1
|
Cai J, Zeng Y, Zhu Y, Zheng Q, Tian L, Xie Q, Zheng X. Trophic stoichiometry of macroelements and metals in a terrestrial food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124993. [PMID: 39303937 DOI: 10.1016/j.envpol.2024.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In order to understand the transfer of macroelements and toxic metals in the terrestrial food web, barn swallows, terrestrial frogs, and insects were collected from farmlands in the Leizhou Peninsula, and analyzed for macroelements carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) and trace metals nickel (Ni), zinc (Zn), selenium (Se), copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg). The multi-element ecological stoichiometry was discussed to trace the food web flow of nutrients and toxicants. The percentage contents of C, N, P, and S were 35.43-59.91%, 6.89-12.11%, 0.49-4.66%, and 0.44-2.19%, respectively. The concentrations of Ni, Zn, Se, Cu, Cr, Cd, Pb, and Hg were 0.163-116 mg/kg, 38.7-227 mg/kg, 0.0453-3.82 mg/kg, 3.11-141 mg/kg, not detected-79.6 mg/kg, 0.0203-0.358 mg/kg, 0.148-4.57 mg/kg, and 0.00159-1.46 mg/kg, respectively. Organisms at high trophic levels had higher contents of N, P, and S, and lower contents of C. Significant correlations were observed between δ15N and ratios of C: N, C: P, C: S, N: P, N: S, and S: P, indicating selective transfer of biogenic elements for predators in the terrestrial food web. Most metals including Ni, Zn, Se, Cu, Cr, Pb, and Hg had biomagnification factors and trophic magnification factors higher than 1, because the whole body of organisms rather than tissues were used. The negative correlations between the detoxification ratios of Se: X (each toxic metal) and metal concentrations suggest potential adverse effect of metals on terrestrial organisms.
Collapse
Affiliation(s)
- Junjie Cai
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Zeng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yujing Zhu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Li Tian
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China; Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qilai Xie
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Chavez-Ortiz P, Larsen J, Olmedo-Alvarez G, García-Oliva F. Control of inorganic and organic phosphorus molecules on microbial activity, and the stoichiometry of nutrient cycling in soils in an arid, agricultural ecosystem. PeerJ 2024; 12:e18140. [PMID: 39329143 PMCID: PMC11426319 DOI: 10.7717/peerj.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background The dynamics of carbon (C), nitrogen (N), and phosphorus (P) in soils determine their fertility and crop growth in agroecosystems. These dynamics depend on microbial metabolism, which in turn depends on nutrient availability. Farmers typically apply either mineral or organic fertilizers to increase the availability of nutrients in soils. Phosphorus, which usually limits plant growth, is one of the most applied nutrients. Our knowledge is limited regarding how different forms of P impact the ability of microbes in soils to produce the enzymes required to release nutrients, such as C, N and P from different substrates. Methods In this study, we used the arable layer of a calcareous soil obtained from an alfalfa cropland in Cuatro Cienegas, México, to perform an incubation experiment, where five different phosphate molecules were added as treatments substrates: three organic molecules (RNA, adenine monophosphate (AMP) and phytate) and two inorganic molecules (calcium phosphate and ammonium phosphate). Controls did not receive added phosphorus. We measured nutrient dynamics and soil microbial activity after 19 days of incubation. Results Different P molecules affected potential microbial C mineralization (CO2-C) and enzyme activities, specifically in the organic treatments. P remained immobilized in the microbial biomass (Pmic) regardless of the source of P, suggesting that soil microorganisms were limited by phosphorus. Higher mineralization rates in soil amended with organic P compounds depleted dissolved organic carbon and increased nitrification. The C:N:P stoichiometry of the microbial biomass implied a change in the microbial community which affected the carbon use efficiency (CUE), threshold elemental ratio (TER), and homeostasis. Conclusion Different organic and inorganic sources of P affect soil microbial community structure and metabolism. This modifies the dynamics of soil C, N and P. These results highlight the importance of considering the composition of organic matter and phosphate compounds used in agriculture since their impact on the microbial activity of the soil can also affect plant productivity.
