1
|
Catania AM, Dalmasso A, Morra P, Costa E, Bottero MT, Di Ciccio PA. Effect of gaseous ozone treatment on cells and biofilm of dairy Bacillus spp. isolates. Front Microbiol 2025; 16:1538456. [PMID: 40165788 PMCID: PMC11955631 DOI: 10.3389/fmicb.2025.1538456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bacillus spp. can produce biofilms and cause recurrent contamination in the food industry. The common clean-in-place (CIP) method is usually employed in sanitizing processing equipment. However, CIP is not always effective in removing biofilms. Ozone represents a promising "green" alternative to control biofilms. In this study, the effect of gaseous ozone (50 ppm) was evaluated in vitro against planktonic and sessile B. cereus and B. subtilis isolates collected from the dairy sector. Planktonic cells were enumerated by plate counts after 10 min, 1 h, and 6 h of ozone treatment. After a short-term (10 min) exposure, a slight reduction in microbial loads (0.66-2.27 ± 0.15 Log10 CFU/mL) was observed for B. cereus strains, whereas a more pronounced reduction (2.90-3.81 ± 0.12 Log10 CFU/mL) was noted in B. subtilis isolates. The microbial load further decreased after 1 h-treatments, around 1.5-3.46 ± 0.11 Log10 CFU/mL for B. cereus strains, and 4.0-5.6 ± 0.11 Log10 CFU/mL for B. subtilis isolates, until complete inactivation of bacterial cells after 6 h of exposure. Moreover, the effect of gaseous ozone treatment (50 ppm, 6 h) was evaluated for its ability to inhibit and eradicate biofilms formed on two common food-contact materials (polystyrene and stainless steel). Sessile B. subtilis cells were the more sensitive to the action of ozone, while a weak effect was highlighted on B. cereus isolates on both surface types. These results were further confirmed by scanning microscopy analysis. The number of cells in the biofilm state was also assessed, showing a not-complete correlation with a decrease in Biofilm Production Indices (BPIs). These findings highlighted the effectiveness of the sanitizing protocol using gaseous ozone in contrasting Bacillus free-living cells, but a not completely counteraction in biofilm formation (inhibition) or eradication of pre-formed biofilm. Thus, the application of ozone could be thought of not alone, but in combination with common sanitization practices to improve their effectiveness.
Collapse
Affiliation(s)
| | | | - Patrizia Morra
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Emanuele Costa
- Department of Earth Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
2
|
Elawady R, Aboulela AG, Gaballah A, Ghazal AA, Amer AN. Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count. BMC Infect Dis 2024; 24:1065. [PMID: 39342123 PMCID: PMC11438285 DOI: 10.1186/s12879-024-09790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Biofilm formation is an essential virulence factor that creates a highly protected growth mode for Staphylococcus aureus (S. aureus) to survive in any hostile environment. Antibiotic sub-minimal inhibitory concentration (sub-MIC) may modulate the biofilm formation ability of bacterial pathogens, thereby affecting bacterial pathogenesis and infection outcomes. Intense antimicrobial therapy to treat biofilm-associated infections can control the pathogenic infection aggravation but cannot guarantee its complete eradication. OBJECTIVE This study aimed to assess the sub-MICs effect of 5 different antimicrobial classes on biofilm-forming capacity among Staphylococcus aureus clinical isolates using three different biofilm quantitation techniques. METHODS In this study, the effects of 5 different antimicrobial agents, namely, azithromycin, gentamicin, ciprofloxacin, doxycycline, and imipenem, at sub-MICs of 12.5%, 25%, and 50% were tested on 5 different clinical isolates of S. aureus. The biofilms formed in the absence and presence of different antimicrobial sub-MICs were then assessed using the following three different techniques: the crystal violet (CV) staining method, the quantitative PCR (qPCR) method, and the spread plate method (SPM). RESULTS Biofilm formation was significantly induced in 64% of the tested conditions using the CV technique. On the other hand, the qPCR quantifying the total bacterial count and the SPM quantifying the viable bacterial count showed significant induction only in 24% and 17.3%, respectively (Fig. 1). The difference between CV and the other techniques indicates an increase in biofilm biomass without an increase in bacterial growth. As expected, sub-MICs did not reduce the viable cell count, as shown by the SPM. The CV staining method revealed that sub-MICs of imipenem and ciprofloxacin had the highest significance rate (80%) showing an inductive effect on the biofilm development. On the other hand, doxycycline, azithromycin, and gentamicin displayed lower significance rates of 73%, 53%, and 47%, respectively. CONCLUSION Exposure to sub-MIC doses of antimicrobial agents induces the biofilm-forming capacity of S. aureus via increasing the total biomass without significantly affecting the bacterial growth of viable count.
