1
|
Cubillos CF, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C, López-García P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol Spectr 2024; 12:e0007224. [PMID: 38456669 PMCID: PMC10986560 DOI: 10.1128/spectrum.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids - INVASAL, Concepción, Chile
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | | |
Collapse
|
2
|
Chakraborty S, Mondal S. Halotolerant Citrobacter sp. remediates salinity stress and promotes the growth of Vigna radiata (L) by secreting extracellular polymeric substances (EPS) and biofilm formation: a novel active cell for microbial desalination cell (MDC). Int Microbiol 2024; 27:291-301. [PMID: 37329438 DOI: 10.1007/s10123-023-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
To address soil salinization and its impact on crop production, microbial desalination cells (MDCs) offer a promising solution. These bioelectrochemical systems integrate desalination and wastewater treatment through microbial activity. A halotolerant beneficial bacterial strain called Citrobacter sp. strain KUT (CKUT) was isolated from India's salt desert Run of Kutch, Gujrat, highlighting its potential application in combating soil salinization. CKUT exhibits high salt tolerance and has the ability to produce extracellular polymeric substances (EPS) at a concentration of 0.04 mg/ml. It forms biofilm that enable it to withstand up to 10% NaCl concentration. Additionally, CKUT shows promise in remediating salinity levels, reducing it from 4.5 to 2.7 gL-1. These characteristics are driven by biofilm formation and EPS production. In an experiment where V. radiata L. seedlings were inoculated with CKUT, the treated plants exhibited enhanced chlorophyll content, growth, and overall plant characteristics compared to seedlings treated with sodium chloride (NaCl). These improvements included increased shoot length (150 mm), root length (40 mm), and biomass. This indicates that CKUT treatment has the potential to enhance the suitability of V. radiata and other crops for cultivation in saline lands, effectively addressing the issue of soil salinization. Furthermore, integrating CKUT into microbial desalination cells (MDCs) offers an opportunity for freshwater production from seawater, contributing to sustainable agriculture by promoting improved crop growth and increased yield in areas prone to salinity. HIGHLIGHTS : • Soil salinization reduces crop yield, including Vigna radiata L. • Citrobacter sp. strain KUT (CKUT) is a halotolerant bacterium isolated from the salt desert Run of Kutch, Gujarat, which can tolerate high salt concentrations. • CKUT mitigates salinity by producing extracellular polymeric substances (EPS) and forming biofilms. • CKUT treatment demonstrated increased plant growth, biomass, and chlorophyll content under salinity stress, showcasing its potential in microbial desalination cell (MDC) for enhancing crop yield in salinized soils.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Microbiology, Techno India University, EM 4, Salt Lake, Sector V, Kolkata, 700091, India
| | - Sandhimita Mondal
- Department of Biotechnology, Brainware University, 398 Ramkrishnapur Road, Barasat, North 24 Pgs, Kolkata, 700125, West Bengal, India.
| |
Collapse
|
3
|
Pavez VB, Pacheco N, Castro-Severyn J, Pardo-Esté C, Álvarez J, Zepeda P, Krüger G, Gallardo K, Melo F, Vernal R, Aranda C, Remonsellez F, Saavedra CP. Characterization of biofilm formation by Exiguobacterium strains in response to arsenic exposure. Microbiol Spectr 2023; 11:e0265723. [PMID: 37819075 PMCID: PMC10714750 DOI: 10.1128/spectrum.02657-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In this work, we characterized the composition, structure, and functional potential for biofilm formation of Exiguobacterium strains isolated from the Salar de Huasco in Chile in the presence of arsenic, an abundant metalloid in the Salar that exists in different oxidation states. Our results showed that the Exiguobacterium strains tested exhibit a significant capacity to form biofilms when exposed to arsenic, which would contribute to their resistance to the metalloid. The results highlight the importance of biofilm formation and the presence of specific resistance mechanisms in the ability of microorganisms to survive and thrive under adverse conditions.