Collapse
Affiliation(s)
- Pamela Chavez-Ortiz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico, Ciudad de México, Mexico
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N., Irapuato, Guanajuato, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| |
Collapse
|
3
|
Ahoyo CC, Houéhanou TD, Yaoitcha AS, Akpi BP, Natta A, Houinato MRB. How do plant demographic and ecological traits combined with social dynamics and human traits affect woody plant selection for medicinal uses in Benin (West Africa)? JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:15. [PMID: 38336725 PMCID: PMC10854095 DOI: 10.1186/s13002-024-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Several hypotheses have been used in ethnobotany to explain the plant's selection criteria by people for their daily needs. Thus, it is important to assess synergy and complementarity among them, especially, those concerning the plant use value, social dynamics and human traits. The study aims to (i) highlight people's socio-economic factors, and plant ecological traits that affect the plant use-availability dynamic (PUD); and (ii) assess the available species diversity effect on ethno-medicinal knowledge diversity in Benin. METHODS Ethnobotanical interviews were carried out to quantify the importance of local species in different ecological zones of Benin with 590 traditional medicine actors. Vegetation surveys were done to assess species availability within 337 plots of 50 m x 40 m or 60 m x 30 m, depending on the climatic zone, for a total of 61.6 ha, established in 15 forests distributed within the 10 phytodistricts of Benin. The plant use availability hypothesis was quantified as a dynamic link between species use value and availability (PUD). A general and mixed linear models were used to assess the significance of each factor's effect on PUD. Pearson correlation test was applied on Shannon diversity index considering inventoried species in the field and those which were cited by people, for the available species diversity effect on ethno-medicinal knowledge diversity assessment. RESULTS A hundred and twenty woody medicinal plants, mostly trees (68.33%), were sampled. Growth form and its interaction with phytodistrict have a significant effect (p: 0.005) on PUD. The less available trees were the most used in the phytodistricts 3, 4, 8 and 10. PUD varies significantly according to social factors (p: 0.007). Ethnicity, age and main activity were the most quoted social factors which influenced the PUD. Ethnicity and age have various effects considering the phytodistricts. Moreover, the influence of age changes following the main activity. Plant selection did not solely link to the surrounding diversity (r: - 0.293; p: 0.403). Within some phytodistricts, especially those of 3, 4, 8 and 10, the less available tree species were the most requested. CONCLUSION It is urgent to reforest vegetation patches in some phytodistricts (3, 4, 8 and 10) of Benin with widely requested and no available species to avoid the extinction of their wild populations. This concerns Cassia sieberiana DC., Anonychium africanum (Guill. & Perr.) C. E.Hughes & G. P. Lewis, Pterocarpus erinaceus Poir., Cola millenii K. Schum., Azadirachta indica A. Juss., Khaya senegalensis (Desr.) A. Juss., Pseudocedrela kotschyi (Schweinf.) Harms, Treculia africana Decne. ex Trécul, Uapaca heudelotii Baill., Vitellaria paradoxa C. F. Gaertn., Kigelia africana (Lam.) Benth. and Newbouldia laevis (P. Beauv.) Seem. ex Bureau.
Collapse
Affiliation(s)
- Carlos Cédric Ahoyo
- Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Benin.
| | - Thierry Dèhouegnon Houéhanou
- Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Benin
- Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, Parakou, Benin
- Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Cotonou, Benin
| | | | - Bénédicte Perpétue Akpi
- Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | - Armand Natta
- Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | | |
Collapse
|
4
|
Nair P, Miller CM, Fuiman LA. Tracing exploitation of egg boons: an experimental study using fatty acids and stable isotopes. J Exp Biol 2023; 226:jeb246247. [PMID: 37909269 DOI: 10.1242/jeb.246247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Coordinated spawning of marine animals releases millions of planktonic eggs into the environment, known as egg boons. Eggs are rich in essential fatty acids and may be an important lipid subsidy to egg consumers. Our aim was to validate the application of fatty acid and stable isotope tracers of egg consumption to potential egg consumers and to confirm egg consumption by the selected species. We conducted feeding experiments with ctenophores, crustaceans and fishes. We fed these animals a common diet of Artemia or a commercial feed (Otohime) and simulated egg boons for half of them by intermittently supplementing the common diet with red drum (Sciaenops ocellatus) eggs for 10-94 days. Controls did not receive eggs. Fatty acid profiles of consumers fed eggs were significantly different from those of controls 24 h after the last egg-feeding event. Consumers took on fatty acid characteristics of eggs. In fishes and ctenophores, fatty acid markers of egg consumption did not persist 2-5 days after the last egg-feeding event, but markers of egg consumption persisted in crustaceans for at least 5-10 days. Additionally, consumption of eggs, which had high values of δ15N, led to δ15N enrichment in crustaceans and a fish. We conclude that fatty acids and nitrogen stable isotope can be used as biomarkers of recent egg consumption in marine animals, validating their use for assessing exploitation of egg boons in nature.