Collapse
Affiliation(s)
- Raghda Elawady
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Aliaa G Aboulela
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer A Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed N Amer
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| |
Collapse
|
3
|
Ozbil E, Ilktac M, Ogmen S, Isbilen O, Duran Ramirez JM, Gomez J, Walker JN, Volkan E. In vitro antibacterial, antibiofilm activities, and phytochemical properties of Posidonia oceanica (L.) Delile: An endemic Mediterranean seagrass. Heliyon 2024; 10:e35592. [PMID: 39170414 PMCID: PMC11336879 DOI: 10.1016/j.heliyon.2024.e35592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
In the antibiotic resistance era, utilizing understudied sources for novel antimicrobials or antivirulence agents can provide new advances against antimicrobial resistant pathogens. In this study, we aimed to investigate antibacterial and antibiofilm activities of Posidonia oceanica (L.) Delile against Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603 and several S. aureus clinical isolates obtained from medical devices, including patient urinary catheters and breast implant infections, with varying antibiotic recalcitrance profiles. The ethanolic and methanolic extracts from P. oceanica rhizome exhibited significant antibacterial activity against E. faecalis and S. aureus, as well as drug resistant S. aureus clinical isolates. Furthermore, significant antibiofilm activity was observed against S. aureus and E. faecalis treated with ER, MR1, and MR2. P. oceanica extracts also exhibited synergistic antimicrobial activity with ciprofloxacin against E. faecalis, sensitizing E. faecalis to a lower ciprofloxacin concentration. Collectively, our data demonstrate the selective antibacterial and antibiofilm activity of the extracts of P. oceanica against Gram-positive bacteria and clinical isolates along with potentiation of current antibiotics, which suggests that P. oceanica can be further investigated as a potential source for novel therapeutic options in the treatment of drug resistant bacterial infections.
Collapse
Affiliation(s)
- Ertugrul Ozbil
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Northern Cyprus, 99258 via Mersin 10, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
| | - Mehmet Ilktac
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Northern Cyprus, 99258 via Mersin 10, Turkey
| | - Sultan Ogmen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Northern Cyprus, 99258 via Mersin 10, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
| | - Ovgu Isbilen
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
- Faculty of Arts and Sciences, Department of Basic Sciences and Humanities, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Jana Gomez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Science, School of Public Health, University of Texas Health Science Center at Houston, Texas, USA
| | - Ender Volkan
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
- Faculty of Arts and Sciences, Department of Basic Sciences and Humanities, Cyprus International University, Nicosia, Northern Cyprus, 99258 via Mersin 10, Turkey
| |
Collapse
|
4
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
5
|
Noori R, Bano N, Ahmad S, Mirza K, Mazumder JA, Perwez M, Raza K, Manzoor N, Sardar M. Microbial Biofilm Inhibition Using Magnetic Cross-Linked Polyphenol Oxidase Aggregates. ACS APPLIED BIO MATERIALS 2024; 7:3164-3178. [PMID: 38722774 DOI: 10.1021/acsabm.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.
