1
|
Liu X, Yu K, Liu H, Phillips RP, He P, Liang X, Tang W, Terrer C, Novick KA, Bakpa EP, Zhao M, Gao X, Jin Y, Wen Y, Ye Q. Contrasting drought tolerance traits of woody plants is associated with mycorrhizal types at the global scale. THE NEW PHYTOLOGIST 2024. [PMID: 39238117 DOI: 10.1111/nph.20097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well-known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized. We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors. Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought-tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought-tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species. Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.
Collapse
Affiliation(s)
- Xiaorong Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Kailiang Yu
- Department of Ecology & Evolutionary Biology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Richard P Phillips
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Emily P Bakpa
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Min Zhao
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Xinbo Gao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Yi Jin
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Yin Wen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| |
Collapse
|
2
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Dubey S, Bhattacharjee A, Pradhan S, Kumar A, Sharma S. Composition of fungal communities upon multiple passaging of rhizosphere microbiome for salinity stress mitigation in Vigna radiata. FEMS Microbiol Ecol 2023; 99:fiad132. [PMID: 37838474 DOI: 10.1093/femsec/fiad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
The top-down approach of microbiome-mediated rhizosphere engineering has emerged as an eco-friendly approach for mitigating stress and enhancing crop productivity. It has been established to mitigate salinity stress in Vigna radiata using multi-passaging approach. During the process of acclimatization under increasing levels of salinity stress, the structure of rhizospheric microbial community undergoes dynamic changes, while facilitating stress mitigation in plants. In this study, using ITS-based amplicon sequencing, the dynamics of rhizosphere fungal community was unravelled over successive passages under salinity stress in V. radiata. Clear shifts were evident among the fungal community members under stress and non-stress conditions, upon application of acclimatized rhizosphere microbiome in V. radiata across successive passages. These shifts correlated with enhanced plant biometrics and reduced stress marker levels in plant. Significant changes in the fungal community structure were witnessed in the rhizosphere across specific passaging cycles under salinity stress, which possibly facilitated stress mitigation in V. radiata.
Collapse
Affiliation(s)
- Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Abhay Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Singh R, Saati AA, Faidah H, Bantun F, Jalal NA, Haque S, Rai AK, Srivastava M. Prospects of microbial cellulase production using banana peels wastes for antimicrobial applications. Int J Food Microbiol 2023; 388:110069. [PMID: 36640563 DOI: 10.1016/j.ijfoodmicro.2022.110069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme. Nevertheless, low-cost production of cellulase enzyme at industrial-level finds certain issues, and this may be mainly associated with the unavailability of cheap and effective substrate to be utilized in fermentation process. In this context, cellulosic wastes are counted as one of the suitable bioresources and have been well explored for low-cost and highly efficient cellulase enzyme productions. Further, banana peels waste is considered as the high cellulose & sugar containing food wastes which is renewable and hugely available worldwide. Therefore, the present review explores the possible utilizations of banana peels as a potential food waste to be employed as substrate to produce cellulase enzymes. Availability and compositional analysis of banana peels has been explored for the microbial cellulase production based on reported studies. Further, this review explores the applications of cellulase enzymes as antimicrobial agents. Based on the available studies and their evaluation, potential limitations and future suggestions for the production of cellulase enzymes and their applications as antibacterial agents have been provided, which have a high potential for numerous biomedical applications and may offer a new opportunity for industrial utility.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India; Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi 221005, India; LCB Fertilizers Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh-273015, India.