Collapse
Affiliation(s)
- Parvathi Nair
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Cambria M Miller
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Lee A Fuiman
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
5
|
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse MA. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC PLANT BIOLOGY 2023; 23:422. [PMID: 37700257 PMCID: PMC10496321 DOI: 10.1186/s12870-023-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| | - Adrian Zwolicki
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| | - Alžběta Novotná
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institute of Microbiology ASCR, Vídeňská, Praha, 1083, 142 20, Czech Republic
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760, 37005, Czech Republic
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| |
Collapse
|
6
|
Jarne P, Pinay G. Towards closer integration between ecology and evolution. Ecol Lett 2023; 26 Suppl 1:S5-S10. [PMID: 37840023 DOI: 10.1111/ele.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Philippe Jarne
- CEFE, UMR 5175, CNRS-Université de Montpellier-IRD-EPHE, Montpellier Cedex 5, France
| | - Gilles Pinay
- Environnement, Ville & Société (EVS), UMR 5600, CNRS-, Lyon Cedex 08, France
| |
Collapse
|
7
|
Gu X, Zhang F, Xie X, Cheng Y, Xu X. Effects of N and P addition on nutrient and stoichiometry of rhizosphere and non-rhizosphere soils of alfalfa in alkaline soil. Sci Rep 2023; 13:12119. [PMID: 37495627 PMCID: PMC10372058 DOI: 10.1038/s41598-023-39030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) are important nutrients for plant growth and development. Soil alkalization is one of the main obstacles limiting the sustainable development of agriculture. Northern Ningxia is located in the arid and semi-arid region, with serious soil alkalinization. Alfalfa has the advantages of strong saline-alkali tolerance, high yield, high quality, and wide adaptability. It is an important forage for the comprehensive improvement and rational utilization of saline-alkali land and has great significance for solving land resource shortages, improving the ecological environment, and ensuring food security. It is important to study soil organic carbon (SOC), total N (TN), total P (TP), and stoichiometry of the rhizosphere and non-rhizosphere of alfalfa in alkaline soils. Therefore, N and P were added to the alkaline alfalfa field in the Yinchuan Plain of Hetao Basin in our experiment. Six treatments were set up, i.e., N-free (WN), medium N (MN) for 90 kg/hm2, high N (HN) for 180 kg/hm2, P-free (WP), medium P (MP) for 135 kg/hm2, and high P (HP) for 270 kg/hm2. The results are as follows: The N addition promotes SOC and TN but inhibits TP, and P addition promotes SOC and TP but inhibits TN of three soil layers. The N addition decreases C/N but increases C/P and N/P, while the P addition increases C/N but decreases C/P and N/P of three soil layers. The SOC, TN, TP, C/N, C/P, and N/P under HN and HP treatment reach the significance level (P < 0.05). Appropriate additions of N and P can improve rhizosphere and non-rhizosphere nutrients and stoichiometric structure, facilitating absorption and utilization by alfalfa and improve the production potential of alfalfa in alkaline soil.
Collapse
Affiliation(s)
- Xudong Gu
- College of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Fengju Zhang
- College of Ecology and Environment, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xiaowei Xie
- College of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yunlong Cheng
- College of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xing Xu
- College of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
8
|
Chen M, Gong M, Zhang J, Asik L. Comparison of dynamic behavior between continuous- and discrete-time models of intraguild predation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12750-12771. [PMID: 37501465 DOI: 10.3934/mbe.2023569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Intraguild predation is a common ecological phenomenon that manifests itself by the aggression of one predator by another to obtain a shared prey species. In this paper, we develop a discrete analog of a stoichiometric continuous-time intraguild predation model. We analyze the dynamics of the discrete-time model, such as boundedness and invariance, stability of equilibria, and features of ecological matrices. The dynamic behavior of the two models is compared and analyzed through numerical analysis. We observe the same coexistence region of populations and stoichiometric effects of food quality of the shared prey in both models. Obvious differences between the discrete- and continuous-time models can be observed with intermediate and high levels of light intensity. The multistability characteristics and the existence interval of chaos differ among the different time scale models. This study provides evidence of the importance of time scales on intraguild predation.