Collapse
Affiliation(s)
- Valentina B. Pavez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolás Pacheco
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Javiera Álvarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Laboratory of Allergic Inflammation, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Gabriel Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Karem Gallardo
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
- Departamento de Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Francisco Melo
- Laboratorio de Física no Lineal, Departamento de Física, USACH, Santiago, Chile
| | - Rolando Vernal
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carlos Aranda
- Laboratorio de Microscopía Avanzada, Departamento de Ciencias Biológicas y Biodiversidad Universidad de Los Lagos, Osorno, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
4
|
Salimi F, Khorshidi M, Amirahmadi F, Amirahmadi A. Effectiveness of Phosphate and Zinc Solubilizing Paenarthrobacter nitroguajacolicus P1 as Halotolerant Rhizobacterium with Growth-Promoting Activity on Pistacia vera L. Curr Microbiol 2023; 80:336. [PMID: 37667111 DOI: 10.1007/s00284-023-03448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms to develop microbial fertilizers. Biofertilizers can accelerate plant growth and enhance crop yields. The current research aimed to isolate and identify rhizobacterium with plant growth-promoting activity in the rhizospheric region of pistachio trees in arid and salty region of Iran. In the present study, 26 bacterial isolates were isolated from the rhizospheric region of the pistachio trees. Plant growth-promoting characteristics of isolated bacteria, including the ability to solubilize phosphate and zinc, produce hydrolyzing enzymes, and hydrogen cyanide (HCN), as well as synthesize indole-3-acetic acid (IAA) were evaluated through in vitro assays. Based on these activities, five multifunctional bacterial strains designated P1, P10, P11, P17, and P19 were then applied and their effect was studied on the growth and physiological properties of Pistacia vera L. seedlings by pot experiments under normal conditions. Finally, the most efficient strain has been identified by analysis of the 16S rRNA gene sequence. According to the results, all the isolated bacteria exhibited considerable plant growth-promoting properties. They could produce amylase (n = 26, 2 ± 0.00-13 ± 0.42 mm), lipase (n = 24, 2 ± 0.00-9 ± 0.23 mm), protease (n = 20, 1 ± 0.00-17 ± 0.0 mm), indole-3-acetic acid (n = 26, ranging from 5.05 ± 0.08 to 11.5 ± 0.11 μg/mL) and HCN (n = 24). Six isolates showed significant growth at 20% w/v NaCl. Inoculation of P1, P17, and P19 increased chlorophyll, carotenoid, and phenolic content in treated Pistacia vera L. seedlings. P1 and P11 inoculated plants showed an enhanced level of anthocyanin and proline. These most effective strains were catalase and Gram-positive bacterium and showed antibiotic sensitivity. They can consider as halotolerant PGPR, due to the growth in the presence of NaCl (20% w/v). Finally, P1 inoculated plants exhibited higher levels of sugar content. This strain showed the most similarity (99.92%-1322 bp) to Paenarthrobacter nitroguajacolicus based on 16S rRNA gene sequence. Based on the results, Paenarthrobacter nitroguajacolicus P1 with multiple PGPR can be applied as a promising candidate in the soil-Pistacia vera L. system to improve their productivity and health by increasing available nutrient content, improving photosynthetic parameters, and producing phytohormones and HCN.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
| | - Mehdi Khorshidi
- Department of Plant Sciences, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fateme Amirahmadi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Atefe Amirahmadi
- Department of Plant Sciences, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| |
Collapse
|
5
|
Quach NT, Loan TT, Nguyen TTA, Nguyen Vu TH, Pham QA, Chu HH, Phi QT, Thuoc DV. Phenotypic and genomic characterization provide new insights into adaptation to environmental stressors and biotechnological relevance of mangrove Alcaligenes faecalis D334. Res Microbiol 2023; 174:103994. [PMID: 36240959 DOI: 10.1016/j.resmic.2022.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Alcaligenes faecalis D334 was determined in this study as a salt-tolerant bacterium isolated from mangrove sediment. In response to 6% (w/v) NaCl, strain D334 produced the highest ectoines of 14.14 wt%. To understand adaptive features to mangrove environment, strain D334 was sequenced using Pacific BioScience platform, resulting in a circular chromosome of 4.23 Mb. Of note, D334 genome harbored 81 salt-responsive genes, among which two membrane-associated genes ompc and eric were absent in 3 selected A. faecalis genomes. Apart from that, a complete pathway for ectoine and 5-hydroxyectoine synthesis was predicted. To resist 40 mM H2O2, 46 genetic determinants contributing to oxidative stress response were employed. Moreover, two operons involved in polyhydroxyalkanoate (PHA) production were identified in the D334 genome, resulting in maximum PHA content of 5.03 ± 0.04 wt% and PHA concentration of 0.13 ± 0.001 g/L. A large flagellar biosynthesis operon contributing to swimming motility was found to be conserved in D334 and 8 other A. faecalis genomes. These findings shed light for the first time on the high versatility of A. faecalis D334 genome to adapt to mangrove lifestyle and the possibility to develop D334 as an industrial platform for PHA and 5-hydroxyectoine production.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Tran Thi Loan
- Department of Microbiology, Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), Hanoi 100000, Viet Nam; Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Viet Nam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Quynh Anh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam.