Collapse
Affiliation(s)
- Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Kainat Mirza
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Keneh NK, Kenmoe S, Bowo-Ngandji A, Tatah Kihla Akoachere JF, Gonsu Kamga H, Ndip RN, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Tendongfor N, Ndip LM, Esemu SN. A mapping review of methicillin-resistant Staphylococcus aureus proportions, genetic diversity, and antimicrobial resistance patterns in Cameroon. PLoS One 2023; 18:e0296267. [PMID: 38134014 PMCID: PMC10745167 DOI: 10.1371/journal.pone.0296267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has increased and poses a significant threat to human and animal health in Cameroon and the world at large. MRSA strains have infiltrated various settings, including hospitals, communities, and livestock, contributing to increased morbidity, treatment costs, and mortality. This evidence synthesis aims to understand MRSA prevalence, resistance patterns, and genetic characterization in Cameroon. METHODS The methodology was consistent with the PRISMA 2020 guidelines. Studies of any design containing scientific data on MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon were eligible for inclusion, with no restrictions on language or publication date. The search involved a comprehensive search strategy in several databases including Medline, Embase, Global Health, Web of Science, African Index Medicus, and African Journal Online. The risk of bias in the included studies was assessed using the Hoy et al tool, and the results were synthesized and presented in narrative synthesis and/or tables and graphs. RESULTS The systematic review analyzed 24 studies, mostly conducted after 2010, in various settings in Cameroon. The studies, characterized by moderate to low bias, revealed a wide prevalence of MRSA ranging from 1.9% to 46.8%, with considerable variation based on demographic and environmental factors. Animal (0.2%), food (3.2% to 15.4%), and environmental samples (0.0% to 34.6%) also showed a varied prevalence of MRSA. The genetic diversity of MRSA was heterogeneous, with different virulence gene profiles and clonal lineages identified in various populations and sample types. Antimicrobial resistance rates showed great variability in the different regions of Cameroon, with notable antibiotic resistance recorded for the beta-lactam, fluoroquinolone, glycopeptide, lincosamide, and macrolide families. CONCLUSION This study highlights the significant variability in MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon, and emphasizes the pressing need for comprehensive antimicrobial stewardship strategies in the country.
Collapse
Affiliation(s)
- Nene Kaah Keneh
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Hortense Gonsu Kamga
- Faculty of Medicine and Biomedical Sciences, The University of Yaounde I, Yaoundé, Cameroon
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | | | | | - Lucy Mande Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| |
Collapse
|
7
|
Bano S, Hassan N, Rafiq M, Hassan F, Rehman M, Iqbal N, Ali H, Hasan F, Kang YQ. Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Microorganisms 2023; 11:2595. [PMID: 37894253 PMCID: PMC10609369 DOI: 10.3390/microorganisms11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular polymeric substances (EPS). Notably, bacteria in biofilms display a set of 'emergent properties' that vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple stressful conditions such as providing immunity against antibiotics. Apart from the provision of multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various genes and their regulators to combat antibiotics. The response of biofilms depends on the type of antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics inside cells is lowered by mutating genes and their regulators. Here, we review the current state of knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic resistance is also discussed. In this review, we also highlight new and modified techniques such as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and making this world free of antibiotic resistance.
Collapse
Affiliation(s)
- Sara Bano
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Zhang W, Liu J, Li Q, Xiao Y, Zhang Y, Lei N, Wang Q. Effects of combined exposure of PVC and PFOA on the physiology and biochemistry of Microcystis aeruginosa. CHEMOSPHERE 2023; 338:139476. [PMID: 37451644 DOI: 10.1016/j.chemosphere.2023.139476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) have drawn significant attention as emerging threats to aquatic ecosystems. There are currently just a few investigations on the combined toxicity of PFAS and MP on freshwater microalgae. In this research, the combined toxicity of polyvinyl chloride (PVC) and perfluorooctanoic acid (PFOA) to Microcystis aeruginosa was investigated. The results indicated that the combination of these pollutants inhibited the growth of M. aeruginosa and promoted the synthesis and release of Microcystin-LR (MC-LR). Individual and combined exposure caused different responses to cellular oxidative stress. Under the Individual exposure of PFOA, when the concentration was greater than 20.0 mg/L, the catalase (CAT) activity increased significantly, and when it was greater than 100.0 mg/L, the malondialdehyde (MDA) content increased significantly, but there is no significant change under combined exposure. PVC and PFOA exposure also caused physical damage to the algal cells and reduced the content of extracellular polymer substances (EPS) based on analysis of cell morphology. Metabolic analysis revealed that carbohydrate metabolism and amino acid metabolism of the algae were affected. The current study offers a fresh theoretical framework for MPs and PFASs environmental risk evaluations.
