1
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. mBio 2025; 16:e0176224. [PMID: 39670714 PMCID: PMC11796416 DOI: 10.1128/mbio.01762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCECryptococcus neoformans is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs via the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Peng S, Hu L, Ge W, Deng J, Yao L, Li H, Xu D, Mo H. ChIP-Seq Analysis of AtfA Interactions in Aspergillus flavus Reveals Its Involvement in Aflatoxin Metabolism and Virulence Under Oxidative Stress. Int J Mol Sci 2024; 25:12213. [PMID: 39596279 PMCID: PMC11594458 DOI: 10.3390/ijms252212213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The risk of Aspergillus flavus contamination is expanding with global warming. Targeting the pathogenicity of A. flavus at its source and diminishing its colonization within the host may be a potential control strategy. Oxidative stress transcription factor AtfA plays a pivotal role in A. flavus pathogenicity by combating reactive oxygen species (ROS) generated by host immune cells. This study employed chromatin immunoprecipitation sequencing to elucidate the binding sites and epigenetic mechanisms of AtfA under oxidative stress. Among the total 1022 identified potential AtfA-binding peaks, a 10-bp region predominated by 5'-DRTGTTGCAA-3', which is highly similar to the AP-1 binding motif was predicted. The significantly regulated genes exhibited a variety of biological functions, including regulation of filamentous growth, response to extracellular stimulus, and regulation of gene expression. Moreover, AtfA indirectly influenced these processes via the MAPK signaling pathway, carbon metabolism, and fatty acid metabolism in response to oxidative stress. The absence of atfA contributed to the decrease in the growth and development, sporulation, AFB1 biosynthesis, and invasion ability of A. flavus under oxidative stress. These findings suggest that AtfA is critical to overcome oxidative stress induced by the host immune cells during the infection, providing a novel target for early prevention of A. flavus contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.P.); (L.H.); (W.G.); (J.D.); (L.Y.); (H.L.)
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.P.); (L.H.); (W.G.); (J.D.); (L.Y.); (H.L.)
| |
Collapse
|
3
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598457. [PMID: 38915642 PMCID: PMC11195226 DOI: 10.1101/2024.06.11.598457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of people that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation, and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent, and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control, and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Son YE, Park HS. Coordination of two regulators SscA and VosA in Aspergillus nidulans conidia. Fungal Genet Biol 2024; 171:103877. [PMID: 38447800 DOI: 10.1016/j.fgb.2024.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Gujjar RS, Kumar R, Goswami SK, Srivastava S, Kumar S. MAPK signaling pathway orchestrates and fine-tunes the pathogenicity of Colletotrichum falcatum. J Proteomics 2024; 292:105056. [PMID: 38043863 DOI: 10.1016/j.jprot.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India.
| | - Rajeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | | | - Sangeeta Srivastava
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | - Sanjeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| |
Collapse
|
6
|
Wang H, Gao R, Zhang Y, Lu L. The versatility of the putative transient receptor potential ion channels in regulating the calcium signaling in Aspergillus nidulans. mSphere 2023; 8:e0054923. [PMID: 37971274 PMCID: PMC10732042 DOI: 10.1128/msphere.00549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Transient receptor potential (TRP) ion channels are evolutionarily conserved integral membrane proteins with non-selective ion permeability, and they are widely distributed in mammals and single-cell yeast and serve as crucial mediators of sensory signals. However, the relevant information concerning TRP channels in Aspergillus nidulans remains inadequately understood. In this study, by gene deletion, green fluorescent protein tagging, and cytosolic Ca2+ transient monitoring techniques, the biological functions of three potential TRP channels (TrpA, TrpB, and TrpC) have been explored for which they play distinct and multiple roles in hyphal growth, conidiation, responsiveness to external stress, and regulation of intracellular Ca2+ homeostasis. The findings of this study on the functions of potential TRP channels in A. nidulans may serve as a valuable reference for understanding the roles of TRP homologs in industrial or medical strains of Aspergillus, as well as in other filamentous fungi.
Collapse
Affiliation(s)
- Hongchen Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Renwei Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Li Y, Li Y, Lu H, Sun T, Gao J, Zhang J, Shen Q, Yu Z. The bZIP transcription factor ATF1 regulates blue light and oxidative stress responses in Trichoderma guizhouense. MLIFE 2023; 2:365-377. [PMID: 38818272 PMCID: PMC10989065 DOI: 10.1002/mlf2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 06/01/2024]
Abstract
In several filamentous fungi, incident light and environmental stress signaling share the mitogen-activated protein kinase (MAPK) HOG (SAK) pathway. It has been revealed that short-term illumination with blue light triggers the activation of the HOG pathway in Trichoderma spp. In this study, we demonstrate the crucial role of the basic leucine zipper transcription factor ATF1 in blue light responses and signaling downstream of the MAPK HOG1 in Trichoderma guizhouense. The lack of ATF1 severely impaired photoconidiation and delayed vegetative growth and conidial germination. Upon blue light or H2O2 stimuli, HOG1 interacted with ATF1 in the nucleus. Genome-wide transcriptome analyses revealed that 61.8% (509 out of 824) and 85.2% (702 out of 824) of blue light-regulated genes depended on ATF1 and HOG1, respectively, of which 58.4% (481 out of 824) were regulated by both of them. Our results also show that blue light promoted conidial germination and HOG1 and ATF1 played opposite roles in controlling conidial germination in the dark. Additionally, the lack of ATF1 led to reduced oxidative stress resistance, probably because of the downregulation of catalase-encoding genes. Overall, our results demonstrate that ATF1 is the downstream component of HOG1 and is responsible for blue light responses, conidial germination, vegetative growth, and oxidative stress resistance in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Yanshen Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Huanhong Lu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Tingting Sun
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Jia Gao
- Department of MicrobiologyKarlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied BiosciencesKarlsruheGermany
| | - Jian Zhang
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Qirong Shen
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Zhenzhong Yu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| |
Collapse
|
8
|
Huang Z, Wu D, Yang S, Fu W, Ma D, Yao Y, Lin H, Yuan J, Yang Y, Zhuang Z. Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2. J Fungi (Basel) 2023; 9:1077. [PMID: 37998882 PMCID: PMC10671980 DOI: 10.3390/jof9111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.
