1
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
2
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Shahzad A, Siddique A, Ferdous S, Amin MA, Qin M, Aslam U, Naeem M, Bashir T, Shakoor A. Heavy metals mitigation and growth promoting effect of endophytic Agrococcus terreus (MW 979614) in maize plants under zinc and nickel contaminated soil. Front Microbiol 2023; 14:1255921. [PMID: 38029198 PMCID: PMC10668838 DOI: 10.3389/fmicb.2023.1255921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Heavy metals such as iron, copper, manganese, cobalt, silver, zinc, nickel, and arsenic have accumulated in soils for a long time due to the dumping of industrial waste and sewage. Various techniques have been adapted to overcome metal toxicity in agricultural land but utilizing a biological application using potential microorganisms in heavy metals contaminated soil may be a successful approach to decontaminate heavy metals soil. Therefore, the current study aimed to isolate endophytic bacteria from a medicinal plant (Viburnum grandiflorum) and to investigate the growth-promoting and heavy metal detoxification potential of the isolated endophytic bacteria Agrococus tereus (GenBank accession number MW 979614) under nickel and zinc contamination. Methods Zinc sulfate and nickel sulfate solutions were prepared at the rate of 100 mg/kg and 50 mg/kg in sterilized distilled water. The experiment was conducted using a completely random design (CRD) with three replicates for each treatment. Results and Discussion Inoculation of seeds with A. tereus significantly increased the plant growth, nutrient uptake, and defense system. Treatment T4 (inoculated seeds), T5 (inoculated seeds + Zn100 mg/kg), and T6 (inoculated seeds + Ni 100 mg/kg) were effective, but T5 (inoculated seeds + Zn100 mg/kg) was the most pronounced and increased shoot length, root length, leaf width, plant height, fresh weight, moisture content, and proline by 49%, 38%, 89%, 31%, 113%, and 146%, respectively. Moreover the antioxidant enzymes peroxidase and super oxidase dismutase were accelerated by 211 and 68% in contaminated soil when plants were inoculated by A. tereus respectively. Similarly the inoculation of A. tereus also enhanced maize plants' absorption of Cu, Mn, Ni, Na, Cr, Fe, Ca, Mg, and K significantly. Results of the findings concluded that 100 mg/kg of Zn and Ni were toxic to maize growth, but seed inoculation with A. tereus helped the plants significantly in reducing zinc and nickel stress. The A. tereus strain may be employed as a potential strain for the detoxification of heavy metals.
Collapse
Affiliation(s)
- Asim Shahzad
- The College of Geography and Environment, Henan University, Kaifeng, China
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Anam Siddique
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Shazia Ferdous
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | | | - Mingzhou Qin
- The College of Geography and Environment, Henan University, Kaifeng, China
| | - Uzma Aslam
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tasmia Bashir
- Department of Botany, Rawalpindi Women University Rawalpindi, Rawalpindi, Pakistan
| | - Abdul Shakoor
- The College of Geography and Environment, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Alotaibi F, St-Arnaud M, Hijri M. In-Depth Characterization of Plant Growth Promotion Potentials of Selected Alkanes-Degrading Plant Growth-Promoting Bacterial Isolates. Front Microbiol 2022; 13:863702. [PMID: 35422791 PMCID: PMC9002309 DOI: 10.3389/fmicb.2022.863702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 01/20/2023] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) as a bioremediation enhancer in plant-assisted phytoremediation requires several steps, consisting of the screening, selection, and characterization of isolates. A subset of 50 bacterial isolates representing a wide phylogenetic range were selected from 438 morphologically different bacteria that were originally isolated from a petroleum hydrocarbon (PHC)-polluted site of a former petrochemical plant. Selected candidate bacteria were screened using six conventional plant growth-promoting (PGP) traits, complemented with the genetic characterization of genes involved in alkane degradation, as well as other pertinent functions. Finally, the bacterial isolates were subjected to plant growth promotion tests using a gnotobiotic approach under normal and stressed conditions. Our results indicated that 35 bacterial isolates (70%) possessed at least four PGP traits. Twenty-nine isolates (58%) were able to utilize n-hexadecane as a sole carbon source, whereas 