Collapse
Affiliation(s)
- Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jing Liu
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Qi Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yunxing Xiao
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yumiao Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Ningfei Lei
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | | |
Collapse
|
9
|
León Madrazo A, Segura Campos MR. Antibacterial properties of peptides from chia (Salvia hispanica L.) applied to pork meat preservation. J Food Sci 2023; 88:4194-4217. [PMID: 37655475 DOI: 10.1111/1750-3841.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Chia-derived peptides might represent a novel alternative to conventional preservatives in food. Despite the antibacterial potential of these molecules, their food application is still limited. This study aimed to evaluate chia-derived peptides' antibacterial and antibiofilm potential in food preservation. The peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were synthesized, and their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella Enteritidis was evaluated through microdilution tests. A bacterial killing kinetic assay determined bacterial growth over time. The ability to prevent and eradicate S. aureus biofilm was assessed by crystal violet staining. The hemolytic and cytotoxic activities were determined in human red blood cells and fibroblasts using free hemoglobin detection and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays, respectively. Finally, a microbial challenge was performed on meat samples inoculated with L. monocytogenes and S. Enteritidis to determine their inhibitory effects on pork meat. Results showed the potential antibacterial activity of these peptides, with minimum inhibitory concentrations ranging from 0.23 to 5.58 mg/mL. Biofilm inhibition percentages were above 40%, and eradication percentages were lower than 20%. In vitro assays in human red blood cells and fibroblasts demonstrated that peptides are not hemolytic or cytotoxic agents. In microbiological challenge testing, KKLLKI showed the most promising antibacterial effects against S. Enteritidis on refrigerated pork meat samples. These findings suggest that chia-derived peptides have the potential as natural food preservatives due to their antibacterial and antibiofilm properties. Notably, KKLLKI demonstrated promising antibacterial effects against Salmonella spp. on a complex food matrix, such as pork meat. PRACTICAL APPLICATION: Chia-derived peptides can be a safer alternative to synthetic preservatives in the food industry because the latter may be detrimental to human health. Salmonella spp. growth on chilled pork meat was shown to be inhibited by the peptide KKLLKI, indicating that the use of these peptides may offer a more secure and natural alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Anaí León Madrazo
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Merida, Mexico
| | | |
Collapse
|
10
|
Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, Tang C. Facially Amphiphilic Bile Acid-Functionalized Antimicrobials: Combating Pathogenic Bacteria, Fungi, and Their Biofilms. ACS Infect Dis 2023; 9:1769-1782. [PMID: 37535907 PMCID: PMC10529379 DOI: 10.1021/acsinfecdis.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
11
|
Catania AM, Di Ciccio P, Ferrocino I, Civera T, Cannizzo FT, Dalmasso A. Evaluation of the biofilm-forming ability and molecular characterization of dairy Bacillus spp. isolates. Front Cell Infect Microbiol 2023; 13:1229460. [PMID: 37600945 PMCID: PMC10432688 DOI: 10.3389/fcimb.2023.1229460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Food processing lines represents a suitable environment for bacterial biofilm formation. One of the most common biofilm-forming genera in dairy processing plants is Bacillus, which includes species that may have a negative impact on safety and/or quality of dairy products. In the current study, we evaluated the biofilm forming ability and molecular characteristics of dairy Bacillus spp. isolates (B. cereus and B. subtilis). Reference strains (B. cereus ATCC 14579 and B. subtilis NCTC 3610) were also included in the experiment. All isolates were screened by micro-titer plate (96 wells) to assess their ability to form biofilm. Then, they were tested on two common food contact surfaces (polystyrene and stainless steel) by using 6-well plates and AISI 316 stainless steel coupons. Biofilm formation, expressed as biofilm production index (BPI), was higher on polystyrene than stainless steel (except for B. cereus ATCC 14579). These observations were further confirmed by scanning electron microscopy, which allowed the microscopy observation of biofilm structure. Moreover, a possible correlation among total viable cell counts (CFU) and BPI was examined, as well as a connection among biofilm formation and bacterial cell hydrophobicity. Finally, whole genome sequencing was performed highlighting a genetic similarity among the strains belonging to the same species. The presence of selected genes involved in biofilm formation was also examined showing that strains with a greater presence of these genes were able to produce more biofilm in the tested materials. Additionally, for B. cereus strains enterotoxin genes were detected.
