1
|
Wen X, Xiang L, Harindintwali JD, Wang Y, He C, Fu Y, Wei S, Hashsham SA, Jiang J, Jiang X, Wang F. Mitigating risks from atrazine drift to soybeans through foliar pre-spraying with a degrading bacterium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136224. [PMID: 39442306 DOI: 10.1016/j.jhazmat.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Herbicides play a crucial role in managing weeds in agriculture, ensuring the productivity and quality of crops. However, herbicide drift poses a significant threat to sensitive plants, necessitating the consideration of ecosystem-based solutions to address this issue. In this study, foliar pre-spraying of atrazine-degrading Paenarthrobacter sp. AT5 was proposed as a new approach to mitigate the risks associated with atrazine drift on soybeans. Exposure to atrazine reduced chlorophyll levels and disturbed the antioxidant system and metabolic processes in soybean leaves, ultimately causing leaves to turn yellow. However, by pre-spraying, strain AT5 successfully colonized the surface of soybean leaves and mitigated the harmful effects of atrazine. This was achieved by slowing down atrazine absorption, expediting its reduction (half-life decreased from 2.22 d to 0.86 d), altering its degradation pathway (enhancing hydroxylation while weakening alkylation), and enhancing the interaction within phyllosphere bacteria communities. This study introduces a new approach that is both eco-friendly and user-friendly for reducing the risks of herbicide drift to sensitive crops, hence promoting the development of mixed cropping.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xu X, Jiang J. Engineering microbiomes for enhanced bioremediation. PLoS Biol 2024; 22:e3002951. [PMID: 39680517 DOI: 10.1371/journal.pbio.3002951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Bioremediation using synthetic microbiomes offers significant advantages over traditional single-strain-based approaches. In this Perspective, we outline 5 important considerations for the rational design of pollutant-degrading microbiomes for enhanced bioremediation.
Collapse
Affiliation(s)
- Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
3
|
Shi G, Hou R, Fu Q, Li T, Chen Q. Effects of biochar and compost on microbial community assembly and metabolic processes in glyphosate, imidacloprid and pyraclostrobin polluted soil under freezethaw cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134397. [PMID: 38677114 DOI: 10.1016/j.jhazmat.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
4
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
5
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Liu Z, Han L, Zhang X, Chen S, Wang X, Fang H. Core bacteria carrying the genes associated with the degradation of atrazine in different soils. ENVIRONMENT INTERNATIONAL 2023; 181:108303. [PMID: 37948867 DOI: 10.1016/j.envint.2023.108303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine residues can pose serious threats to soil ecology and human health. Currently, the underlying relationship between soil microbial communities and the degradation genes associated with atrazine degradation remains unclear. In this study, the degradation characteristics of atrazine was investigated in ten different soil types. Further, diversity and abundance of degradation genes and succession of the bacterial community were also studied. The degradation of 10 mg/kg atrazine in different soil types exhibited an initial rapid trend followed by a gradual slowdown, adhering to the first-order kinetic equation. Atrazine significantly increased the absolute abundance of atz degradation genes. The increase in the absolute abundance of atzC gene was the largest, whereas that of atzA gene was the smallest, and the trzD gene was only detected in the Binzhou loam soil. Co-occurrence network analysis showed that the number of potential bacterial hosts of atzC was the highest compared with the other atz genes. Atrazine also altered the structural composition of the soil microbial community. The relative abundances of Ochrobactrum, Nocardiopsis, Lactobacillus, and Brevibacterium was increased in the atrazine-treated soils, while those of Conexibate, Solirubacter, and Micromonospora was decreased significantly compared with the control. Additionally, four atrazine-degrading bacterial strains Rhizobium AT1, Stenotrophomonas AT2, Brevibacterium AT3, and Bacillus AT4 were isolated from the atrazine-treated soils. After 14 d for inoculation, their degradation rate for 10 mg/L atrazine ranged from 17.56 % to 30.55 %. Moreover, the relative abundances of the bacterial genera, including these four isolates, in the atrazine-treated soil were significantly higher than those in the control, indicating that they were involved in the synergistic degradation of atrazine in the soil. This study revealed the degradation characteristics of atrazine, distribution of degradation genes, and succession of microbial communities, and explored the internal relationship between microbial community structure and atrazine degradation mechanisms in different soil types.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xin Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