43 isolates (86%) were able to utilize diesel as the sole carbon source. The presence of catabolic genes related to hydrocarbon degradation was assessed using endpoint PCR, with the alkane monooxygenase (alkB) gene found in 34 isolates, the cytochrome P450 hydroxylase (CYP153) gene found in 24 isolates, and the naphthalene dioxygenase (nah1) gene found to be present in 33 isolates. Thirty-six strains (72%) promoted canola root elongation in the growth pouch assay. After several rounds of screening, seven bacterial candidates (individually or combined in a consortium) were tested for canola root and shoot growth promotion in substrates amended by different concentrations of n-hexadecane (0%, 1%, 2%, and 3%) under gnotobiotic conditions. Our results showed that Nocardia sp. (WB46), Pseudomonas plecoglossicida (ET27), Stenotrophomonas pavanii (EB31), and Gordonia amicalis (WT12) significantly increased the root length of canola grown in 3% n-hexadecane compared with the control treatment, whereas Nocardia sp. (WB46) and Bacillus megaterium (WT10) significantly increased shoot length compared to control treatment at the same concentration of n-hexadecane. The consortium had a significant enhancement effect on root length compared to all isolates inoculated individually or to the control. This study demonstrates that the combination of PGPR traits and the PHC degradation potential of bacteria can result in an enhanced beneficial effect in phytoremediation management, which could lead to the development of innovative bacterial inoculants for plants to remediate PHC-contaminated soils.
Collapse
Affiliation(s)
- Fahad Alotaibi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.,Department of Soil Science, King Saud University, Riyadh, Saudi Arabia
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.,African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
5
|
Salix purpurea and Eleocharis obtusa Rhizospheres Harbor a Diverse Rhizospheric Bacterial Community Characterized by Hydrocarbons Degradation Potentials and Plant Growth-Promoting Properties. PLANTS 2021; 10:plants10101987. [PMID: 34685796 PMCID: PMC8538330 DOI: 10.3390/plants10101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.
Collapse
|
6
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|
7
|
Sauer S, Dlugosch L, Kammerer DR, Stintzing FC, Simon M. The Microbiome of the Medicinal Plants Achillea millefolium L. and Hamamelis virginiana L. Front Microbiol 2021; 12:696398. [PMID: 34354692 PMCID: PMC8329415 DOI: 10.3389/fmicb.2021.696398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.
Collapse
Affiliation(s)
- Simon Sauer
- WALA Heilmittel GmbH, Bad Boll, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Jayakumar A, Nair IC, Radhakrishnan EK. Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. MICROBIAL ECOLOGY 2021; 81:687-702. [PMID: 33078238 DOI: 10.1007/s00248-020-01605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bacterial endophytes ubiquitously colonize the internal tissues of plants and promote the plant growth through diverse mechanisms. The current study describes the mechanistic basis of plant-specific adaptations present in an extremely beneficial endophytic bacterium. Here, the endophytic Bacillus subtilis Dcl1 isolated from the dried rhizome of Curcuma longa was found to have the drought tolerance, IAA and ACC deaminase production and phosphate solubilization properties. The whole genome sequencing and annotation further showed the genome of B. subtilis Dcl1 to have the size of 4,321,654 bp. This also showed the presence of genes for IAA, H2S, acetoin, butanediol, flagella and siderophore production along with phosphate solubilization and biofilm formation for the B. subtilis Dcl1. In addition, the genes responsible for the synthesis of surfactin, iturin, fengycin, bacillibactin, bacillaene, bacilysin, chitinase, chitosanase, protease and glycoside hydrolase could also be annotated from the genome of B. subtilis Dcl1. Identification of genes for the glycine betaine, glutamate and trehalose further indicated the drought stress tolerance features of B. subtilis Dcl1. The presence of the genetic basis to produce the catalase, superoxide dismutase, peroxidases, gamma-glutamyltranspeptidase, glutathione and glycolate oxidase also indicated the plant oxidative stress protective effect of B. subtilis Dcl1. Identification of these properties and the demonstration of its plant probiotic effect in Vigna unguiculata confirmed the applicability of B. subtilis Dcl1 as a biofertilizer, biocontrol and bioremediator agent to enhance the agricultural productivity.