Collapse
Affiliation(s)
- Ming Chen
- School of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Menglin Gong
- School of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Jimin Zhang
- School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China
| | - Lale Asik
- Department of Mathematics and Statistics, University of the Incarnate Word, TX 78209, USA
| |
Collapse
|
9
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
10
|
Zhang H, Churchill AC, Anderson IC, Igwenagu C, Power SA, Plett JM, Macdonald CA, Pendall E, Carrillo Y, Powell JR. Ecological stoichiometry and fungal community turnover reveal variation among mycorrhizal partners in their responses to warming and drought. Mol Ecol 2023; 32:229-243. [PMID: 34779067 DOI: 10.1111/mec.16278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022]
Abstract
Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.
Collapse
Affiliation(s)
- Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Amber C Churchill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Chioma Igwenagu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
11
|
Jordán F. The network perspective: Vertical connections linking organizational levels. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Gill SP, Hunter WR, Coulson LE, Banat IM, Schelker J. Synthetic and biological surfactant effects on freshwater biofilm community composition and metabolic activity. Appl Microbiol Biotechnol 2022; 106:6847-6859. [PMID: 36121483 PMCID: PMC9529700 DOI: 10.1007/s00253-022-12179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Surfactants are used to control microbial biofilms in industrial and medical settings. Their known toxicity on aquatic biota, and their longevity in the environment, has encouraged research on biodegradable alternatives such as rhamnolipids. While previous research has investigated the effects of biological surfactants on single species biofilms, there remains a lack of information regarding the effects of synthetic and biological surfactants in freshwater ecosystems. We conducted a mesocosm experiment to test how the surfactant sodium dodecyl sulfate (SDS) and the biological surfactant rhamnolipid altered community composition and metabolic activity of freshwater biofilms. Biofilms were cultured in the flumes using lake water from Lake Lunz in Austria, under high (300 ppm) and low (150 ppm) concentrations of either surfactant over a four-week period. Our results show that both surfactants significantly affected microbial diversity. Up to 36% of microbial operational taxonomic units were lost after surfactant exposure. Rhamnolipid exposure also increased the production of the extracellular enzymes, leucine aminopeptidase, and glucosidase, while SDS exposure reduced leucine aminopeptidase and glucosidase. This study demonstrates that exposure of freshwater biofilms to chemical and biological surfactants caused a reduction of microbial diversity and changes in biofilm metabolism, exemplified by shifts in extracellular enzyme activities. KEY POINTS: • Microbial biofilm diversity decreased significantly after surfactant exposure. • Exposure to either surfactant altered extracellular enzyme activity. • Overall metabolic activity was not altered, suggesting functional redundancy.
Collapse
Affiliation(s)
- Stephanie P Gill
- Department of Geography and Environmental Studies, Ulster University, Coleraine, BT52 1SA, N. Ireland, UK.
| | - William R Hunter
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, N. Ireland, UK
| | - Laura E Coulson
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Jakob Schelker
- WasserCluster Lunz, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth. SUSTAINABILITY 2022. [DOI: 10.3390/su14148337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Earth’s critical zone is defined as a plant–soil–water system, which covers a wide area and has a large vertical thickness, but the soil elemental stoichiometry characteristics of the critical zone at different depths are still unclear. In this study, the spatial distribution of soil carbon (C), nitrogen (N) and phosphorus (P) in the critical zone of a typical wetland in Dongting Lake, China, and their ecological chemometric characteristics were analyzed. The results indicated that: (1) the average C, N and P contents were 18.05, 0.86 and 0.52 g/kg, respectively, with a decreasing trend from the surface to the deeper layers. The soil is relatively rich in C and P, while N is the main element limiting plant growth and development. (2) The mean values of soil C/N, N/P and C/P were 21.1, 1.7 and 35.4 respectively, with the C/N ratio and C/P ratio showing a trend of increasing and then decreasing in the vertical direction and reaching a maximum at a depth of 2–5 m below ground. (3) According to the correlation results, C, N and P in soils are coupled and influenced by each other (p < 0.001), and pH, infiltration coefficient and human activities are closely related to the spatial distribution of C, N and P. (4) Stable Redfield ratios (1:1.6:35.4) may exist in lake wetland soils, and future studies should be conducted for complete systems of the same type of wetlands. The results of the study will provide a theoretical basis for the sustainable development and scientific management of lake wetlands.