Collapse
Affiliation(s)
- Zongting Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dongmei Ma
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| |
Collapse
|
9
|
Alder-Rangel A, Bailão AM, Herrera-Estrella A, Rangel AEA, Gácser A, Gasch AP, Campos CBL, Peters C, Camelim F, Verde F, Gadd GM, Braus G, Eisermann I, Quinn J, Latgé JP, Aguirre J, Bennett JW, Heitman J, Nosanchuk JD, Partida-Martínez LP, Bassilana M, Acheampong MA, Riquelme M, Feldbrügge M, Keller NP, Keyhani NO, Gunde-Cimerman N, Nascimento R, Arkowitz RA, Mouriño-Pérez RR, Naz SA, Avery SV, Basso TO, Terpitz U, Lin X, Rangel DEN. The IV International Symposium on Fungal Stress and the XIII International Fungal Biology Conference. Fungal Biol 2023; 127:1157-1179. [PMID: 37495306 PMCID: PMC11668258 DOI: 10.1016/j.funbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023]
Abstract
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.
Collapse
Affiliation(s)
| | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alfredo Herrera-Estrella
- Unidad de Genómica Avanzada-Langebio, Centro de Investigación y de Estudios Avanzados Del IPN, Irapuato, Guanajuato, Mexico
| | | | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, WI, USA
| | - Claudia B L Campos
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, SP, Brazil
| | - Christina Peters
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Francine Camelim
- German Academic Exchange Service (DAAD), DWIH, Sao Paulo, SP, Brazil
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich, England, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete Heraklion, Greece
| | - Jesus Aguirre
- Departamento de Biología Celular y Del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | | | - Martine Bassilana
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nancy P Keller
- Department of Medical Microbiology, Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Raquel Nascimento
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Robert A Arkowitz
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | - Rosa Reyna Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, Pakistan
| | - Simon V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham, England, UK
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
10
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Si P, Wang G, Wu W, Hussain S, Guo L, Wu W, Yang Q, Xing F. SakA Regulates Morphological Development, Ochratoxin A Biosynthesis and Pathogenicity of Aspergillus westerdijkiae and the Response to Different Environmental Stresses. Toxins (Basel) 2023; 15:292. [PMID: 37104230 PMCID: PMC10141874 DOI: 10.3390/toxins15040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Ochratoxin A (OTA), as a common mycotoxin, has seriously harmful effects on agricultural products, livestock and humans. There are reports on the regulation of SakA in the MAPK pathway, which regulates the production of mycotoxins. However, the role of SakA in the regulation of Aspergillus westerdijkiae and OTA production is not clear. In this study, a SakA deletion mutant (ΔAwSakA) was constructed. The effects of different concentrations of D-sorbitol, NaCl, Congo red and H2O2 on the mycelia growth, conidia production and biosynthesis of OTA were investigated in A. westerdijkiae WT and ΔAwSakA. The results showed that 100 g/L NaCl and 3.6 M D-sorbitol significantly inhibited mycelium growth and that a concentration of 0.1% Congo red was sufficient to inhibit the mycelium growth. A reduction in mycelium development was observed in ΔAwSakA, especially in high concentrations of osmotic stress. A lack of AwSakA dramatically reduced OTA production by downregulating the expression of the biosynthetic genes otaA, otaY, otaB and otaD. However, otaC and the transcription factor otaR1 were slightly upregulated by 80 g/L NaCl and 2.4 M D-sorbitol, whereas they were downregulated by 0.1% Congo red and 2 mM H2O2. Furthermore, ΔAwSakA showed degenerative infection ability toward pears and grapes. These results suggest that AwSakA is involved in the regulation of fungal growth, OTA biosynthesis and the pathogenicity of A. westerdijkiae and could be influenced by specific environmental stresses.