Collapse
Affiliation(s)
- Aswathy Jayakumar
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Indu C Nair
- Department of Biotechnology, SAS SNDP Yogam College, Pathanamthitta, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
9
|
Juby S, Choyikutty D, Nayana AR, Jayachandran K, Radhakrishnan EK. Quinalphos Tolerant Endophytic Bacillus sp. Fcl1 and its Toxicity-Alleviating Effect in Vigna unguiculata. Curr Microbiol 2021; 78:904-910. [PMID: 33580334 DOI: 10.1007/s00284-020-02317-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022]
Abstract
In order to meet the agricultural requirement for the expanding population, pesticides have been used regularly even with their severe threat. The uncontrolled use of these pesticides can cause irreparable damage to both soil and plant-associated microbiome. Therefore, an environment friendly alternative to enhance plant productivity and yield is highly important. Here comes the importance of endophytic microorganisms with multi-plant beneficial mechanisms to protect plants from the biotic and abiotic stress factors. However, their performance can be negatively affected under pesticide exposure. Hence the present study was conducted to analyse the tolerating ability of a Bacillus sp. Fcl1 which was originally isolated from the rhizome of Curcuma longa towards the pesticide quinalphos and also its ability to reduce the quinalphos-induced toxicity in Vigna unguiculata. The results revealed that the viability of endophytic Bacillus sp. Fcl1 depended on the concentration of quinalphos used for the study. Further, Fcl1 supplementation was found to alleviate the quinalphos-induced toxicity in Vigna unguiculata seedlings. The study is environmentally significant due to the pesticide tolerating and alleviating effect of Bacillus sp. Fcl1 in quinalphos-induced plant toxicity. This could suggest the application of microbes of endophytic origin as an efficient bioinoculant for field application even in the presence of pesticide residues.
Collapse
Affiliation(s)
- Silju Juby
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Divya Choyikutty
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - K Jayachandran
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
10
|
Xue J, Shi K, Chen C, Bai Y, Cui Q, Li N, Fu X, Qiao Y. Evaluation of response of dynamics change in bioaugmentation process in diesel-polluted seawater via high-throughput sequencing: Degradation characteristic, community structure, functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123569. [PMID: 32798793 DOI: 10.1016/j.jhazmat.2020.123569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Identification of microorganisms that contribute to the whole microbial community is important. In this study, dynamic changes in bioaugmentation process in diesel-polluted seawater collected from two different sites were assessed via simulation experiments. Ultraviolet spectrophotometry and analysis using the molecular operating environment software revealed that the degradation rate of diesel due to bioaugmentation was higher than 70 % after 45 days because of the formation of hydrogen bonds among biosurfactants and diesel components. Community structure and functional genes were analysed via high-throughput sequencing. Results showed that community diversity recovered during bioaugmentation. Principal coordinate analysis showed that the difference in microbial community between the two sites was considerably smaller than that when diesel was added and bioaugmentation was conducted. After bioaugmentation, the main families playing key roles in degradation that became dominant were Alcanivoracaceae, Rhodobiaceae, and Rhodospirillaceae. Moreover, the abundance of functional genes remarkably increased at two different sites.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology, Haerbin, Heilongjiang, 150001, China
| | - Yu Bai
- Chinaunicom System Integration Co., Ltd, No.131, Xidan North Road, Beijing, 100085, China
| | - Qinqin Cui
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, China
| | - Nana Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Xinge Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| |
Collapse
|
11
|
Fadiji AE, Ayangbenro AS, Babalola OO. Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. J Appl Genet 2021; 62:339-351. [PMID: 33486715 DOI: 10.1007/s13353-021-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
To ensure food security for the ever-increasing world's population, it is important to explore other alternatives for enhancing plant productivity. This study is aimed at identifying the putative plant growth-promoting (PGP) and endophytic gene clusters in root-associated endophytic microbes from maize root and to also verify if their abundance is affected by different farming practices. To achieve this, we characterize endophytic microbiome genes involved in PGP and endophytic lifestyle inside maize root using the shotgun metagenomic approach. Our results revealed the presence of genes involved in PGP activities such as nitrogen fixation, HCN biosynthesis, siderophore, 4-hydroxybenzoate, ACC deaminase, phenazine, phosphate solubilization, butanediol, methanol utilization, acetoin, nitrogen metabolism, and IAA biosynthesis. We also identify genes involved in stress resistance such as glutathione, catalase, and peroxidase. Our results further revealed the presence of putative genes involved in endophytic behaviors such as aerotaxis, regulator proteins, motility mechanisms, flagellum biosynthesis, nitrogen regulation, regulation of carbon storage, formation of biofilm, reduction of nitric oxide, regulation of beta-lactamase resistance, type III secretion, type IV conjugal DNA, type I pilus assembly, phosphotransferase system (PTS), and ATP-binding cassette (ABC). Our study suggests a high possibility in the utilization of endophytic microbial community for plant growth promotion, biocontrol activities, and stress mitigation. Further studies in ascertaining this claim through culturing of the beneficial isolates as well as pot and field experiments are necessary.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa.