8
|
Hu D, Wu J, Fan L, Li S, Jia R. Aerobic Degradation Characteristics and Mechanism of Decabromodiphenyl Ether (BDE-209) Using Complex Bacteria Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17012. [PMID: 36554891 PMCID: PMC9778866 DOI: 10.3390/ijerph192417012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Complex bacteria communities that comprised Brevibacillus sp. (M1) and Achromobacter sp. (M2) with effective abilities of degrading decabromodiphenyl ether (BDE-209) were investigated for their degradation characteristics and mechanisms under aerobic conditions. The experimental results indicated that 88.4% of 10 mg L-1 BDE-209 could be degraded after incubation for 120 h under the optimum conditions of pH 7.0, 30 °C and 15% of the inoculation volume, and the addition ratio of two bacterial suspensions was 1:1. Based on the identification of BDE-209 degradation products via liquid chromatography-mass spectrometry (LC-MS) analysis, the biodegradation pathway of BDE-209 was proposed. The debromination, hydroxylation, deprotonation, breakage of ether bonds and ring-opening processes were included in the degradation process. Furthermore, intracellular enzymes had the greatest contribution to BDE-209 biodegradation, and the inhibition of piperyl butoxide (PB) for BDE-209 degradation revealed that the cytochrome P450 (CYP) enzyme was likely the key enzyme during BDE-209 degradation by bacteria M (1+2). Our study provided alternative ideas for the microbial degradation of BDE-209 by aerobic complex bacteria communities in a water system.
Collapse
Affiliation(s)
- Dingfan Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Tusher TR, Inoue C, Chien MF. Efficient biodegradation of 1,4-dioxane commingled with additional organic compound: Role of interspecies interactions within consortia. CHEMOSPHERE 2022; 308:136440. [PMID: 36116621 DOI: 10.1016/j.chemosphere.2022.136440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
10
|
Qin Z, Zhao Z, Xia L, Wang S. Pollution pressure and soil depth drive prokaryotic microbial assemblage and co-occurrence patterns in an organic polluted site. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129570. [PMID: 35999754 DOI: 10.1016/j.jhazmat.2022.129570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Organic polluted sites have become a global concern of soil contamination, yet little is known about microbial vertical distribution and community assembly in organic polluted sites. Here, high-throughput sequencing technology was employed to investigate prokaryotic microbial diversity and community assembly along soil profile in an abandoned chemical organic contaminated site. Results showed that there was no significant difference (P > 0.05) observed in microbial alpha diversity among different soil layers, whereas the structure of microbial communities presented significantly different (P < 0.05) in the superficial layer (0-0.5 m) compared with intermediate (1-1.5 m) and bottom (2.5-3 m) layers. Soil prokaryotic microbial community evolved to possess the potential of degrading organic pollutants under long-term organic pollution stress. A relatively homogeneous environment created by the organic polluted site mainly induced the ecological process of homogeneous selection driving community assembly, while dispersal limitation gained importance with the increase of soil depth. Organic contaminants were identified as the key driver of destabilizing co-occurrence networks, while the frequent cooperative behaviors among species could combat organic pollution stress and sustain prokaryotic community stability. Collectively, pollution pressure and soil depth jointly affected prokaryotic microbial assemblage and co-occurrence that underpinned the spatial scaling patterns of organic contaminated sites microbiota.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| |
Collapse
|
11
|
Ke M, Xu N, Zhang Z, Qiu D, Kang J, Lu T, Wang T, Peijnenburg WJGM, Sun L, Hu B, Qian H. Development of a machine‐learning model to identify the impacts of pesticides characteristics on soil microbial communities from high‐throughput sequencing data. Environ Microbiol 2022; 24:5561-5573. [DOI: 10.1111/1462-2920.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Mingjing Ke
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Nuohan Xu
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Zhenyan Zhang
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Danyan Qiu
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Jian Kang