Collapse
Affiliation(s)
- Angela Maria Catania
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | | | - Alessandra Dalmasso
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| |
Collapse
|
12
|
Wang J, Ma X, Li J, Shi L, Liu L, Hou X, Jiang S, Li P, Lv J, Han L, Cheng Y, Han B. The Synergistic Antimicrobial Effect and Mechanism of Nisin and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24076697. [PMID: 37047670 PMCID: PMC10094802 DOI: 10.3390/ijms24076697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for skin and soft tissue infections with multi-resistance to many antibiotics. It is thus imperative to explore alternative antimicrobial treatments to ensure future treatment options. Nisin (NIS), an antibacterial peptide produced by Lactococcus lactis, was selected to combine with Oxacillin (OX), to evaluate the antimicrobial effect and potential mechanism against MRSA. The synergistic antimicrobial effect of OX and NIS was verified by Minimal Inhibitory Concentration (MIC) assays, checkerboard analysis, time-kill curve, biofilm producing ability, and mice skin infection model in vivo. For the potential synergistic antimicrobial mechanism, the microstructure and integrity change of MRSA cells were determined by Scanning and Transmission Electron Microscope (SEM and TEM), intracellular alkaline phosphatase activity and propidium iodide staining were assayed; And transcription of mecA, main gene of MRSA resistant to OX, were detected by qRT-PCR. The results showed NIS could restore the sensitivity of MRSA to OX and inhibit biofilm production; OX + NIS can make MRSA cell deform; NIS may recover OX sensitivity by inhibiting the transcription of mecA. In vivo, mice skin infection models indicate that OX + NIS can substantially alleviate MRSA infections. As a safe commercially available biological compound, NIS and the combination of antibiotics are worth developing as new anti-MRSA biomaterials.
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Tongchuan Center for Disease Control and Prevention, Tongchuan 727031, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lijuan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Han
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Su Z, Kong L, Mei J, Li Q, Qian Z, Ma Y, Chen Y, Ju S, Wang J, Jia W, Zhu C, Fan W. Enzymatic bionanocatalysts for combating peri-implant biofilm infections by specific heat-amplified chemodynamic therapy and innate immunomodulation. Drug Resist Updat 2023; 67:100917. [PMID: 36608472 DOI: 10.1016/j.drup.2022.100917] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.
Collapse
Affiliation(s)
- Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Weitao Jia
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Tao Q, Wu Q, Zhang Z, Liu J, Tian C, Huang Z, Malakar PK, Pan Y, Zhao Y. Meta-Analysis for the Global Prevalence of Foodborne Pathogens Exhibiting Antibiotic Resistance and Biofilm Formation. Front Microbiol 2022; 13:906490. [PMID: 35774452 PMCID: PMC9239547 DOI: 10.3389/fmicb.2022.906490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial-resistant (AMR) foodborne bacteria causing bacterial infections pose a serious threat to human health. In addition, the ability of some of these bacteria to form biofilms increases the threat level as treatment options may become compromised. The extent of antibiotic resistance and biofilm formation among foodborne pathogens remain uncertain globally due to the lack of systematic reviews. We performed a meta-analysis on the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation using the methodology of a Cochrane review by accessing data from the China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science databases between 2010 and 2020. A random effects model of dichotomous variables consisting of antibiotic class, sample source, and foodborne pathogens was completed using data from 332 studies in 36 countries. The results indicated AMR foodborne pathogens has become a worrisome global issue. The prevalence of AMR foodborne pathogens in food samples was greater than 10% and these foodborne pathogens were most resistant to β-lactamase antibiotics with Bacillus cereus being most resistant (94%). The prevalence of AMR foodborne pathogens in human clinical specimens was greater than 19%, and the resistance of these pathogens to the antibiotic class used in this research was high. Independently, the overall biofilm formation rate of foodborne pathogenic bacteria was 90% (95% CI, 68%–96%) and a direct linear relationship between biofilm formation ability and antibiotic resistance was not established. Future investigations should document both AMR and biofilm formation of the foodborne pathogen isolated in samples. The additional information could lead to alternative strategies to reduce the burden cause by AMR foodborne pathogens.