Collapse
Affiliation(s)
- Peidong Si
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Wenqing Wu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Sarfaraz Hussain
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Ling Guo
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| |
Collapse
|
12
|
srdA mutations suppress the rseA/cpsA deletion mutant conidiation defect in Aspergillus nidulans. Sci Rep 2023; 13:4285. [PMID: 36922566 PMCID: PMC10017718 DOI: 10.1038/s41598-023-31363-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Conidiation is an important reproductive process in Aspergillus. We previously reported, in A. nidulans, that the deletion of a putative glycosyltransferase gene, rseA/cpsA, causes an increase in the production of extracellular hydrolases and a severe reduction in conidiation. The aim of this study was to obtain novel genetic factors involved in the repression of conidiation in the rseA deletion mutant. We isolated mutants in which the rseA deletion mutant conidiation defect is suppressed and performed a comparative genomic analysis of these mutants. A gene encoding a putative transcription factor was identified as the associated candidate causative gene. The candidate gene was designated as srdA (suppressor gene for the conidiation defect of the rseA deletion mutant). The conidiation efficiency of the rseAsrdA double-deletion mutant was increased. Introduction of wild-type srdA into the suppressor mutants caused a conidiation defect similar to that of the rseA deletion mutant. Notably, the conidiation efficiencies of the rseAsrdA double-deletion and srdA single-deletion mutants were higher than that of the wild-type strain. These results indicate that srdA is a novel genetic factor that strongly represses conidiation of the rseA deletion mutant, and a putative transcriptional regulator, SrdA is a negative regulator of conidiation in A. nidulans.
Collapse
|
13
|
Shao L, Tan Y, Song S, Wang Y, Liu Y, Huang Y, Ren X, Liu Z. Achog1 is required for the asexual sporulation, stress responses and pigmentation of Aspergillus cristatus. Front Microbiol 2022; 13:1003244. [PMID: 36504805 PMCID: PMC9733950 DOI: 10.3389/fmicb.2022.1003244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Aspergillus cristatus is the dominant fungus during the fermentation of Fuzhuan brick tea; hypotonic conditions only induce its sexual development to produce ascospores, while hypertonic conditions only induce its asexual development to produce conidia, indicating that osmotic stress can regulate spore production in A. cristatus. However, the underlying regulatory mechanism is unclear. In this study, the role of Achog1, which is homologous to hog1 from Saccharomyces cerevisiae, in sporulation, different kinds of stress responses and pigment production was investigated. Deletion mutants of Achog1 were obtained by homologous recombination. Phenotypic observations showed that the time required to produce conidia was delayed, and the number of conidia produced was significantly reduced in the deletion mutants of Achog1 in hypertonic media, indicating that Achog1 plays a positive role in asexual development. Stress sensitivity tests showed that ΔAchog1 strains were sensitive to hyperosmolarity, and the order of the sensitivity of ΔAchog1 to different osmotic regulators was 3 M sucrose >3 M NaCl >3 M sorbitol. Moreover, the deletion mutants were sensitive to high oxidative stress. pH sensitivity tests indicated that Achog1 inhibited the growth of A. cristatus under alkaline stress. Additionally, pigmentation was decreased in the Achog1 deletion mutants compared with the WT. All the above developmental defects were reversed by the reintroduction of the Achog1 gene in ΔAchog1. Pull-down and LC-MS/MS analysis showed that the expression levels of proteins interacting with Achog1 were significantly different under low and high osmotic stress, and proteins related to conidial development were present only in the cultures treated with hyperosmotic stress. Transcription profiling data showed that Achog1 suppressed the expression of several genes related to asexual development, osmotic and oxidative stress resistance. On the basis of gene knockout, pull-down mass spectrometry and RNA-seq analyses, a regulatory pathway for Achog1 was roughly identified in A. cristatus.
Collapse
Affiliation(s)
- Lei Shao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China,*Correspondence: Yumei Tan,
| | - Shiying Song
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuchen Wang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yongxiang Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yonghui Huang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiyi Ren
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Zuoyi Liu,
| |
Collapse
|
14
|
Cho HJ, Son SH, Chen W, Son YE, Lee I, Yu JH, Park HS. Regulation of Conidiogenesis in Aspergillus flavus. Cells 2022; 11:cells11182796. [PMID: 36139369 PMCID: PMC9497164 DOI: 10.3390/cells11182796] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a representative fungal species in the Aspergillus section Flavi and has been used as a model system to gain insights into fungal development and toxin production. A. flavus has several adverse effects on humans, including the production of the most carcinogenic mycotoxin aflatoxins and causing aspergillosis in immune-compromised patients. In addition, A. flavus infection of crops results in economic losses due to yield loss and aflatoxin contamination. A. flavus is a saprophytic fungus that disperses in the ecosystem mainly by producing asexual spores (conidia), which also provide long-term survival in the harsh environmental conditions. Conidia are composed of the rodlet layer, cell wall, and melanin and are produced from an asexual specialized structure called the conidiophore. The production of conidiophores is tightly regulated by various regulators, including the central regulatory cascade composed of BrlA-AbaA-WetA, the fungi-specific velvet regulators, upstream regulators, and developmental repressors. In this review, we summarize the findings of a series of recent studies related to asexual development in A. flavus and provide insights for a better understanding of other fungal species in the section Flavi.