| |
Collapse
|
12
|
Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 2020; 44:107614. [PMID: 32858117 DOI: 10.1016/j.biotechadv.2020.107614] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 10/25/2022]
Abstract
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Collapse
Affiliation(s)
- Jakub Papik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Magdalena Folkmanova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Marketa Polivkova-Majorova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
13
|
Lu Y, Zhang E, Hong M, Yin X, Cai H, Yuan L, Yuan F, Li L, Zhao K, Lan X. Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant Paeonia ludlowii. Arch Microbiol 2020; 202:1717-1728. [PMID: 32313992 PMCID: PMC7385006 DOI: 10.1007/s00203-020-01882-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/26/2022]
Abstract
Paeonia ludlowii is indigenous to Tibet and has an important ecological and economic value in China. In Tibet, P. ludlowii has been used in folk medicine with relative success. Plant microbial endophytes play an important role in plant growth, health and ecological function. The diversity of endophytic bacteria associated with P. ludlowii remains poorly understood. In this study, the structure of the endophytic bacterial communities associated with different tissues, including fruits, flowers, leaves, stems, and roots, and rhizosphere soils was analyzed with Illumina MiSeq sequencing of bacterial 16S rDNA. A total of 426,240 sequences and 4847 operational taxonomic units (OTUs) were obtained. The OTUs abundance of roots was higher than that of other tissues; however, the OTUs abundance was similar among different deep soil samples. In the plant tissues, Cyanobacteria was the most abundant bacterial phylum, followed by Proteobacteria; however, the most abundant phyla were Proteobacteria and Acidobacteria in soil samples from three different layers. In addition, the diversity and richness of the microorganisms in the soil were very similar to those in roots but higher than those in other tissues of P. ludlowii. Predictive metagenome analysis revealed that endophytic bacteria play critical functional roles in P. ludlowii. This conclusion could facilitate the study of the ecological functions of endophytic bacteria and their interactions with P. ludlowii to analyze the reasons why this important medicinal plant is becoming endangered.
Collapse
Affiliation(s)
- Yazhou Lu
- Research Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Erhao Zhang
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Mingsheng Hong
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, 637009 Sichuan China
| | - Xiu Yin
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Hao Cai
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Lei Yuan
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Fang Yuan
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Lianqiang Li
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Kentian Zhao
- Department of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| | - Xiaozhong Lan
- Medicinal Plants Joint Research and Development Centre, Tibet Agriculture and Animal Husbandry College-Southwest University, Nyingchi, 860000 Tibet China
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000 Tibet China
| |
Collapse
|
14
|
El Azab IH, Elkanzi NA. Design, Synthesis, and Antimicrobial Evaluation of New Annelated Pyrimido[2,1- c][1,2,4]triazolo[3,4- f][1,2,4]triazines. Molecules 2020; 25:E1339. [PMID: 32183502 PMCID: PMC7144560 DOI: 10.3390/molecules25061339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 11/17/2022] Open
Abstract
A series of 34 new pyrimido[2,1-c][1,2,4]triazine-3,4-diones were synthesized and fully characterized using IR, NMR, MS, and microanalytical analysis. In vitro investigation of 12 compounds of this series revealed promising antimicrobial activity of the conjugates 15a and 15f-j that were tagged with electron-withdrawing groups, with sensitivities ranging from 77% to as high as 100% of the positive control. The investigation of antimicrobial activity included Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6535, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 8739 (EC), and fungal strains Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404.