| | - Doan Van Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Viet Nam.
| |
Collapse
|
6
|
Lee JY, Kim DH. Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18 T and NC20. J Microbiol Biotechnol 2022; 32:1427-1434. [PMID: 36330756 PMCID: PMC9720073 DOI: 10.4014/jmb.2208.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Two novel, halotolerant strains of Martelella soudanensis, NC18T and NC20, were isolated from deep subsurface sediment, deeply sequenced, and comparatively analyzed with related strains. Based on a phylogenetic analysis using 16S rRNA gene sequences, the two strains grouped with members of the genus Martelella. Here, we sequenced the complete genomes of NC18T and NC20 to understand the mechanisms of their halotolerance. The genome sizes and G+C content of the strains were 6.1 Mb and 61.8 mol%, respectively. Moreover, NC18T and NC20 were predicted to contain 5,849 and 5,830 genes, and 5,502 and 5,585 protein-coding genes, respectively. Both strains contain the identically predicted 6 rRNAs and 48 tRNAs. The harboring of halotolerant-associated genes revealed that strains NC18T and NC20 might tolerate high salinity through the accumulation of potassium ions in a "salt-in" strategy induced by K+ uptake protein (kup) and the K+ transport system (trkAH and kdpFABC). These two strains also use the ectoine transport system (dctPQM), the glycine betaine transport system (proVWX), and glycine betaine uptake protein (opu) to accumulate "compatible solutes," such as ectoine and glycine betaine, to protect cells from salt stress. This study reveals the halotolerance mechanism of strains NC18T and NC20 in high salt environments and suggests potential applications for these halotolerant and halophilic strains in environmental biotechnology.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Department of Biological Science and Biotechnology, Microbiology and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dong-Hun Kim
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Corresponding author Phone: +82-42-868-3113 Fax: +82-42-868-3414 E-mail:
| |
Collapse
|
7
|
Su Z, Yang S, Li M, Chen Y, Wang S, Yun Y, Li G, Ma T. Complete Genome Sequences of One Salt-Tolerant and Petroleum Hydrocarbon-Emulsifying Terribacillus saccharophilus Strain ZY-1. Front Microbiol 2022; 13:932269. [PMID: 35966672 PMCID: PMC9366552 DOI: 10.3389/fmicb.2022.932269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Salt tolerance is one of the most important problems in the field of environmental governance and restoration. Among the various sources of factors, except temperature, salinity is a key factor that interrupts bacterial growth significantly. In this regard, constant efforts are made for the development of salt-tolerant strains, but few strains with salt tolerance, such as Terribacillus saccharophilus, were found, and there are still few relevant reports about their salt tolerance from complete genomic analysis. Furthermore, with the development of the economy, environmental pollution caused by oil exploitation has attracted much attention, so it is crucial to find the bacteria from T. saccharophilus which could degrade petroleum hydrocarbon even under high-salt conditions. Herein, one T. saccharophilus strain named ZY-1 with salt tolerance was isolated by increasing the salinity on LB medium step by step with reservoir water as the bacterial source. Its complete genome was sequenced, which was the first report of the complete genome for T. saccharophilus species with petroleum hydrocarbon degradation and emulsifying properties. In addition, its genome sequences were compared with the other five strains that are from the same genus level. The results indicated that there really exist some differences among them. In addition, some characteristics were studied. The salt-tolerant strain ZY-1 developed in this study and its emulsification and degradation performance of petroleum hydrocarbons were studied, which is expected to widely broaden the research scope of petroleum hydrocarbon-degrading bacteria in the oil field environment even in the extreme environment. The experiments verified that ZY-1 could significantly grow not only in the salt field but also in the oil field environment. It also demonstrated that the developed salt-tolerant strain can be applied in the petroleum hydrocarbon pollution field for bioremediation. In addition, we expect that the identified variants which occurred specifically in the high-salt strain will enhance the molecular biological understanding and be broadly applied to the biological engineering field.