Collapse
Affiliation(s)
- He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Inhyung Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5751
| |
Collapse
|
15
|
Garrido-Bazán V, Aguirre J. H 2O 2 Induces Calcium and ERMES Complex-Dependent Mitochondrial Constriction and Division as Well as Mitochondrial Outer Membrane Remodeling in Aspergillus nidulans. J Fungi (Basel) 2022; 8:829. [PMID: 36012817 PMCID: PMC9410301 DOI: 10.3390/jof8080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamin-like protein DnmA and its receptor FisA are essential for H2O2-induced mitochondrial division in Aspergillus nidulans. Here, we show that in the absence of DnmA or FisA, mitochondria show few spontaneous transient constrictions, the frequency of which is extensively increased by H2O2 or the carbonyl cyanide m-chlorophenyl hydrazone (CCCP). While H2O2-induced constrictions are transient, CCCP induces a drastic and irreversible alteration of mitochondrial filaments. H2O2 induces a gradual mitochondrial depolarization, while CCCP-induced depolarization is abrupt. The calcium chelator BAPTA-AM prevents the formation of mitochondrial constrictions induced by either H2O2 or CCCP. H2O2 also induces major rearrangements of the mitochondrial outer membrane, which remain after constrictions dissipate, as well as changes in endoplasmic reticulum (ER) and nuclear morphology. Similar mitochondrial constriction, ER and nuclear morphology changes are detected during the early stages of asexual development. ER and ER-Mitochondria encounter structure (ERMES) complex-composed of proteins Mdm10, Mmm1, Mdm43 and Mdm12-are important for mitochondrial division in Saccharomyces cerevisiae. As the Mdm10 ortholog MdmB was found to be essential in A. nidulans, we evaluated its functions in ΔmdmB terminal mutants and ΔmdmB heterokaryons. ΔmdmB conidia produce a short germ tube that fails to grow further, in which inherited mitochondria become gigantic and round shaped, lacking clear contacts with the ER. In slow-growing ΔmdmB heterokaryotic mycelia, multiple hyphae contain very long mitochondria with high ROS levels, as occur in ΔdnmA and ΔfisA mutants. In this hyphae, H2O2 fails to induce mitochondrial constrictions but not outer mitochondrial membrane reshaping, indicating that these are two separate effects of H2O2. Our results indicate that H2O2 induces a generalized mitochondrial constriction response, prior to actual division, involving gradual depolarization; they also indicate that Ca2+ and the ERMES complex are critical for both mitochondrial constriction and division. This supports a view of mitochondrial dynamics as the result of a cascade of signaling events that can be initiated in vivo by H2O2.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Pérez-Sánchez A, Bibián ME, Barrios-González J. The Biosynthesis of Penicillin and Cephalosporin C are Regulated by ROS at Transcriptional Level. Curr Microbiol 2022; 79:243. [PMID: 35796838 DOI: 10.1007/s00284-022-02935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
In a recent work we showed that, besides lovastatin, ROS also accumulate during the production phase in Pencillium chrysogenum and in Acremonium chrysogenum, and that these ROS regulate the biosynthesis of penicillin and cephalosporin C. In the present study, we investigated the level at which this positive regulation is exerted. Internal ROS levels were manipulated, i.e., increased or decreased, in the production phase of the respective fermentations. Penicillin production decreased by 51.2% when internal ROS concentration was diminished by 50%, while a 62% production increase was observed when ROS were increased (62%). Similarly, Cephalosporin production decreased (35%) with antioxidants and increased (54.1%) with exogenous ROS. Expression analysis of the respective pcbAB genes, encoding the non-ribosomal peptide synthetase enzymes, was performed. Results showed down regulation of these genes in fermentations with lower ROS content, and upregulation in the cultures with higher ROS content, in both species. This showed that ROS regulation of penicillin in P. chrysogenum and of cephalosporin C in A. chrysogenum, is exerted at transcriptional level. In silico analysis of the pcbAB gene promoters in both species, suggested that this regulation could be mediated by stress-response transcription factors like Yap1, SrrA and/or MsnA, and/or by the Hap complex.
Collapse
Affiliation(s)
- A Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - M E Bibián
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - J Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
17
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
18
|
Fus3, as a Critical Kinase in MAPK Cascade, Regulates Aflatoxin Biosynthesis by Controlling the Substrate Supply in Aspergillus flavus, Rather than the Cluster Genes Modulation. Microbiol Spectr 2022; 10:e0126921. [PMID: 35107358 PMCID: PMC8809346 DOI: 10.1128/spectrum.01269-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Fus3-MAP kinase module is a conserved phosphorylation signal system in eukaryotes that responds to environmental stress and transduction of external signals from the outer membrane to the nucleus. Aspergillus flavus can produce aflatoxins (AF), which seriously threaten human and animal health. In this study, we determined the functions of Fus3, confirmed Ste50-Ste11-Ste7-Fus3 protein interactions and phosphorylation, and explored the possible phosphorylation motifs and potential targets of Fus3. The regulatory mechanism of Fus3 on the biosynthesis of AF was partly revealed in this study. AF production was downregulated in Δfus3, but the transcriptional expression of most AF cluster genes was upregulated. It is notable that the levels of acetyl-CoA and malonyl-CoA, the substrates of AF, were significantly decreased in fus3 defective strains. Genes involved in acetyl-CoA and malonyl-CoA biosynthesis were significantly downregulated at transcriptional or phosphorylation levels. Specifically, AccA might be a direct target of Fus3, which led to acetyl-CoA carboxylase activities were decreased in null-deletion and site mutagenesis strains. The results concluded that Fus3 could regulate the expression of acetyl-CoA and malonyl-CoA biosynthetic genes directly or indirectly, and then affect the AF production that relies on the regulation of AF substrate rather than the modulation of AF cluster genes. IMPORTANCEAspergillus flavus is an important saprophytic fungus that produces aflatoxins (AF), which threaten food and feed safety. MAP (mitogen-activated protein) kanases are essential for fungal adaptation to diverse environments. Fus3, as the terminal kinase of a MAPK cascade, interacts with other MAPK modules and phosphorylates downstream targets. We provide evidence that Fus3 could affect AF biosynthesis by regulating the production of acetyl-CoA and malonyl-CoA, but this does not depend on the regulation of AF biosynthetic genes. Our results partly reveal the regulatory mechanism of Fus3 on AF biosynthesis and provide a novel AF modulation pattern, which may contribute to the discovery of new strategies in controlling A. flavus and AF contamination.