Collapse
Affiliation(s)
- Qian Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- *Correspondence: Zhaohuan Zhang, ;
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Yong Zhao,
| |
Collapse
|
15
|
Characterization of Staphylococcus aureus biofilms via crystal violet binding and biochemical composition assays of isolates from hospitals, raw meat, and biofilm-associated gene mutants. Microb Pathog 2022; 167:105554. [DOI: 10.1016/j.micpath.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
|
16
|
Almeida L, Lopes N, Gaio V, Cavaleiro C, Salgueiro L, Silva V, Poeta P, Cerca N. Thymbra capitata
essential oil has a significant antimicrobial activity against methicillin‐resistant
Staphylococcus aureus
pre‐formed biofilms. Lett Appl Microbiol 2022; 74:787-795. [DOI: 10.1111/lam.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Luciana Almeida
- Centre of Biological Engineering (CEB) Laboratory of Research in Biofilms Rosário Oliveira (LIBRO) University of Minho Campus de Gualtar Braga Portugal
| | - Nathalie Lopes
- Centre of Biological Engineering (CEB) Laboratory of Research in Biofilms Rosário Oliveira (LIBRO) University of Minho Campus de Gualtar Braga Portugal
- LABBELS –Associate Laboratory Braga, Guimarães Portugal
| | - Vânia Gaio
- Centre of Biological Engineering (CEB) Laboratory of Research in Biofilms Rosário Oliveira (LIBRO) University of Minho Campus de Gualtar Braga Portugal
- LABBELS –Associate Laboratory Braga, Guimarães Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra University of Coimbra Coimbra Portugal
- CIEPQPF Department of Chemical Engineering Faculty of Sciences and Technology University of Coimbra Coimbra Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra University of Coimbra Coimbra Portugal
- CIEPQPF Department of Chemical Engineering Faculty of Sciences and Technology University of Coimbra Coimbra Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART) Department of Veterinary Sciences University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Veterinary and Animal Research Centre Associate Laboratory for Animal and Veterinary Science (AL4AnimalS) University of Trás‐os‐Montes and Alto Douro (UTAD) 5000‐801 Vila Real Portugal
- Associated Laboratory for Green Chemistry (LAQV‐REQUIMTE) University NOVA of Lisboa Lisboa, Caparica Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART) Department of Veterinary Sciences University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Veterinary and Animal Research Centre Associate Laboratory for Animal and Veterinary Science (AL4AnimalS) University of Trás‐os‐Montes and Alto Douro (UTAD) 5000‐801 Vila Real Portugal
- Associated Laboratory for Green Chemistry (LAQV‐REQUIMTE) University NOVA of Lisboa Lisboa, Caparica Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB) Laboratory of Research in Biofilms Rosário Oliveira (LIBRO) University of Minho Campus de Gualtar Braga Portugal
- LABBELS –Associate Laboratory Braga, Guimarães Portugal
| |
Collapse
|
17
|
Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Hussain Chan MW, Mirani ZA, Khan MN, Ali A, Khan AB, Asadullah, Rauf N. Isolation and characterization of small colony variants of Staphylococcus aureus in various food samples. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Biofilm Formation of Multidrug-Resistant MRSA Strains Isolated from Different Types of Human Infections. Pathogens 2021; 10:pathogens10080970. [PMID: 34451434 PMCID: PMC8400568 DOI: 10.3390/pathogens10080970] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens causing chronic infections, mainly due to its capacity to form biofilms. However, the mechanisms underlying the biofilm formation of MRSA strains from different types of human infections are not fully understood. MRSA strains isolated from distinct human infections were characterized aiming to determine their biofilm-forming capacity, the biofilm resistance to conventional antibiotics and the prevalence of biofilm-related genes, including, icaA, icaB, icaC, icaD, fnbA, fnbB, clfA, clfB, cna, eno, ebpS, fib and bbp. Eighty-three clinical MRSA strains recovered from bacteremia episodes, osteomyelitis and diabetic foot ulcers were used. The biofilm-forming capacity was evaluated by the microtiter biofilm assay and the biofilm structure was analyzed via confocal scanning laser microscopy. The antimicrobial susceptibility of 24-h-old biofilms was assessed against three antibiotics and the biomass reduction was measured. The metabolic activity of biofilms was evaluated by the XTT assay. The presence of biofilm-related genes was investigated by whole-genome sequencing and by PCR. Despite different intensities, all strains showed the capacity to form biofilms. Most strains had also a large number of biofilm-related genes. However, strains isolated from osteomyelitis showed a lower capacity to form biofilms and also a lower prevalence of biofilm-associated genes. There was a significant reduction in the biofilm biomass of some strains tested against antibiotics. Our results provide important information on the biofilm-forming capacity of clinical MRSA strains, which may be essential to understand the influence of different types of infections on biofilm production and chronic infections.