| |
Collapse
|
5
|
Habibi N, Al Salameen F, Vyas N, Rahman M, Kumar V, Shajan A, Zakir F, Razzack NA, Al Doaij B. Genome survey and genetic characterization of Acacia pachyceras O. Schwartz. FRONTIERS IN PLANT SCIENCE 2023; 14:1062401. [PMID: 36875582 PMCID: PMC9979705 DOI: 10.3389/fpls.2023.1062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Acacia pachyceras O. Schwartz (Leguminoseae), a woody tree growing in Kuwait is critically endangered. High throughput genomic research is immediately needed to formulate effective conservation strategies for its rehabilitation. We therefore, performed a genome survey analysis of the species. Whole genome sequencing generated ~97 Gb of raw reads (92x coverage) with a per base quality score above Q30. The k-mer analysis (17 mer) revealed its genome to be 720Mb in size with an average guanine-cytosine (GC) ratio of 35%. The assembled genome was analyzed for repeat regions (45.4%-interspersed repeats; 9%-retroelements; 2%-DNA transposons). BUSCO assessment of completeness of genome identified 93% of assembly to be complete. Gene alignments in BRAKER2 yielded 34,374 transcripts corresponding to 33,650 genes. Average length of coding sequences and protein sequences were recorded as 1,027nts and 342aa, respectively. GMATA software filtered a total of 901,755 simple sequence repeats (SSRs) regions against which 11,181 unique primers were designed. A subset of 110 SSR primers were PCR validated and demonstrated for its application in genetic diversity analysis of Acacia. The SSR primers successfully amplified A. gerrardii seedlings DNA depicting cross transferability among species. The principal coordinate analysis and the split decomposition tree (bootstrapping runs of 1000 replicates) distributed the Acacia genotypes into two clusters. The flow cytometry analysis revealed the A. pachyceras genome to be polyploid (6x). The DNA content was predicted as 2.46 pg, 1.23 pg, and 0.41 pg corresponding to 2C DNA, 1C DNA and 1Cx DNA, respectively. The results provide a base for further high throughput genomic studies and molecular breeding for its conservation.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Fadila Al Salameen
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nishant Vyas
- Department of Immunology, Logical Life Sciences, Pune, India
| | - Muhammad Rahman
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Vinod Kumar
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Bashayer Al Doaij
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
6
|
Alrajhei K, Saleh I, Abu‐Dieyeh MH. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. PLANT DIRECT 2022; 6:e369. [PMID: 35028492 PMCID: PMC8743365 DOI: 10.1002/pld3.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Recently more attention has been observed toward the role of arbuscular mycorrhizal fungi (AMF) in plant growth. Qatar belongs to the Arabian Gulf region with hot and dry climatic conditions. The study aims to investigate the species composition and abundance of AMF in Qatar, rhizosphere soil samples, and roots of plants from 12 families and 8 different locations. The AMF were identified based on the sequencing of the polymerase chain reaction (PCR) product of the amplified conserved ITS region. The reported AMF infection rate was found to vary with location and plant species. Tamarix aphylla recorded the highest AMF infection rate (100%), followed by Blepharis ciliaris (98%) and Sporobolus ioclados (92%). AMF spore counts ranged from 29.3 spores in Blepharis ciliaris to 643 spores/100 g soil in Fagonia indica. No correlation was detected between colonization rate and spore counts. While all AMF identified at species levels were reported in other regions, new species are still expected since some were identified only at higher taxonomic levels. Claroideoglomus drummondii and Rhizophagus irregularis were the most widespread while Claroideoglomus claroideum and Diversispora aurantia were the least present. Our results fill the gap of knowledge of AMF in the region and opens new research toward its future applications for sustainable agriculture.