Collapse
|
8
|
G.O. Al-Ani A, Al-Taee SM, Mohammed Younis K. Isolation and molecular identification of Exiguobacterium profundum from drain water and study of some physiological properties. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Some microorganisms' stress tolerance and adaptability through the ability to live in new environments previously considered hostile to dense microbial growth. The aim of the study: In this work, the isolation, molecular identification, and analysis of some physiological properties of Exiguobacterium profundum isolated from washing machine drain water were carried out. Fifteen samples were collected from different washing machines' drain water, and 42 isolates were characterized and identified. Based on the morphological assay and 16S rRNA gene sequencing, one isolate was designated as Exiguobacterium profundum Kh-Am2 and was deposited in the Gene bank database under the accession number MW447498.1. The physiological properties assay showed that E. profundum could not decompose red blood cells while proving their ability to decompose crude and coconut oil, producing lipopeptide biosurfactants. It has also demonstrated its ability to form biofilm using the tube method, which helps it to live in harsh environments such as the environment of washing machines. The results showed that E. profundum is halotolerant bacteria with its ability to grow at a concentration of ( 75) g/l NaCl and the best growth was at( 25) g/l NaCl concentration. The results also showed the effect of different concentrations of NaCl on E. profundum, where the best movement rate was at a concentration of ( 25 )g/l NaCl, while the movement was completely inhibited at a concentration of (75)g/l NaCl. We have concluded that E. profundum possesses traits that enable it to live in harsh environments.
Keywords. Exiguobacterium profundum, drain water, biosurfactant
Collapse
Affiliation(s)
- Amina G.O. Al-Ani
- Department of Biology, College of Science, University of Mosul, Iraq
| | - Sura M.Y. Al-Taee
- Department of Biology, College of Science, University of Mosul, Iraq
| | | |
Collapse
|
9
|
Proteome and Physiological Characterization of Halotolerant Nodule Endophytes: The Case of Rahnella aquatilis and Serratia plymuthica. Microorganisms 2022; 10:microorganisms10050890. [PMID: 35630335 PMCID: PMC9143289 DOI: 10.3390/microorganisms10050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species.
Collapse
|
10
|
Fortt J, González M, Morales P, Araya N, Remonsellez F, Coba de la Peña T, Ostria-Gallardo E, Stoll A. Bacterial Modulation of the Plant Ethylene Signaling Pathway Improves Tolerance to Salt Stress in Lettuce (Lactuca sativa L.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.768250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Salinity has extensive adverse effects on plant growth and the development of new agronomic strategies to improve crop salt tolerance is becoming necessary. Currently, the use of plant growth promoting rhizobacteria (PGPR) to mitigate abiotic stress in crops is of increasing interest. The most analyzed mechanism is based on ACC deaminase activity, an enzyme that decreases the ethylene synthesis, an important phytohormone in plant stress response. We aimed to identify other PGPR mediated mechanisms involved in the regulation of salt stress in plant. We used three PGPR strains (ESL001, ESL007, SH31), of which only ESL007 demonstrated ACC deaminase activity, to evaluate their effect on lettuce plants under salt stress (100 mM NaCl). We measured growth and biochemical parameters (e.g., proline content, lipid peroxidation and ROS degradation), as well as expression levels of genes involved in ethylene signaling (CTR1, EBF1) and transcription factors induced by ethylene (ERF5, ERF13). All bacterial strains enhanced growth on salt-stressed lettuce plants and modulated the proline levels. Strains ESL007 and SH31 triggered a higher catalase and ascorbate-peroxidase activity, compared to non-stressed plants. Differential expression of ethylene-related genes in inoculated plants subjected to salinity was observed. We gained consistent evidence for the existence of alternative mechanisms to ethylene modulation, which probably rely on bacterial IAA production and other chemical signals. These mechanisms modify the expression of genes associated with ethylene signaling and regulation, complementarily to the ACC deaminase model to diminish abiotic stress responses.