Collapse
|
20
|
Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated with M. communis extract and its antibacterial activity. AMB Express 2021; 11:85. [PMID: 34110520 PMCID: PMC8192652 DOI: 10.1186/s13568-021-01247-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Considering the prevalence of resistance to antibiotics, the discovery of effective agents against resistant pathogens is of extreme urgency. Herein, 26 mecA-positive methicillin-resistant S. aureus (MRSA) isolated from clinical samples were identified, and their resistance to 11 antibiotics was investigated. Next, the antibacterial and anti-biofilm activity of the ethanolic extract of M. communis on these strains was evaluated. Furthermore, the effect of this extract on the expression of biofilm-associated genes, icaA, icaD, bap, sarA, and agr, was studied. According to the results, all isolated strains were multidrug-resistant and showed resistance to oxacillin and tetracycline. Also, 96.15 and 88.46 % of them were resistant to gentamicin and erythromycin. However, the extract could effectively combat the strains. The minimum inhibitory concentration (MIC) against different strains ranged from 1.56 to 25 mg/ml and the minimum bactericidal concentration (MBC) was between 3.125 and 50 mg/ml. Even though most MRSA (67 %) strongly produced biofilm, the sub-MIC concentration of the extract destroyed the pre-formed biofilm and affected the bacterial cells inside the biofilm. It could also inhibit biofilm development by significantly decreasing the expression of icaA, icaD, sarA and bap genes involved in biofilm formation and development. In conclusion, the extract inhibits biofilm formation, ruins pre-formed biofilm, and kills cells living inside the biofilm. Furthermore, it down-regulates the expression of necessary genes and nips the biofilm formation in the bud.
Collapse
|
21
|
Abstract
Staphylococcus aureus (S. aureus) is the most common pathogen causing infections from skin to systemic infections. The success of S. aureus infections can partially be attributed to its antibiotic resistance and to its ability to form biofilm. An increasing prevalence of methicillin-resistant S. aureus (MRSA) becomes a global public health problem in recent decades. Here, the effects of tea catechin extracts on the growth and biofilm formation of three MRSA strains were investigated. The results revealed that tea catechin extracts potently suppressed MRSA growth, and the minimal inhibitory concentration of tea catechin extracts against these MRSA strains was 0.1 g/L. Then, tea catechin extracts inhibited biofilm formation of these strains in a dose-dependent manner measured with a colorimetric method, and the inhibitory effect was also demonstrated by scanning electron microscopy assay. Moreover, adhesin genes biofilm-associated protein (bap), bone sialoprotein-binding protein (bbp), collagen-binding protein (cna), clumping factors A (clfA), fibronectin binding protein A and B (fnbA and fnbB), and intercellular adhesion gene BC (icaBC) were scanned, and the results shown that fnbA and icaBC were present in these three strains. Furthermore, tea catechin extracts depressed fnbA and icaBC expression in the strains. Therefore, inhibition of biofilm formation by tea catechin extracts probably was associated with downregulation of fnbA and icaBC expression in these strains.
Collapse
|
22
|
Nakamura K, O'Neill AM, Williams MR, Cau L, Nakatsuji T, Horswill AR, Gallo RL. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep 2020; 10:21237. [PMID: 33277548 PMCID: PMC7718897 DOI: 10.1038/s41598-020-77790-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.
Collapse
Affiliation(s)
- Kouki Nakamura
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Laura Cau
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
- SILAB, R&D Department, Brive, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Rodríguez-Melcón C, Alonso-Hernando A, Riesco-Peláez F, García-Fernández C, Alonso-Calleja C, Capita R. Biovolume and spatial distribution of foodborne Gram-negative and Gram-positive pathogenic bacteria in mono- and dual-species biofilms. Food Microbiol 2020; 94:103616. [PMID: 33279059 DOI: 10.1016/j.fm.2020.103616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 μm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 μm3 ± 2131.0 μm3 (S. enterica), 58,418.3 μm3 ± 5944.9 μm3 (L. monocytogenes), 68,020.8 μm3 ± 5812.3 μm3 (MRSA) and 59,280.0 μm3 ± 4032.9 μm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.