Collapse
Affiliation(s)
- Khazna Alrajhei
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Mohammed H. Abu‐Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| |
Collapse
|
7
|
Li Y, Heal K, Wang S, Cao S, Zhou C. Chemodiversity of Soil Dissolved Organic Matter and Its Association With Soil Microbial Communities Along a Chronosequence of Chinese Fir Monoculture Plantations. Front Microbiol 2021; 12:729344. [PMID: 34745032 PMCID: PMC8566896 DOI: 10.3389/fmicb.2021.729344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The total dissolved organic matter (DOM) content of soil changes after vegetation transformation, but the diversity of the underlying chemical composition has not been explored in detail. Characterizing the molecular diversity of DOM and its fate enables a better understanding of the soil quality of monoculture forest plantations. This study characterized the chemodiversity of soil DOM, assessed the variation of the soil microbial community composition, and identified specific linkages between DOM molecules and microbial community composition in soil samples from a 100-year chronosequence of Chinese fir monoculture plantations. With increasing plantation age, soil total carbon and dissolved organic carbon first decreased and then increased, while soil nutrients, such as available potassium and phosphorus and total nitrogen, potassium, and phosphorus, increased significantly. Lignin/carboxylic-rich alicyclic molecule (CRAM)-like structures accounted for the largest proportion of DOM, while aliphatic/proteins and carbohydrates showed a decreasing trend along the chronosequence. DOM high in H/C (such as lipids and aliphatic/proteins) degraded preferentially, while low-H/C DOM (such as lignin/CRAM-like structures and tannins) showed recalcitrance during stand development. Soil bacterial richness and diversity increased significantly as stand age increased, while soil fungal diversity tended to increase during early stand development and then decrease. The soil microbial community had a complex connectivity and strong interaction with DOM during stand development. Most bacterial phyla, such as Acidobacteria, Chloroflexi, and Firmicutes, were very significantly and positively correlated with DOM molecules. However, Verrucomicrobia and almost all fungi, such as Basidiomycota and Ascomycota, were significantly negatively correlated with DOM molecules. Overall, the community of soil microorganisms interacted closely with the compositional variability of DOM in the monoculture plantations investigated, both by producing and consuming DOM. This suggests that DOM is not intrinsically recalcitrant but instead persists in soils as a result of simultaneous consumption, transformation, and formation by soil microorganisms with extended stand ages of Chinese fir plantations.
Collapse
Affiliation(s)
- Ying Li
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kate Heal
- School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Shuzhen Wang
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Cao
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuifan Zhou
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Samarasinghe H, Lu Y, Aljohani R, Al-Amad A, Yoell H, Xu J. Global patterns in culturable soil yeast diversity. iScience 2021; 24:103098. [PMID: 34622153 PMCID: PMC8479693 DOI: 10.1016/j.isci.2021.103098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Yeasts, broadly defined as unicellular fungi, fulfill essential roles in soil ecosystems as decomposers and nutrition sources for fellow soil-dwellers. Broad-scale investigations of soil yeasts pose a methodological challenge as metagenomics are of limited use for identifying this group of fungi. Here we characterize global soil yeast diversity using fungal DNA barcoding on 1473 yeasts cultured from 3826 soil samples obtained from nine countries in six continents. We identify mean annual precipitation and international air travel as two significant correlates with soil yeast community structure and composition worldwide. Evidence for anthropogenic influences on soil yeast communities, directly via travel and indirectly via altered rainfall patterns resulting from climate change, is concerning as we found common infectious yeasts frequently distributed in soil in several countries. Our discovery of 41 putative novel species highlights the continued need for culture-based studies to advance our knowledge of environmental yeast diversity. Mean annual rainfall is a positive predictor of global soil yeast diversity International travel predicts number of shared yeast species between countries 41 novel yeast species were discovered from soils in eight countries Continued culture-based studies are needed to investigate soil yeast populations
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Renad Aljohani
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Infectious Diseases, South Kensington Campus, Imperial College London, London, UK
| | - Ahmad Al-Amad
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Heather Yoell
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