Collapse
Affiliation(s)
- Islam H. El Azab
- Chemistry Department, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia
- On leave from Chemistry Department, Faculty of Science, Aswan University, Aswan P.O. Box 81528, Egypt;
| | - Nadia A.A. Elkanzi
- On leave from Chemistry Department, Faculty of Science, Aswan University, Aswan P.O. Box 81528, Egypt;
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| |
Collapse
|
15
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
16
|
Ben Mefteh F, Bouket AC, Daoud A, Luptakova L, Alenezi FN, Gharsallah N, Belbahri L. Metagenomic Insights and Genomic Analysis of Phosphogypsum and Its Associated Plant Endophytic Microbiomes Reveals Valuable Actors for Waste Bioremediation. Microorganisms 2019; 7:microorganisms7100382. [PMID: 31547633 PMCID: PMC6843645 DOI: 10.3390/microorganisms7100382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
The phosphogypsum (PG) endogenous bacterial community and endophytic bacterial communities of four plants growing in phosphogypsum-contaminated sites, Suaeda fruticosa (SF), Suaeda mollis (SM), Mesembryanthmum nodiflorum (MN) and Arthrocnemum indicum (AI) were investigated by amplicon sequencing. Results highlight a more diverse community of phosphogypsum than plants associated endophytic communities. Additionally, the bacterial culturable communities of phosphogypsum and associated plant endophytes were isolated and their plant-growth promotion capabilities, bioremediation potential and stress tolerance studied. Most of plant endophytes were endowed with plant growth-promoting (PGP) activities and phosphogypsum communities and associated plants endophytes proved highly resistant to salt, metal and antibiotic stress. They also proved very active in bioremediation of phosphogypsum and other organic and inorganic environmental pollutants. Genome sequencing of five members of the phosphogypsum endogenous community showed that they belong to the recently described species Bacillus albus (BA). Genome mining of BA allowed the description of pollutant degradation and stress tolerance mechanisms. Prevalence of this tool box in the core, accessory and unique genome allowed to conclude that accessory and unique genomes are critical for the dynamics of strain acquisition of bioremediation abilities. Additionally, secondary metabolites (SM) active in bioremediation such as petrobactin have been characterized. Taken together, our results reveal hidden untapped valuable bacterial actors for waste remediation.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran.
| | - Amal Daoud
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
| | - Lenka Luptakova
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, 04181 Kosice, Slovakia.
| | | | - Neji Gharsallah
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biodiversity, University of Neuchâtel, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
17
|
Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 2019; 9:4033. [PMID: 30858421 PMCID: PMC6412053 DOI: 10.1038/s41598-019-40551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Highly productive conventional agroecosystems are spatially embedded in resource-homogeneous systems and count on generally nutrient-rich soils. On the contrary, desert oases are isolated, the soil is relatively poor, but yet productivity is similar to conventional agroecosystems. Soil dominates over plant as the main factor shaping root-associated microbiomes in conventional agroecosystems. We hypothesize that in desert oasis, the environmental discontinuity, the resource paucity and limited microbial diversity of the soil make the plant a prevailing factor. We have examined the bacterial communities in the root system of date palm (Phoenix dactylifera), the iconic keystone species of the oases, grown in heterogeneous soils across a broad geographic range (22,200 km2 surface area) of the Sahara Desert in Tunisia. We showed that, regardless of the edaphic conditions and geographic location, the plant invariably selects similar Gammaproteobacteria- and Alphaproteobacteria-dominated bacterial communities. The phylogeny, networking properties and predicted functionalities of the bacterial communities indicate that these two phyla are performing the ecological services of biopromotion and biofertilization. We conclude that in a desert agroecosystem, regardless of the soil microbial diversity baseline, the plant, rather than soil type, is responsible of the bacterial community assembly in its root systems, reversing the pattern observed in conventional agroecosystem.
Collapse
Affiliation(s)
- Maria J Mosqueira
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ameur Cherif
- University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, 2020, Tunisia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
18
|
Marín F, Navarrete H, Narvaez-Trujillo A. Total Petroleum Hydrocarbon Degradation by Endophytic Fungi from the Ecuadorian Amazon. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.812070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|