Collapse
Affiliation(s)
- Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Alicia Alonso-Hernando
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Facultad de Ciencias de la Salud, Universidad Isabel I, E-09003, Burgos, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems Engineering and Automatic Control, University of León, E-24071, León, Spain
| | - Camino García-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
24
|
Gyawali R, Zimmerman T, Aljaloud SO, Ibrahim SA. Bactericidal activity of copper-ascorbic acid mixture against Staphylococcus aureus spp. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Achek R, Hotzel H, Nabi I, Kechida S, Mami D, Didouh N, Tomaso H, Neubauer H, Ehricht R, Monecke S, El-Adawy H. Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria. Pathogens 2020; 9:pathogens9020153. [PMID: 32102470 PMCID: PMC7168657 DOI: 10.3390/pathogens9020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilm-associated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilm-associated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria.
Collapse
Affiliation(s)
- Rachid Achek
- Faculty of Nature and Life and Earth Sciences, Djilali-Bounaama University, Soufay, Khemis-Miliana 44225, Algeria;
- Correspondence: (R.A.); (H.E.-A.)
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Ibrahim Nabi
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Souad Kechida
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Djamila Mami
- Faculty of Sciences, Yahia-Farès University, Urban Pole, 26000 Médéa, Algeria; (I.N.); (S.K.); (D.M.)
| | - Nassima Didouh
- Faculty of Nature and Life and Earth Sciences, Djilali-Bounaama University, Soufay, Khemis-Miliana 44225, Algeria;
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (R.E.); (S.M.)
- InfectoGnostics Research Campus Jena e. V., 07743 Jena, Germany
- Institute for Physical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (R.E.); (S.M.)
- InfectoGnostics Research Campus Jena e. V., 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (H.H.); (H.T.); (H.N.)
- Faculty of Veterinary Medicine, Kafrelsheik University, Kafr El-Sheik 35516, Egypt
- Correspondence: (R.A.); (H.E.-A.)
| |
Collapse
|
26
|
Capita R, Vicente-Velasco M, Rodríguez-Melcón C, García-Fernández C, Carballo J, Alonso-Calleja C. Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci Rep 2019; 9:15905. [PMID: 31685860 PMCID: PMC6828698 DOI: 10.1038/s41598-019-51907-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
The susceptibility of Cronobacter sakazakii ATCC 29544 (CS) and Yersinia enterocolitica ATCC 9610 (YE) to sodium hypochlorite (10% of active chlorine; SHY), peracetic acid (39% solution of peracetic acid in acetic acid; PAA) and benzalkonium chloride (BZK) was tested. Minimum inhibitory concentration (MIC) values (planktonic cells; microdilution broth method) of 3,800 ppm (SHY), 1,200 ppm (PAA) and 15 ppm (BZK) for CS, and 2,500 ppm (SHY), 1,275 ppm (PAA) and 20 ppm (BZK) for YE, were found. In some instances, an increase in growth rate was observed in presence of sub-MICs (0.25MIC, 0.50MIC or 0.75MIC) of biocides relative to the samples without biocides. The cultures exhibited an acquired tolerance to biocides and an increase in antibiotic resistance after exposure to sub-MICs of such disinfectants. Strains were able to form strong biofilms on polystyrene after 48 hours (confocal laser scanning microscopy), with average biovolumes in the observation field (14,161 µm2) of 242,201.0 ± 86,570.9 µm3 (CS) and 190,184.5 ± 40,860.3 µm3 (YE). Treatment of biofilms for 10 minutes with disinfectants at 1MIC or 2MIC reduced the biovolume of live cells. PAA (YE) and BZK (CS and YE) at 1MIC did not alter the percentage of dead cells relative to non-exposed biofilms, and their effect of countering biofilm was due principally to the detachment of cells. These results suggest that doses of PAA and BZK close to MICs might lead to the dissemination of live bacteria from biofilms with consequent hazards for public health.
Collapse
Affiliation(s)
- Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain
- Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - María Vicente-Velasco
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain
- Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain
- Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Camino García-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain
- Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Javier Carballo
- Area of Food Technology, University of Vigo, E-32004, Ourense, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain.
- Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|