in vitro media for colon release, but we also give a brief overview of colon delivery and the colon microbiota as a baseline for this discussion. The large intestine is colonized by a vast number of bacteria, approximately 1012 per gram of intestinal content. The microbial community in the colon is complex and there is still much that is unknown about its composition and the activity of the microbiome. However, it is evident that this complex microbiota will affect the release from oral formulations targeting the colon. This includes the release of active drug substances, food supplements, and live microorganisms, such as probiotic bacteria and bacteria used for microbiota transplantations. Currently, there are no standardized colon release media, but researchers employ in vitro models representing the colon ranging from reasonable simple systems with adjusted pH with or without key enzymes to the use of fecal samples. In this review, we present the pros and cons for different existing in vitro models. Furthermore, we summarize the current knowledge of the colonic microbiota composition which is of importance to the fermentation capacity of carbohydrates and suggest a strategy to choose bacteria for a new more standardized in vitro dissolution medium for the colon.
Collapse
Affiliation(s)
- Marie Wahlgren
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Magdalena Axenstrand
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Åsa Håkansson
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Ali Marefati
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Betty Lomstein Pedersen
- Ferring International PharmaScience Center (IPC), Kay Fiskers Plads 11, 2300 Copenhagen, Denmark.
| |
Collapse
|