Collapse
|
19
|
Host Lung Environment Limits Aspergillus fumigatus Germination through an SskA-Dependent Signaling Response. mSphere 2021; 6:e0092221. [PMID: 34878292 PMCID: PMC8653827 DOI: 10.1128/msphere.00922-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus isolates display significant heterogeneity in growth, virulence, pathology, and inflammatory potential in multiple murine models of invasive aspergillosis. Previous studies have linked the initial germination of a fungal isolate in the airways to the inflammatory and pathological potential, but the mechanism(s) regulating A. fumigatus germination in the airways is unresolved. To explore the genetic basis for divergent germination phenotypes, we utilized a serial passaging strategy in which we cultured a slow germinating strain (AF293) in a murine-lung-based medium for multiple generations. Through this serial passaging approach, a strain emerged with an increased germination rate that induces more inflammation than the parental strain (herein named LH-EVOL for lung homogenate evolved). We identified a potential loss-of-function allele of Afu5g08390 (sskA) in the LH-EVOL strain. The LH-EVOL strain had a decreased ability to induce the SakA-dependent stress pathway, similar to AF293 ΔsskA and CEA10. In support of the whole-genome variant analyses, sskA, sakA, or mpkC loss-of-function strains in the AF293 parental strain increased germination both in vitro and in vivo. Since the airway surface liquid of the lungs contains low glucose levels, the relationship of low glucose concentration on germination of these mutant AF293 strains was examined; interestingly, in low glucose conditions, the sakA pathway mutants exhibited an enhanced germination rate. In conclusion, A. fumigatus germination in the airways is regulated by SskA through the SakA mitogen-activated protein kinase (MAPK) pathway and drives enhanced disease initiation and inflammation in the lungs. IMPORTANCEAspergillus fumigatus is an important human fungal pathogen particularly in immunocompromised individuals. Initiation of growth by A. fumigatus in the lung is important for its pathogenicity in murine models. However, our understanding of what regulates fungal germination in the lung environment is lacking. Through a serial passage experiment using lung-based medium, we identified a new strain of A. fumigatus that has increased germination potential and inflammation in the lungs. Using this serially passaged strain, we found it had a decreased ability to mediate signaling through the osmotic stress response pathway. This finding was confirmed using genetic null mutants demonstrating that the osmotic stress response pathway is critical for regulating growth in the murine lungs. Our results contribute to the understanding of A. fumigatus adaptation and growth in the host lung environment.
Collapse
|
20
|
Xu D, Peng S, Guo R, Yao L, Mo H, Li H, Song H, Hu L. EGCG Alleviates Oxidative Stress and Inhibits Aflatoxin B 1 Biosynthesis via MAPK Signaling Pathway. Toxins (Basel) 2021; 13:693. [PMID: 34678986 PMCID: PMC8539566 DOI: 10.3390/toxins13100693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin biosynthesis has established a connection with oxidative stress, suggesting a prevention strategy for aflatoxin contamination via reactive oxygen species (ROS) removal. Epigallocatechin gallate (EGCG) is one of the most active and the richest molecules in green tea with well-known antioxidant effects. Here, we found EGCG could inhibit aflatoxin B1 (AFB1) biosynthesis without affecting mycelial growth in Aspergillus flavus, and the arrest occurred before the synthesis of toxin intermediate metabolites. Further RNA-seq analysis indicated that multiple genes involved in AFB1 biosynthesis were down-regulated. In addition, EGCG exposure facilitated the significantly decreased expression of AtfA which is a bZIP (basic leucine zipper) transcription factor mediating oxidative stress. Notably, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that the MAPK signaling pathway target transcription factor was down-regulated by 1 mg/mL EGCG. Further Western blot analysis showed 1 mg/mL EGCG could decrease the levels of phosphorylated SakA in both the cytoplasm and nucleus. Taken together, these data evidently supported that EGCG inhibited AFB1 biosynthesis and alleviated oxidative stress via MAPK signaling pathway. Finally, we evaluated AFB1 contamination in soy sauce fermentation and found that EGCG could completely control AFB1 contamination at 8 mg/mL. Conclusively, our results supported the potential use of EGCG as a natural agent to prevent AFB1 contamination in fermentation industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.X.); (S.P.); (R.G.); (L.Y.); (H.M.); (H.L.); (H.S.)