He C, Wang W, Hou J, Li X. Dark Septate Endophytes Isolated From Wild Licorice Roots Grown in the Desert Regions of Northwest China Enhance the Growth of Host Plants Under Water Deficit Stress. Front Microbiol 2021; 12:522449. [PMID: 34248857 PMCID: PMC8260703 DOI: 10.3389/fmicb.2021.522449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore dark septate endophytes (DSE) that may improve the cultivation of medicinal plants in arid ecosystems. We isolated and identified eight DSE species (Acremonium nepalense, Acrocalymma vagum, Alternaria chartarum, Alternaria chlamydospora, Alternaria longissima, Darksidea alpha, Paraphoma chrysanthemicola, and Preussia terricola) colonizing the roots of wild licorice (Glycyrrhiza uralensis) in the desert areas of northwest China. Moreover, we investigated the osmotic stress tolerance of the DSE using pure culture, along with the performance of licorice plants inoculated with the DSE under drought stress in a growth chamber, respectively. Here, five species were first reported in desert habitats. The osmotic-stress tolerance of DSE species was highly variable, A. chlamydospora and P. terricola increased the total biomass and root biomass of the host plant. All DSE except A. vagum and P. chrysanthemicola increased the glycyrrhizic acid content; all DSE except A. chartarum increased the glycyrrhizin content under drought stress. DSE × watering regimen improved the glycyrrhizic acid content, soil organic matter, and available nitrogen. Structural equation model analysis showed that DSE × watering regimen positively affected soil organic matter, and total biomass, root length, glycyrrhizic acid, and glycyrrhizin (Shapotou site); and positively affected soil organic matter, available phosphorus, and glycyrrhizin (Minqin site); and positively affected the root length (Anxi site). DSE from the Shapotou site accounted for 8.0, 13.0, and 11.3% of the variations in total biomass, root biomass, and active ingredient content; DSE from the Minqin site accounted for 6.6 and 8.3% of the variations in total biomass and root biomass; DSE from the Anxi site accounted for 4.2 and 10.7% of the variations in total biomass and root biomass. DSE × watering regimen displayed a general synergistic effect on plant growth and active ingredient contents. These findings suggested that the DSE-plant interactions were affected by both DSE species and DSE originating habitats. As A. chlamydospora and P. terricola positively affected the total biomass, root biomass, and active ingredient content of host plants under drought stress, they may have important uses as promoters for the cultivation of licorice in dryland agriculture.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenquan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Junling Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Sohn SI, Ahn JH, Pandian S, Oh YJ, Shin EK, Kang HJ, Cho WS, Cho YS, Shin KS. Dynamics of Bacterial Community Structure in the Rhizosphere and Root Nodule of Soybean: Impacts of Growth Stages and Varieties. Int J Mol Sci 2021; 22:5577. [PMID: 34070397 PMCID: PMC8197538 DOI: 10.3390/ijms22115577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial communities in rhizosphere and root nodules have significant contributions to the growth and productivity of the soybean (Glycine max (L.) Merr.). In this report, we analyzed the physiological properties and dynamics of bacterial community structure in rhizosphere and root nodules at different growth stages using BioLog EcoPlate and high-throughput sequencing technology, respectively. The BioLog assay found that the metabolic capability of rhizosphere is in increasing trend in the growth of soybeans as compared to the bulk soil. As a result of the Illumina sequencing analysis, the microbial community structure of rhizosphere and root nodules was found to be influenced by the variety and growth stage of the soybean. At the phylum level, Actinobacteria were the most abundant in rhizosphere at all growth stages, followed by Alphaproteobacteria and Acidobacteria, and the phylum Bacteroidetes showed the greatest change. But, in the root nodules Alphaproteobacteria were dominant. The results of the OTU analysis exhibited the dominance of Bradyrhizobium during the entire stage of growth, but the ratio of non-rhizobial bacteria showed an increasing trend as the soybean growth progressed. These findings revealed that bacterial community in the rhizosphere and root nodules changed according to both the variety and growth stages of soybean in the field.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Jae-Hyung Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Jeonju 55365, Korea;
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Young-Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju 54883, Korea;
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Hyeon-Jung Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Woo-Suk Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Youn-Sung Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.P.); (E.-K.S.); (H.-J.K.); (W.-S.C.); (Y.-S.C.)