Collapse
|
11
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
12
|
Fuentes B, Choque A, Gómez F, Alarcón J, Castro-Nallar E, Arenas F, Contreras D, Mörchen R, Amelung W, Knief C, Moradi G, Klumpp E, Saavedra CP, Prietzel J, Klysubun W, Remonsellez F, Bol R. Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert. Front Microbiol 2022; 12:794743. [PMID: 35197940 PMCID: PMC8859261 DOI: 10.3389/fmicb.2021.794743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/24/2021] [Indexed: 01/04/2023] Open
Abstract
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
Collapse
Affiliation(s)
- Bárbara Fuentes
- Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Alessandra Choque
- Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte, Antofagasta, Chile
| | - Francisco Gómez
- Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Jaime Alarcón
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| | - Franko Arenas
- Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte, Antofagasta, Chile
| | - Daniel Contreras
- Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte, Antofagasta, Chile
| | - Ramona Mörchen
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Bonn, Germany
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Ghazal Moradi
- Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Erwin Klumpp
- Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jörg Prietzel
- Wissenschaftszentum Weihenstephan, Technical University München, Freising, Germany
| | - Wantana Klysubun
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | - Francisco Remonsellez
- Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
- *Correspondence: Francisco Remonsellez,
| | - Roland Bol
- Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, United Kingdom
- Roland Bol,
| |
Collapse
|
13
|
Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
López MC, Galán B, Carmona M, Navarro Llorens JM, Peretó J, Porcar M, Getino L, Olivera ER, Luengo JM, Castro L, García JL. Xerotolerance: A New Property in Exiguobacterium Genus. Microorganisms 2021; 9:2455. [PMID: 34946057 PMCID: PMC8706201 DOI: 10.3390/microorganisms9122455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
The highly xerotolerant bacterium classified as Exiguobacterium sp. Helios isolated from a solar panel in Spain showed a close relationship to Exiguobacterium sibiricum 255-15 isolated from Siberian permafrost. Xerotolerance has not been previously described as a characteristic of the extremely diverse Exiguobacterium genus, but both strains Helios and 255-15 showed higher xerotolerance than that described in the reference xerotolerant model strain Deinococcus radiodurans. Significant changes observed in the cell morphology after their desiccation suggests that the structure of cellular surface plays an important role in xerotolerance. Apart from its remarkable resistance to desiccation, Exiguobacterium sp. Helios strain shows several polyextremophilic characteristics that make it a promising chassis for biotechnological applications. Exiguobacterium sp. Helios cells produce nanoparticles of selenium in the presence of selenite linked to its resistance mechanism. Using the Lactobacillus plasmid pRCR12 that harbors a cherry marker, we have developed a transformation protocol for Exiguobacterium sp. Helios strain, being the first time that a bacterium of Exiguobacterium genus has been genetically modified. The comparison of Exiguobacterium sp. Helios and E. sibiricum 255-15 genomes revealed several interesting similarities and differences. Both strains contain a complete set of competence-related DNA transformation genes, suggesting that they might have natural competence, and an incomplete set of genes involved in sporulation; moreover, these strains not produce spores, suggesting that these genes might be involved in xerotolerance.
Collapse
Affiliation(s)
- María Castillo López
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
| | - Beatriz Galán
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
| | - Juli Peretó
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| | - Manuel Porcar
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
| | - Luis Getino
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - Elías R. Olivera
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - José M. Luengo
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - Laura Castro
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, School of Experimental Sciences and Technology, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - José Luís García
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
| |
Collapse
|
15
|
Peng J, Ma J, Wei X, Zhang C, Jia N, Wang X, Wang ET, Hu D, Wang Z. Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01650-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Purpose
Salt stress reduces plant growth and is now becoming one of the most important factors restricting the agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear and the application effects in different reports are unstable. In order to obtain a favorite effect of PGPR inoculation and improve our knowledge about the related mechanism, we performed this study to analyze the mechanism of a PGPR consortium on improving the salt resistance of crops.
Methods
A region-specific (Saline land around Bohai Sea in China) PGPR consortium was selected that contains three strains (Pseudomonas sp. P8, Peribacillus sp. P10, and Streptomyces sp. X52) isolated from rhizosphere of Sonchus brachyotus DC. grown in a saline soil. By inoculation tests, their plant growth-promoting (PGP) traits and ability to improve the salt resistance of maize were investigated and shifting in rhizosphere bacterial community of the inoculated plants was analyzed using the high-throughput sequencing technology.
Results
The three selected strains were salt tolerant, presented several growth promoting properties, and inhibited several phytopathogenic fungi. The inoculation of this consortium promoted the growth of maize plant and enriched the beneficial bacteria in rhizosphere of maize in a saline soil, including the nitrogen fixing bacteria Azotobacter, Sinorhizobium, and Devosia, and the nitrification bacteria Candidatus Nitrososphaera, and Nitrosovibrio.