| |
Collapse
|
21
|
The NADPH Oxidase A of Verticillium dahliae Is Essential for Pathogenicity, Normal Development, and Stress Tolerance, and It Interacts with Yap1 to Regulate Redox Homeostasis. J Fungi (Basel) 2021; 7:jof7090740. [PMID: 34575778 PMCID: PMC8468606 DOI: 10.3390/jof7090740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Maintenance of redox homeostasis is vital for aerobic organisms and particularly relevant to plant pathogens. A balance is required between their endogenous ROS production, which is important for their development and pathogenicity, and host-derived oxidative stress. Endogenous ROS in fungi are generated by membrane-bound NADPH oxidase (NOX) complexes and the mitochondrial respiratory chain, while transcription factor Yap1 is a major regulator of the antioxidant response. Here, we investigated the roles of NoxA and Yap1 in fundamental biological processes of the important plant pathogen Verticillium dahliae. Deletion of noxA impaired growth and morphogenesis, compromised formation of hyphopodia, diminished penetration ability and pathogenicity, increased sensitivity against antifungal agents, and dysregulated expression of antioxidant genes. On the other hand, deletion of yap1 resulted in defects in conidial and microsclerotia formation, increased sensitivity against oxidative stress, and down-regulated antioxidant genes. Localized accumulation of ROS was observed before conidial fusion and during the heterokaryon incompatibility reaction upon nonself fusion. The frequency of inviable fusions was not affected by the deletion of Yap1. Analysis of a double knockout mutant revealed an epistatic relationship between noxA and yap1. Our results collectively reveal instrumental roles of NoxA and ROS homeostasis in the biology of V. dahliae.
Collapse
|
22
|
Li Y, Sun T, Guo D, Gao J, Zhang J, Cai F, Fischer R, Shen Q, Yu Z. Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environ Microbiol 2021; 23:6241-6256. [PMID: 34472181 DOI: 10.1111/1462-2920.15748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
Conidia of Trichoderma guizhouense (Hypocreales, Ascomycota) are frequently applied to the production of biofertilizers and biocontrol agents. Conidiation of some Trichoderma species depends on blue light and the action of different blue light receptors. However, the interplay between different blue-light receptors in light signalling remained elusive. Here, we studied the functions of the blue light receptors BLR1 and ENV1, and the MAP kinase HOG1 in blue light signalling in T. guizhouense. We found that the BLR1 dominates light responses and ENV1 is responsible for photoadaptation. Genome-wide gene expression analyses revealed that 1615 genes, accounting for ~13.4% of the genes annotated in the genome, are blue-light regulated in T. guizhouense, and remarkably, these differentially expressed genes (DEGs) including 61 transcription factors. BLR1 and HOG1 are the core components of the light signalling network, which control 79.9% and 73.9% of the DEGs respectively. In addition, the strict regulation of hydrophobin production by the blue light signalling network is impressive. Our study unravels the regulatory network based on the blue light receptors and the MAPK HOG pathway for conidiation, hydrophobin production and other processes in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Sun
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Guo
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Gao
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Jian Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhong Yu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
24
|
Rodríguez-Pupo EC, Pérez-Llano Y, Tinoco-Valencia JR, Sánchez NS, Padilla-Garfias F, Calahorra M, Sánchez NDC, Sánchez-Reyes A, Rodríguez-Hernández MDR, Peña A, Sánchez O, Aguirre J, Batista-García RA, Folch-Mallol JL, Sánchez-Carbente MDR. Osmolyte Signatures for the Protection of Aspergillus sydowii Cells under Halophilic Conditions and Osmotic Shock. J Fungi (Basel) 2021; 7:414. [PMID: 34073303 PMCID: PMC8228332 DOI: 10.3390/jof7060414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus sydowii is a moderate halophile fungus extensively studied for its biotechnological potential and halophile responses, which has also been reported as a coral reef pathogen. In a recent publication, the transcriptomic analysis of this fungus, when growing on wheat straw, showed that genes related to cell wall modification and cation transporters were upregulated under hypersaline conditions but not under 0.5 M NaCl, the optimal salinity for growth in this strain. This led us to study osmolyte accumulation as a mechanism to withstand moderate salinity. In this work, we show that A. sydowii accumulates trehalose, arabitol, mannitol, and glycerol with different temporal dynamics, which depend on whether the fungus is exposed to hypo- or hyperosmotic stress. The transcripts coding for enzymes responsible for polyalcohol synthesis were regulated in a stress-dependent manner. Interestingly, A. sydowii contains three homologs (Hog1, Hog2 and MpkC) of the Hog1 MAPK, the master regulator of hyperosmotic stress response in S. cerevisiae and other fungi. We show a differential regulation of these MAPKs under different salinity conditions, including sustained basal Hog1/Hog2 phosphorylation levels in the absence of NaCl or in the presence of 2.0 M NaCl, in contrast to what is observed in S. cerevisiae. These findings indicate that halophilic fungi such as A. sydowii utilize different osmoadaptation mechanisms to hypersaline conditions.