| | - Kong-Sik Shin
- Audit and Inspection Office, Rural Development of Administration, Jeonju 54875, Korea;
| |
Collapse
|
11
|
Arid Ecosystem Vegetation Canopy-Gap Dichotomy: Influence on Soil Microbial Composition and Nutrient Cycling Functional Potential. Appl Environ Microbiol 2021; 87:AEM.02780-20. [PMID: 33310716 PMCID: PMC8090872 DOI: 10.1128/aem.02780-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increasing temperatures and drought in desert ecosystems are predicted to cause decreased vegetation density combined with barren ground expansion. It remains unclear how nutrient availability, microbial diversity, and the associated functional capacity vary between vegetated-canopy and gap soils. The specific aim of this study was to characterize canopy vs gap microsite effect on soil microbial diversity, the capacity of gap soils to serve as a canopy-soil microbial reservoir, nitrogen (N)-mineralization genetic potential (ureC gene abundance) and urease enzyme activity, and microbial-nutrient pool associations in four arid-hyperarid geolocations of the western Sonoran Desert, Arizona (USA). Microsite combined with geolocation explained 57% and 45.8% of the observed variation in bacterial/archaeal and fungal community composition, respectively. A core microbiome of amplicon sequence variants was shared between the canopy and gap soil communities; however, canopy-soils included abundant taxa that were not present in associated gap communities, thereby suggesting that these taxa cannot be sourced from the associated gap soils. Linear mixed-effects models showed that canopy-soils have significantly higher microbial richness, nutrient content, and organic N-mineralization genetic and functional capacity. Furthermore, ureC gene abundance was detected in all samples suggesting that ureC is a relevant indicator of N-mineralization in deserts. Additionally, novel phylogenetic associations were observed for ureC with the majority belonging to Actinobacteria and uncharacterized bacteria. Thus, key N-mineralization functional capacity is associated with a dominant desert phylum. Overall, these results suggest that lower microbial diversity and functional capacity in gap soils may impact ecosystem sustainability as aridity drives open-space expansion in deserts.
Collapse
|
12
|
Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms 2021; 9:microorganisms9020229. [PMID: 33499315 PMCID: PMC7912695 DOI: 10.3390/microorganisms9020229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts cover a significant proportion of the Earth’s surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.
Collapse
|
13
|
Abed RM. Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Alsharif W, Saad MM, Hirt H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front Microbiol 2020; 11:1666. [PMID: 32793155 PMCID: PMC7387410 DOI: 10.3389/fmicb.2020.01666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A large portion of the earth's surface consists of arid, semi-arid and hyper-arid lands. Life in these regions is profoundly challenged by harsh environmental conditions of water limitation, high levels of solar radiation and temperature fluctuations, along with soil salinity and nutrient deficiency, which have serious consequences on plant growth and survival. In recent years, plants that grow in such extreme environments and their naturally associated beneficial microbes have attracted increased interest. The rhizosphere, rhizosheath, endosphere, and phyllosphere of desert plants display a perfect niche for isolating novel microbes. They are well adapted to extreme environments and offer an unexploited reservoir for bio-fertilizers and bio-control agents against a wide range of abiotic and biotic stresses that endanger diverse agricultural ecosystems. Their properties can be used to improve soil fertility, increase plant tolerance to various environmental stresses and crop productivity as well as benefit human health and provide enough food for a growing human population in an environment-friendly manner. Several initiatives were launched to discover the possibility of using beneficial microbes. In this review, we will be describing the efforts to explore the bacterial diversity associated with desert plants in the arid, semi-arid, and hyper-arid regions, highlighting the latest discoveries and applications of plant growth promoting bacteria from the most studied deserts around the world.
Collapse
Affiliation(s)
- Wiam Alsharif
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Fuentes A, Herrera H, Charles TC, Arriagada C. Fungal and Bacterial Microbiome Associated with the Rhizosphere of Native Plants from the Atacama Desert. Microorganisms 2020; 8:microorganisms8020209. [PMID: 32033093 PMCID: PMC7074712 DOI: 10.3390/microorganisms8020209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
The rhizosphere microbiome is key in survival, development, and stress tolerance in plants. Salinity, drought, and extreme temperatures are frequent events in the Atacama Desert, considered the driest in the world. However, little information of the rhizosphere microbiome and its possible contribution to the adaptation and tolerance of plants that inhabit the desert is available. We used a high-throughput Illumina MiSeq sequencing approach to explore the composition, diversity, and functions of fungal and bacterial communities of the rhizosphere of Baccharis scandens and Solanum chilense native plants from the Atacama Desert. Our results showed that the fungal phyla Ascomycota and Basidiomycota and the bacterial phyla Actinobacteria and Proteobacteria were the dominant taxa in the rhizosphere of both plants. The linear discriminant analysis (LDA) effect size (LefSe) of the rhizosphere communities associated with B. scandens showed the genera Penicillium and Arthrobacter were the preferential taxa, whereas the genera Oidiodendron and Nitrospirae was the preferential taxa in S. chilense. Both plant showed similar diversity, richness, and abundance according to Shannon index, observed OTUs, and evenness. Our results indicate that there are no significant differences (p = 0.1) between the fungal and bacterial communities of both plants, however through LefSe, we find taxa associated with each plant species and the PCoA shows a separation between the samples of each species. This study provides knowledge to relate the assembly of the microbiome to the adaptability to drought stress in desert plants.