Collapse
|
14
|
Frenken T, Paseka R, González AL, Asik L, Seabloom EW, White LA, Borer ET, Strauss AT, Peace A, Van de Waal DB. Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers. OIKOS 2021. [DOI: 10.1111/oik.08253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thijs Frenken
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Rachel Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota St. Paul MN USA
| | | | - Lale Asik
- Dept of Biology and Center for Computational and Integrative Biology, Rutgers Univ. Camden NJ USA
| | - Eric W. Seabloom
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Lauren A. White
- National Socio‐Environmental Synthesis Center (SESYNC), Univ. of Maryland Annapolis MD USA
| | - Elizabeth T. Borer
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Alex T. Strauss
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota St. Paul MN USA
| | - Angela Peace
- Dept of Mathematics and Statistics, Texas Tech Univ. Lubbock TX USA
| | - Dedmer B. Van de Waal
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| |
Collapse
|
15
|
Beck M, Mondy CP, Danger M, Billoir E, Usseglio‐Polatera P. Extending the growth rate hypothesis to species development: Can stoichiometric traits help to explain the composition of macroinvertebrate communities? OIKOS 2021. [DOI: 10.1111/oik.08090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Miriam Beck
- Univ. de Lorraine, CNRS, LIEC Metz France
- LTER‐‘Zone Atelier Moselle' Metz France
| | - Cédric P. Mondy
- Office Français de la Biodiversité, Direction Régionale d'Ile‐de‐France Vincennes France
| | - Michael Danger
- Univ. de Lorraine, CNRS, LIEC Metz France
- LTER‐‘Zone Atelier Moselle' Metz France
| | | | | |
Collapse
|
16
|
Meng L, Qu F, Bi X, Xia J, Li Y, Wang X, Yu J. Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141737. [PMID: 32882556 DOI: 10.1016/j.scitotenv.2020.141737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The Yellow River Delta Nature Reserve (YNR), which includes two separated regions: part of the old Yellow River Delta (OYD) and part of the current Yellow River Delta (CYD), was established to protect coastal wetlands in the coastal estuary. A total of 120 plots were sampled in the YNR in April 2016, and the spatial patterns of soil C, N and P contents and their stoichiometric ratios (C:N (RCN), C:P (RCP) and N:P (RNP)) were studied and interpolated using the Ordinary Kriging method. Results indicated that the soil elemental contents and stoichiometric ratios showed high spatial heterogeneity and large variations. The mean C:N:P ratio (RCNP) was ~ 64.7:2.3:1 in OYD, and ~ 64.5:2.0:1 in CYD, respectively, and a well-constrained RCP ratio ~ 65:1 was found in the 0-50 cm soil depth within the YNR. N showed greater variation than C and P. Furthermore, N contents in the 0-5 cm soil layer of OYD were significantly higher than that of CYD (F = 4.79, p = 0.03); RCN in 0-5 cm, 5-10 cm layers of OYD was significantly lower than those in the same layers of CYD (F = 4.75, p = 0.03; F = 5.18, p = 0.02, respectively). RNP in 0-5 cm soil layer of OYD was notably higher than that of CYD (F = 4.88, p = 0.03). These results were due to the combined actions of sedimentation, reclamation and fertilization. Finally, we concluded that a longer reclamation and fertilization history led to decreased RCN in coastal estuary soils, confirmed that the soil of the YNR exhibits N limitation, and suggested that the soil RCN and RNP could be good indicators of the anthropogenic improvement status during soil development in this coastal estuary.
Collapse
Affiliation(s)
- Ling Meng
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Fanzhu Qu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China.