Collapse
Affiliation(s)
- Eya Caridad Rodríguez-Pupo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Yordanis Pérez-Llano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - José Raunel Tinoco-Valencia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Norma Silvia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Francisco Padilla-Garfias
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Martha Calahorra
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Nilda del C. Sánchez
- Centro de Ciencias Genómicas, UNAM, Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Ayixón Sánchez-Reyes
- Catedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - María del Rocío Rodríguez-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - Antonio Peña
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Olivia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Jesús Aguirre
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - María del Rayo Sánchez-Carbente
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| |
Collapse
|
25
|
Ogawa M, Wada H, Yoshimura T, Sato A, Fukuda R, Koyama Y, Horiuchi H. Deletion of Aspergillus nidulans cpsA/rseA induces increased extracellular hydrolase production in solid-state culture partly through the high osmolarity glycerol pathway. J Biosci Bioeng 2021; 131:589-598. [PMID: 33827772 DOI: 10.1016/j.jbiosc.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Koji molds, such as Aspergillus oryzae and Aspergillus sojae, are used in the food industry in East Asia and have been explored for the large-scale production of extracellular hydrolases. We previously found that the deletion of a gene encoding a putative GT2 glycosyltransferase increased production of extracellular hydrolases in A. sojae. The gene was named rseA (regulator of the secretory enzyme A). We predicted that intracellular signaling pathways were involved in the increased production of hydrolases in the ΔrseA mutant of A. sojae. However, little has been reported on molecular biological knowledge about A. sojae. Hence, Aspergillus nidulans, a typical model organism used in molecular biology, was employed for the functional characterization of rseA in this study. Deletion of the rseA ortholog in A. nidulans induced increased extracellular production of hydrolases under the solid-state cultivation condition, similar to that in A. sojae. The involvement of the cell wall integrity pathway and the high osmolarity glycerol pathway in ΔrseA was further investigated. The results indicated that the HOG pathway played an important role in the increased extracellular production of hydrolases caused by the deletion of the rseA gene. rseA ortholog in A. nidulans was identical to cpsA, which was reported to function as a regulator of mycotoxin production, morphogenesis, and cell wall biosynthesis. However, this is the first study reporting that rseA/cpsA regulates extracellular hydrolase production in A. nidulans.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Noda Institute for Scientific Research, 338 Noda, Noda City, Chiba 278-0037, Japan.
| | - Hiroki Wada
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda City, Chiba 278-0037, Japan.
| | - Taro Yoshimura
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda City, Chiba 278-0037, Japan.
| | - Atsushi Sato
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda City, Chiba 278-0037, Japan.
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338 Noda, Noda City, Chiba 278-0037, Japan.
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
26
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources. mSphere 2020; 5:5/5/e00818-20. [PMID: 32938702 PMCID: PMC7494837 DOI: 10.1128/msphere.00818-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.
Collapse
|
28
|
Garrido-Bazán V, Pardo JP, Aguirre J. DnmA and FisA Mediate Mitochondria and Peroxisome Fission, and Regulate Mitochondrial Function, ROS Production and Development in Aspergillus nidulans. Front Microbiol 2020; 11:837. [PMID: 32477294 PMCID: PMC7232558 DOI: 10.3389/fmicb.2020.00837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamin-like protein Drp1 and its receptor Fis-1 are required for mitochondria and peroxisome fission in animal and yeast cells. Here, we show that in the fungus Aspergillus nidulans the lack of Drp1 and Fis-1 homologs DnmA and FisA has strong developmental defects, leading to a notable decrease in hyphal growth and asexual and sexual sporulation, with some of these defects being aggravated or partially remediated by different carbon sources. Although both DnmA and FisA, are essential for mitochondrial fission, participate in peroxisomal division and are fully required for H2O2-induced mitochondrial division, they also appear to play differential functions. Despite their lack of mitochondrial division, ΔdnmA and ΔfisA mutants segregate mitochondria to conidiogenic cells and produce viable conidia that inherit a single mitochondrion. During sexual differentiation, ΔdnmA and ΔfisA mutants develop fruiting bodies (cleistothecia) that differentiate excessive ascogenous tissue and a reduced number of viable ascospores. ΔdnmA and ΔfisA mutants show decreased respiration and notably high levels of mitochondrial reactive oxygen species (ROS), which likely correspond to superoxide. Regardless of this, ΔdnmA mutants can respond to an external H2O2 challenge by re-localizing the MAP kinase-activated protein kinase (MAPKAP) SrkA from the cytoplasm to the nuclei. Our results show that ROS levels regulate mitochondrial dynamics while a lack of mitochondrial fission results in lower respiration, increased mitochondrial ROS and developmental defects, indicating that ROS, mitochondrial division and development are critically interrelated processes.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance. mBio 2020; 11:mBio.02962-19. [PMID: 32019798 PMCID: PMC7002344 DOI: 10.1128/mbio.02962-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence. The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation.
Collapse
|
30
|
Király A, Hámori C, Gyémánt G, Kövér KE, Pócsi I, Leiter É. Characterization of gfdB, putatively encoding a glycerol 3-phosphate dehydrogenase in Aspergillus nidulans. Fungal Biol 2019; 124:352-360. [PMID: 32389297 DOI: 10.1016/j.funbio.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022]
Abstract
The genome of Aspergillus nidulans accommodates two glycerol 3-phosphate dehydrogenase genes, gfdA and gfdB. Previous studies confirmed that GfdA is involved in the osmotic stress defence of the fungus. In this work, the physiological role of GfdB was characterized via the construction and functional characterization of the gene deletion mutant ΔgfdB. Unexpectedly, ΔgfdB strains showed oxidative stress sensitivity in the presence of a series of well-known oxidants including tert-butyl-hydroperoxide (tBOOH), diamide as well as hydrogen peroxide. Moderate sensitivity of the mutant towards the cell wall stress inducing agent CongoRed was also observed. Hence, both Gfd isoenzymes contributed to the environmental stress defence of the fungus but their functions were stress-type-specific. Furthermore, the specific activities of certain antioxidant enzymes, like catalase and glutathione peroxidase, were lower in ΔgfdB hyphae than those recorded in the control strain. As a consequence, mycelia from ΔgfdB cultures accumulated reactive species at higher levels than the control. On the other hand, the specific glutathione reductase activity was higher in the mutant, most likely to compensate for the elevated intracellular oxidative species concentrations. Nevertheless, the efficient control of reactive species failed in ΔgfdB cultures, which resulted in reduced viability and, concomitantly, early onset of programmed cell death in mutant hyphae. Inactivation of gfdB brought about higher mannitol accumulation in mycelia meanwhile the erythritol production was not disturbed in unstressed cultures. After oxidative stress treatment with tBOOH, only mannitol was detected in both mutant and control mycelia and the accumulation of mannitol even intensified in the ΔgfdB strain.