Conclusions
The bacterial consortium P8/P10/X52 could improve plant growth in a saline soil by both their PGP traits and regulating the rhizosphere bacterial community. The findings provided novel information about how the PGPR helped the plants in the view of microbiome.
Collapse
|
16
|
Castro-Severyn J, Pardo-Esté C, Mendez KN, Fortt J, Marquez S, Molina F, Castro-Nallar E, Remonsellez F, Saavedra CP. Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem. Microbiol Spectr 2021; 9:e0044421. [PMID: 34190603 PMCID: PMC8552739 DOI: 10.1128/spectrum.00444-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Microbial communities inhabiting extreme environments such as Salar de Huasco (SH) in northern Chile are adapted to thrive while exposed to several abiotic pressures and the presence of toxic elements such as arsenic (As). Hence, we aimed to uncover the role of As in shaping bacterial composition, structure, and functional potential in five different sites in this altiplanic wetland using a shotgun metagenomic approach. The sites exhibit wide gradients of As (9 to 321 mg/kg), and our results showed highly diverse communities and a clear dominance exerted by the Proteobacteria and Bacteroidetes phyla. Functional potential analyses show broadly convergent patterns, contrasting with their great taxonomic variability. As-related metabolism, as well as other functional categories such as those related to the CH4 and S cycles, differs among the five communities. Particularly, we found that the distribution and abundance of As-related genes increase as the As concentration rises. Approximately 75% of the detected genes for As metabolism belong to expulsion mechanisms; arsJ and arsP pumps are related to sites with higher As concentrations and are present almost exclusively in Proteobacteria. Furthermore, taxonomic diversity and functional potential are reflected in the 12 reconstructed high-quality metagenome assembled genomes (MAGs) belonging to the Bacteroidetes (5), Proteobacteria (5), Cyanobacteria (1), and Gemmatimonadetes (1) phyla. We conclude that SH microbial communities are diverse and possess a broad genetic repertoire to thrive under extreme conditions, including increasing concentrations of highly toxic As. Finally, this environment represents a reservoir of unknown and undescribed microorganisms, with great metabolic versatility, which needs further study. IMPORTANCE As microbial communities inhabiting extreme environments are fundamental for maintaining ecosystems, many studies concerning composition, functionality, and interactions have been carried out. However, much is still unknown. Here, we sampled microbial communities in the Salar de Huasco, an extreme environment subjected to several abiotic stresses (high UV radiation, salinity and arsenic; low pressure and temperatures). We found that although microbes are taxonomically diverse, functional potential seems to have an important degree of convergence, suggesting high levels of adaptation. Particularly, arsenic metabolism showed differences associated with increasing concentrations of the metalloid throughout the area, and it effectively exerts a significant pressure over these organisms. Thus, the significance of this research is that we describe highly specialized communities thriving in little-explored environments subjected to several pressures, considered analogous of early Earth and other planets, that have the potential for unraveling technologies to face the repercussions of climate change in many areas of interest.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katterinne N. Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Fortt
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Sebastian Marquez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
17
|
Biodegradation of crude oil by immobilized Exiguobacterium sp. AO-11 and shelf life evaluation. Sci Rep 2021; 11:12990. [PMID: 34155247 PMCID: PMC8217171 DOI: 10.1038/s41598-021-92122-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
Exiguobacterium sp. AO-11 was immobilized on bio-cord at 109 CFU g−1 carrier for the removal of crude oil from marine environments. To prepare a ready-to-use bioremediation product, the shelf life of the immobilized cells was calculated. Approximately 90% of 0.25% (v/v) crude oil removal was achieved within 9 days when the starved state of immobilized cells was used. The oil removal activity of the immobilized cells was maintained in the presence of oil dispersant (89%) and at pH values of 7–9. Meanwhile, pH, oil concentration and salinity affected the oil removal efficacy. The immobilized cells could be reused for at least 5 cycles. The Arrhenius equation describing the relationship between the rate of reaction and temperature was validated as a useful model of the kinetics of retention of activity by an immobilized biocatalyst. It was estimated that the immobilized cells could be stored in a non-vacuum bag containing phosphate buffer (pH 7.0) at 30 °C for 39 days to retain the cells at 107 CFU g−1 carrier and more than 50% degradation activity. These results indicated the potential of using bio-cord-immobilized crude oil-degrading Exiguobacterium sp. AO-11 as a bioremediation product in a marine environment.