| | - Xiaoli Bi
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yunzhao Li
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Xuehong Wang
- Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Junbao Yu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, PR China; Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
17
|
Liu H, Li Y, Li S. Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil. PLoS One 2020; 15:e0243172. [PMID: 33259559 PMCID: PMC7707461 DOI: 10.1371/journal.pone.0243172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 12/02/2022] Open
Abstract
Leymus chinensis (L. chinensis) is the dominant plant in the eastern margins of the Eurasian temperate grasslands. It is a very robust species, exhibiting good saline-alkali resistance and stabilizing soil. In this study, 67 soil samples and L. chinensis were collected in western Jilin province, China. The contents of N, P, K, S, Mn, Fe, Zn, Cu and Na were measured, revealing that the growth of L. chinensis was mainly restricted by N based on the stoichiometric N: P ratios of plant. Furthermore, path analysis indicated that N was significantly correlated with K, S, Cu, and Zn. Imbalances in the homeostasis of these four elements may thus constrain N. The homeostasis index of Cu (HCu) in sites with 100%-70% of vegetation cover was only 0.79, it was classified as a sensitive element. However, K, S and Zn, whose concentrations in L. chinensis were significantly related to those of N, exhibited no homeostatic characteristics. These results suggest that when seeking to treat saline-alkali stress, it is important to add fertilizers containing K, S, and Zn to avoid growth limitation. Na+, an ion associated with high soil alkalinity, exhibited weak homeostasis in L. chinensis even in sites with only 40%-10% of vegetation cover. When soil Na exceeded 16000 mg/kg, the homeostasis mechanism of L. chinensis appeared to be overwhelmed, resulting in rapid and probably harmful accumulation of Na. Proper control of N content can alleviate the toxicity of Na stress in L. chinensis and enhance its Na tolerance. Together, these results suggest that combined fertilization with N, K, S, Zn and Cu should be applied to improve grasslands growth. The results of this study can provide a reference basis for sustainable grassland management.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Changchun, Jilin, China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun, Jilin, China
- Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources, Changchun, Jilin, China
| | - Shujie Li
- College of Earth Sciences, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
18
|
Orłowski G, Karg J, Kamiński P, Baszyński J, Szady-Grad M, Ziomek K, Klawe JJ. Edge effect imprint on elemental traits of plant-invertebrate food web components of oilseed rape fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1285-1294. [PMID: 31412462 DOI: 10.1016/j.scitotenv.2019.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
Of fundamental importance for the functioning of a community is the flow of energy and elements through its components. However, the question of how (if at all) the edge effect of habitats can drive elemental traits of organisms has hitherto been largely neglected issue in ecosystem ecology at the community level. We quantified the abundance of invertebrates and measured the elemental composition (K, Na, Ca, Mg, Cu, Zn, Fe, Mn, As, Cd, Co and Pb) of 15 different organisms within the plant-invertebrate food web (plant - oilseed rape pests/herbivores - pollinators = wild bees - saprovores - predators - parasitoids) sampled in 34 fields of a key bioenergy crop that is an exceptionally strong biodiversity driver, the oilseed rape. Then these were related to the individual field edge habitat features (including typically anthropogenic ones like dirt and tarred roads) measured within a 100 m radius around the invertebrate sampling sites. Our study showed that elemental traits of the plant-invertebrate food web components in oilseed rape crops varied owing to the habitat specificity determined at the relatively small spatial scale of an individual field, and that the elemental traits of these organisms differed from both an inter- and an intra-guild perspective. The major mechanistic explanation for most of these relationships seems to derive from the secondary gut content effect. Determining one single state for the homeostatic/stoichiometric regulation of chemical elements in invertebrates based on the application of whole-body metal concentrations is in principle impossible, because of the unknown noise caused by the inclusion of extracellular portions of metals in the analysis. It is thus imperative to develop consistent principles for assessing elemental traits of organisms that are based on highly sensitive and high-throughput analytical methods for the ionomic profiling of microsamples at the organ, tissue, cellular or even sub-cellular levels.
Collapse
Affiliation(s)
- Grzegorz Orłowski
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland.
| | - Jerzy Karg
- Department of Nature Conservation, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Skłodowska-Curie 9, 85-094 Bydgoszcz, Poland; Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Jędrzej Baszyński
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Skłodowska-Curie 9, 85-094 Bydgoszcz, Poland
| | - Małgorzata Szady-Grad
- Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Krzysztof Ziomek
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Skłodowska-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
19
|
Schulhof MA, Shurin JB, Declerck SAJ, Van de Waal DB. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. GLOBAL CHANGE BIOLOGY 2019; 25:2751-2762. [PMID: 31004556 PMCID: PMC6852242 DOI: 10.1111/gcb.14660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 06/07/2023]
Abstract
Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer-driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.
Collapse
Affiliation(s)
- Marika A. Schulhof
- Division of Biological Sciences, Section of Ecology, Behavior & EvolutionUniversity of California San DiegoLa JollaCalifornia
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| | - Jonathan B. Shurin
- Division of Biological Sciences, Section of Ecology, Behavior & EvolutionUniversity of California San DiegoLa JollaCalifornia
| | - Steven A. J. Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| |
Collapse
|