Collapse
Affiliation(s)
- Alejandra Fuentes
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Francisco Salazar, Temuco 01145, Chile; (A.F.); (H.H.)
| | - Héctor Herrera
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Francisco Salazar, Temuco 01145, Chile; (A.F.); (H.H.)
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1; Canada;
| | - Cesar Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Francisco Salazar, Temuco 01145, Chile; (A.F.); (H.H.)
- Correspondence: ; Tel.: +56-045-2325662; Fax: +56-045-2341467
| |
Collapse
|
16
|
|
17
|
Song J, Liang JF, Mehrabi-Koushki M, Krisai-Greilhuber I, Ali B, Bhatt VK, Cerna-Mendoza A, Chen B, Chen ZX, Chu HL, Corazon-Guivin MA, da Silva GA, De Kesel A, Dima B, Dovana F, Farokhinejad R, Ferisin G, Guerrero-Abad JC, Guo T, Han LH, Ilyas S, Justo A, Khalid AN, Khodadadi-Pourarpanahi S, Li TH, Liu C, Lorenzini M, Lu JK, Mumtaz AS, Oehl F, Pan XY, Papp V, Qian W, Razaq A, Semwal KC, Tang LZ, Tian XL, Vallejos-Tapullima A, van der Merwe NA, Wang SK, Wang CQ, Yang RH, Yu F, Zapparoli G, Zhang M, Antonín V, Aptroot A, Aslan A, Banerjee A, Chatterjee S, Dirks AC, Ebrahimi L, Fotouhifar KB, Ghosta Y, Kalinina LB, Karahan D, Liu J, Maiti MK, Mookherjee A, Nath PS, Panja B, Saha J, Ševčíková H, Voglmayr H, Yazıcı K, Haelewaters D. Fungal Systematics and Evolution: FUSE 5. SYDOWIA 2019; 71:141-245. [PMID: 31975743 PMCID: PMC6978154 DOI: 10.12905/0380.sydowia71-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thirteen new species are formally described: Cortinarius brunneocarpus from Pakistan, C. lilacinoarmillatus from India, Curvularia khuzestanica on Atriplex lentiformis from Iran, Gloeocantharellus neoechinosporus from China, Laboulbenia bernaliana on species of Apenes, Apristus, and Philophuga (Coleoptera, Carabidae) from Nicaragua and Panama, L. oioveliicola on Oiovelia machadoi (Hemiptera, Veliidae) from Brazil, L. termiticola on Macrotermes subhyalinus (Blattodea, Termitidae) from the DR Congo, Pluteus cutefractus from Slovenia, Rhizoglomus variabile from Peru, Russula phloginea from China, Stagonosporopsis flacciduvarum on Vitis vinifera from Italy, Strobilomyces huangshanensis from China, Uromyces klotzschianus on Rumex dentatus subsp. klotzschianus from Pakistan. The following new records are reported: Alternaria calendulae on Calendula officinalis from India; A. tenuissima on apple and quince fruits from Iran; Candelariella oleaginescens from Turkey; Didymella americana and D. calidophila on Vitis vinifera from Italy; Lasiodiplodia theobromae causing tip blight of Dianella tasmanica 'variegata' from India; Marasmiellus subpruinosus from Madeira, Portugal, new for Macaronesia and Africa; Mycena albidolilacea, M. tenuispinosa, and M. xantholeuca from Russia; Neonectria neomacrospora on Madhuca longifolia from India; Nothophoma quercina on Vitis vinifera from Italy; Plagiosphaera immersa on Urtica dioica from Austria; Rinodina sicula from Turkey; Sphaerosporium lignatile from Wisconsin, USA; and Verrucaria murina from Turkey. Multi-locus analysis of ITS, LSU, rpb1, tef1 sequences revealed that P. immersa, commonly classified within Gnomoniaceae (Diaporthales) or as Sordariomycetes incertae sedis, belongs to Magnaporthaceae (Magnaporthales). Analysis of a six-locus Ascomycota-wide dataset including SSU and LSU sequences of S. lignatile revealed that this species, currently in Ascomycota incertae sedis, belongs to Pyronemataceae (Pezizomycetes, Pezizales).