Collapse
|
18
|
Oyewusi HA, Huyop F, Wahab RA, Hamid AAA. In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation. J Biomol Struct Dyn 2021; 40:9332-9346. [PMID: 34014147 DOI: 10.1080/07391102.2021.1927846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan Pahang, Malaysia
| |
Collapse
|
19
|
Tedesco P, Palma Esposito F, Masino A, Vitale GA, Tortorella E, Poli A, Nicolaus B, van Zyl LJ, Trindade M, de Pascale D. Isolation and Characterization of Strain Exiguobacterium sp. KRL4, a Producer of Bioactive Secondary Metabolites from a Tibetan Glacier. Microorganisms 2021; 9:microorganisms9050890. [PMID: 33919419 PMCID: PMC8143284 DOI: 10.3390/microorganisms9050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5-40 °C), pHs (5.5-8.5), and salinities (0-15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.
Collapse
Affiliation(s)
- Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Antonio Masino
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Giovanni Andrea Vitale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Barbara Nicolaus
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
- Correspondence:
| |
Collapse
|
20
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Tiwari PK, Singh AK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Pan-genome analysis of Exiguobacterium reveals species delineation and genomic similarity with Exiguobacterium profundum PHM 11. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:639-650. [PMID: 32996243 DOI: 10.1111/1758-2229.12890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The stint of the bacterial species is convoluting, but the new algorithms to calculate genome-to-genome distance (GGD) and DNA-DNA hybridization (DDH) for comparative genome analysis have rejuvenated the exploration of species and sub-species characterization. The present study reports the first whole genome sequence of Exiguobacterium profundum PHM11. PHM11 genome consist of ~ 2.92 Mb comprising 48 contigs, 47.93% G + C content. Functional annotations revealed a total of 3033 protein coding genes and 33 non-protein coding genes. Out of these, only 2316 could be characterized and others reported as hypothetical proteins. The comparative analysis of predicted proteome of PHM11 with five other Exiguobacterium sp. identified 3806 clusters, out of which the PHM11 shared a total of 2723 clusters having 1664 common clusters, 131 singletons and 928 distributed between five species. The pan-genome analysis of 70 different genomic sequences of Exigubacterium strains devoid of a species taxon was done on the basis of GGD and the DDH which identified eight genomes analogous to the PHM11 at species level and may be characterized as E. profundum. The ANI value and phylogenetic tree analysis also support the same. The results regarding pan-genome analysis provide a convincing insight for delineation of these eight strains to species.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Ruchi Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anjney Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Akhilendra Pratap Bharati
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Praveen Kumar Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Alok Kumar Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anchal Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| |
Collapse
|
21
|
Fernandez M, Pereira PP, Agostini E, González PS. Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:973-986. [PMID: 32556791 DOI: 10.1007/s10646-020-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 05/09/2023]
Abstract
Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
22
|
Cao Y, Zhang B, Zhu Z, Song X, Cai Q, Chen B, Dong G, Ye X. Microbial eco-physiological strategies for salinity-mediated crude oil biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138723. [PMID: 32334234 DOI: 10.1016/j.scitotenv.2020.138723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/26/2023]
Abstract
Salinity variability strongly affects the behaviors of oil degrading bacteria for spilled oil biodegradation in the marine environment. However, limited studies explored the strategies of microbes on salinity-mediated crude oil biodegradation. In this study, a halotolerant bio-emulsifier producer, Exiguobacterium sp. N41P, was examined as a model strain for Alaska North Slope (ANS) crude oil (0.5%, v/v) biodegradation. Results indicated that Exiguobacterium sp. N41P could tolerant a wide range of salinity (0-120 g/L NaCl) and achieve the highest degradation efficiency under the salinity of 15 g/L NaCl due to the highest biofilm formation ability. Moreover, increased salinity induced decreased cell surface hydrophobicity and a migration of microbial growth from oil phase to aqueous phase, leading to limited bio-emulsifier productivity and depressed degradation of insoluble long-chain n-alkanes while enhancing the degradation of relative soluble naphthalene. Research findings illustrated the microbial eco-physiological mechanism for spilled oil biodegradation under diverse salinities and advanced the understanding of sophisticated marine crude oil biodegradation process.