Collapse
Affiliation(s)
- Anita Király
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; University of Debrecen, Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, Hungary
| | - Csaba Hámori
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
31
|
Manfiolli AO, Mattos EC, de Assis LJ, Silva LP, Ulaş M, Brown NA, Silva-Rocha R, Bayram Ö, Goldman GH. Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Front Microbiol 2019; 10:918. [PMID: 31134001 PMCID: PMC6514138 DOI: 10.3389/fmicb.2019.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 11/30/2022] Open
Abstract
Aspergillusfumigatus, a saprophytic filamentous fungus, is a serious opportunistic pathogen of mammals and it is the primary causal agent of invasive aspergillosis (IA). Mitogen activated protein Kinases (MAPKs) are important components involved in diverse cellular processes in eukaryotes. A. fumigatus MpkC and SakA, the homologs of the Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and osmotic stresses, heat shock, cell wall damage, macrophage recognition, and full virulence. We performed protein pull-down experiments aiming to identify interaction partners of SakA and MpkC by mass spectrometry analysis. In presence of osmotic stress with sorbitol, 118, and 213 proteins were detected as possible protein interactors of SakA and MpkC, respectively. Under cell wall stress caused by congo red, 420 and 299 proteins were detected interacting with SakA and MpkC, respectively. Interestingly, a group of 78 and 256 proteins were common to both interactome analysis. Co-immunoprecipitation (Co-IP) experiments showed that SakA::GFP is physically associated with MpkC:3xHA upon osmotic and cell wall stresses. We also validated the association between SakA:GFP and the cell wall integrity MAPK MpkA:3xHA and the phosphatase PtcB:3xHA, under cell wall stress. We further characterized A. fumigatus PakA, the homolog of the S. cerevisiae sexual developmental serine/threonine kinase Ste20, as a component of the SakA/MpkC MAPK pathway. The ΔpakA strain is more sensitive to cell wall damaging agents as congo red, calcofluor white, and caspofungin. Together, our data supporting the hypothesis that SakA and MpkC are part of an osmotic and general signal pathways involved in regulation of the response to the cell wall damage, oxidative stress, drug resistance, and establishment of infection. This manuscript describes an important biological resource to understand SakA and MpkC protein interactions. Further investigation of the biological roles played by these protein interactors will provide more opportunities to understand and combat IA.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliciane Cevolani Mattos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mevlüt Ulaş
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Neil Andrew Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
33
|
Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA. mBio 2019; 10:mBio.00371-19. [PMID: 30967462 PMCID: PMC6456751 DOI: 10.1128/mbio.00371-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling. The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.
Collapse
|
34
|
de Assis LJ, Manfiolli A, Mattos E, Fabri JHTM, Malavazi I, Jacobsen ID, Brock M, Cramer RA, Thammahong A, Hagiwara D, Ries LNA, Goldman GH. Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in Aspergillus fumigatus. mBio 2018; 9:e01952-18. [PMID: 30538182 PMCID: PMC6299480 DOI: 10.1128/mbio.01952-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus mitogen-activated protein kinases (MAPKs) are involved in maintaining the normal morphology of the cell wall and providing resistance against cell wall-damaging agents. Upon cell wall stress, cell wall-related sugars need to be synthesized from carbohydrate storage compounds. Here we show that this process is dependent on cAMP-dependent protein kinase A (PKA) activity and regulated by the high-osmolarity glycerol response (HOG) MAPKs SakA and MpkC. These protein kinases are necessary for normal accumulation/degradation of trehalose and glycogen, and the lack of these genes reduces glucose uptake and glycogen synthesis. Alterations in glycogen synthesis were observed for the sakA and mpkC deletion mutants, which also displayed alterations in carbohydrate exposure on the cell wall. Carbohydrate mobilization is controlled by SakA interaction with PkaC1 and PkaR, suggesting a putative mechanism where the PkaR regulatory subunit leaves the complex and releases the SakA-PkaC1 complex for activation of enzymes involved in carbohydrate mobilization. This work reveals the communication between the HOG and PKA pathways for carbohydrate mobilization for cell wall construction.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections such as invasive pulmonary aspergillosis, especially in immunocompromised patients. The fungal cell wall is the main component responsible for recognition by the immune system, due to the specific composition of polysaccharide carbohydrates exposed on the surface of the fungal cell wall called pathogen-associated molecular patterns (PAMPs). Key enzymes in the fungal cell wall biosynthesis are a good target for fungal drug development. This report elucidates the cooperation between the HOG and PKA pathways in the mobilization of carbohydrates for fungal cell wall biosynthesis. We suggest that the reduced mobilization of simple sugars causes defects in the structure of the fungal cell wall. In summary, we propose that SakA is important for PKA activity, therefore regulating the availability and mobilization of monosaccharides for fungal cell wall biosynthesis during cell wall damage and the osmotic stress response.
Collapse
Affiliation(s)
- Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Eliciane Mattos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - João H T Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Robert A Cramer
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Arsa Thammahong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|