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Jun-Feng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Mehdi Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Barkat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Biochemistry, Genetics and Microbiology, Division of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | | | - Agustín Cerna-Mendoza
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Bin Chen
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Zai-Xiong Chen
- Management Bureau of Danxiashan National Nature Reserve of Guangdong, Shaoguan 512300, China
| | - Hong-Long Chu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Gladstone Alves da Silva
- Departamento de Micologia, CB, Universidade Federal de Pernambuco, Av. da engenharia s/n, Cidade Universitária, 50740-600, Recife, PE, Brazil
| | - André De Kesel
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Francesco Dovana
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - Reza Farokhinejad
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Juan Carlos Guerrero-Abad
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
- Instituto Nacional de Innovación Agraria (INIA). Dirección General de Recursos Genéticos y Biotecnología. Av. La Molina 1981, La Molina - Lima, Peru
| | - Ting Guo
- Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Sobia Ilyas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Alfredo Justo
- New Brunswick Museum, 277 Douglas Ave., Saint John, New Brunswick, E2K 1E5, Canada
| | | | | | - Tai-Hui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | | | - Jun-Kun Lu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Müller-Thurgau-Strasse 29, CH-8820 Wädenswil, Switzerland
| | - Xue-Yu Pan
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Viktor Papp
- Department of Botany, Szent István University, H-1518 Budapest, Hungary
| | - Wu Qian
- Bureau of Parks and Woods of Mt. Huangshan Administrative Committee, Huangshan, Anhui 245000, China
| | - Abdul Razaq
- Discipline of Botany, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences (UVAS), Ravi Campus, Pattoki, Pakistan
| | - Kamal C. Semwal
- Department of Biology, College of Sciences, Eritrea Institute of Technology, Mai Nafhi, Asmara, Eritrea
| | - Li-Zhou Tang
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Xue-Lian Tian
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Adela Vallejos-Tapullima
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca 315, Morales, Peru
| | - Nicolaas A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Division of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Sheng-Kun Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Chao-Qun Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Rui-Heng Yang
- Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fei Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, P.R. China
| | - Giacomo Zapparoli
- Università degli Studi di Verona, Dipartimento di Biotecnologie, Italy
| | - Ming Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application & Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Vladimir Antonín
- Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic
| | - André Aptroot
- ABL Herbarium G.v.d.Veenstraat, 107 NL-3762, XK Soest, The Netherlands
| | - Ali Aslan
- Yüzüncü Yıl University, Faculty of Pharmacy, 65080 Campus, Van, Turkey; Kyrgyz-Turkish Manas University, Faculty of Arts and Science, Dept. of Biology, Bishkek, Kyrgyzstan
| | - Arghya Banerjee
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Subrata Chatterjee
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Alden C. Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, 4050 Biological Sciences Building, Ann Arbor, MI 48109, USA
| | - Leila Ebrahimi
- Department of Entomology and Plant Pathology, Aburaihan Campus, University of Tehran, Tehran, 33916-53755, Iran
| | - Khalil-Berdi Fotouhifar
- Department of Plant Protection, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, P. O. Box 165, Iran
| | - Lyudmila B. Kalinina
- Russian Academy of Sciences, Komarov Botanical Institute, Prof. Popov Str. 2, St. Petersburg RU-197376, Russia
| | - Dilara Karahan
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Jingyu Liu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Mrinal Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Abhirup Mookherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Partha Sarathi Nath
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Birendranath Panja
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Jayanta Saha
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia-741252, West Bengal, India
| | - Hana Ševčíková
- Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, Universität Wien, Rennweg 14, 1030 Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, BOKU-University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82/I, 1190 Wien, Austria
| | - Kenan Yazıcı
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
- Herbario UCH, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Panama
| |
Collapse
|