Collapse
Affiliation(s)
- Yiqi Cao
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xing Song
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Qinhong Cai
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
23
|
Castro-Severyn J, Pardo-Esté C, Mendez KN, Morales N, Marquez SL, Molina F, Remonsellez F, Castro-Nallar E, Saavedra CP. Genomic Variation and Arsenic Tolerance Emerged as Niche Specific Adaptations by Different Exiguobacterium Strains Isolated From the Extreme Salar de Huasco Environment in Chilean - Altiplano. Front Microbiol 2020; 11:1632. [PMID: 32760381 PMCID: PMC7374977 DOI: 10.3389/fmicb.2020.01632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Polyextremophilic bacteria can thrive in environments with multiple stressors such as the Salar de Huasco (SH). Microbial communities in SH are exposed to low atmospheric pressure, high UV radiation, wide temperature ranges, salinity gradient and the presence of toxic compounds such as arsenic (As). In this work we focus on arsenic stress as one of the main adverse factors in SH and bacteria that belong to the Exiguobacterium genus due to their plasticity and ubiquity. Therefore, our aim was to shed light on the effect of niche conditions pressure (particularly arsenic), on the adaptation and divergence (at genotypic and phenotypic levels) of Exiguobacterium strains from five different SH sites. Also, to capture greater diversity in this genus, we use as outgroup five As(III) sensitive strains isolated from Easter Island (Chile) and The Great Salt Lake (United States). For this, samples were obtained from five different SH sites under an arsenic gradient (9 to 321 mg/kg: sediment) and isolated and sequenced the genomes of 14 Exiguobacterium strains, which had different arsenic tolerance levels. Then, we used comparative genomic analysis to assess the genomic divergence of these strains and their association with phenotypic differences such as arsenic tolerance levels and the ability to resist poly-stress. Phylogenetic analysis showed that SH strains share a common ancestor. Consequently, populations were separated and structured in different SH microenvironments, giving rise to multiple coexisting lineages. Hence, this genotypic variability is also evidenced by the COG (Clusters of Orthologous Groups) composition and the size of their accessory genomes. Interestingly, these observations correlate with physiological traits such as growth patterns, gene expression, and enzyme activity related to arsenic response and/or tolerance. Therefore, Exiguobacterium strains from SH are adapted to physiologically overcome the contrasting environmental conditions, like the arsenic present in their habitat.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Sebastián L Marquez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag CNRS/Alcediag, CNRS UMR 3145, Montpellier, France
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
24
|
Drissi Kaitouni LB, Anissi J, Sendide K, El Hassouni M. Diversity of hydrolase-producing halophilic bacteria and evaluation of their enzymatic activities in submerged cultures. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01570-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
In this work, we assessed the diversity of culturable halophilic bacteria that produce hydrolytic enzymes from both natural and artificial hypersaline regions in the pre-Rif region of Morocco.
Methods
Bacteria were isolated from three hypersaline sites, in solid medium supplemented with various salt concentrations ranging from 0 to 330 g/L. Physical and chemical characteristics of samples from the isolation site were determined to suggest eventual correlations with the occurrence of the halophilic bacteria. Assays on enzymatic activities were performed in submerged cultures in the presence of various salt concentrations and appropriate substrates.
Results
Out of a collection of 227 halophilic bacteria, four halophilic groups were established as slightly halophilic, moderately halophilic, halotolerant, or extremely halophilic, with a predominance of halophilic bacteria in the natural hypersaline sites compared to the artificial one. Within this collection, 189 strains showed important hydrolytic activities in submerged cultures with enzymatic activities up to 76 U/mg. Strain characterization and identification was based on phenotypic and molecular traits and allowed the identification of at least 26 genera including Bacillus, Chthonibacter, Mariniabilia, Halobacillus, Salinococcus, Cerasicoccus, Ulvibacter, Halorubrum, Jeatgalicoccus, Brevibacterium, Sanguibacter, Shewanella, Exiguobacterium, Gemella, and Planomicrobium.
Conclusion
Data from this study give insights about the origin and the occurrence of halophilic bacteria in natural hypersaline environments compared to artificial hypersaline sites. The occurrence of halophilic hydrolase enzymes from halophilic bacteria gives insights to different applications in biotechnology, thanks to their ability to produce adaptive enzymes and survival strategies to overcome harsh conditions.
Collapse
|
25
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|