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Tao Lu
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Tingzhang Wang
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province Hangzhou P.R. of China
| | - W. J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML) Leiden University RA Leiden the Netherlands
- National Institute of Public Health and the Environment (RIVM) , Center for Safety of Substances and Products, P.O. Box 1 Bilthoven the Netherlands
| | - Liwei Sun
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| | - Baolan Hu
- Department of Environmental Science Zhejiang University Hangzhou P.R. of China
| | - Haifeng Qian
- College of Environment Zhejiang University of Technology Hangzhou P.R. of China
| |
Collapse
|
12
|
Nguyen TLA, Dang HTC, Dat TTH, Brandt BW, Röling WFM, Brouwer A, van Spanning RJM. Correlating biodegradation kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the dynamics of microbial communities originating from soil in Vietnam contaminated with herbicides and dioxins. Front Microbiol 2022; 13:923432. [PMID: 36033897 PMCID: PMC9404497 DOI: 10.3389/fmicb.2022.923432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
We studied the succession of bacterial communities during the biodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The communities originated from a mesocosm with soil from Bien Hoa airbase in Vietnam heavily contaminated with herbicides and dioxins. They were grown in defined media with different carbon and Gibbs energy sources and 2,3,7,8-TCDD. Cultures with dimethyl sulfoxide (DMSO) as the sole carbon and energy source degraded about 95% of 2,3,7,8-TCDD within 60 days of cultivation. Those with an additional 1 mM of vanillin did that in roughly 90 days. Further 16S rRNA gene amplicon sequencing showed that the increase in relative abundance of members belonging to the genera Bordetella, Sphingomonas, Proteiniphilum, and Rhizobium correlated to increased biodegradation of 2,3,7,8-TCDD in these cultures. A higher concentration of vanillin slowed down the biodegradation rate. Addition of alternative carbon and Gibbs energy sources, such as amino acids, sodium lactate and sodium acetate, even stopped the degradation of 2,3,7,8-TCDD completely. Bacteria from the genera Bordetella, Achromobacter, Sphingomonas and Pseudomonas dominated most of the cultures, but the microbial profiles also significantly differed between cultures as judged by non-metric multidimensional scaling (NMDS) analyses. Our study indicates that 2,3,7,8-TCDD degradation may be stimulated by bacterial communities preadapted to a certain degree of starvation with respect to the carbon and energy source. It also reveals the succession and abundance of defined bacterial genera in the degradation process.
Collapse
Affiliation(s)
- Thi Lan Anh Nguyen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- *Correspondence: Thi Lan Anh Nguyen,
| | - Ha Thi Cam Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Thua Thien Hue, Vietnam
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilfred F. M. Röling
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Amsterdam, Netherlands
- Department of Ecological Science, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
13
|
Impact of Paenarthrobacter ureafaciens ZF1 on the soil enzyme activity and microbial community during the bioremediation of atrazine-contaminated soils. BMC Microbiol 2022; 22:146. [PMID: 35610563 PMCID: PMC9128208 DOI: 10.1186/s12866-022-02556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Bioremediation of atrazine-contaminated soil is considered a safe and effective approach in removing contaminates from the soil. However, the effects of adding foreign organisms to assist bioremediation on soil environmental quality and ecosystem are unclear. Here, the ecological remediation potential of strain Paenarthrobacter ureafaciens ZF1 on atrazine-contaminated soil was investigated through miniature experiments using variations in soil enzymes and bacterial communities as indicators. The results showed that strain ZF1 accelerated atrazine degradation, which could completely degrade atrazine at concentrations of 100 mg·L− 1 atrazine within 2 h in liquid medium and could remove up to 99.3% of atrazine (100 mg·kg− 1 in soil) within 6 days. During soil bioremediation, atrazine promoted the activities of urease and cellulase, and inhibited the activities of sucrase and catalase, while the strain ZF1 significantly promoted the activities of these four enzymes. High-throughput sequencing of 16S rRNA genes showed that ZF1 affected the relative abundance and bacterial community structure, and promoted bacterial diversity and evenness. Furthermore, redundancy analysis revealed a certain correlation among the strain ZF1, atrazine residue, soil enzyme activity, and soil bacterial community. The strain ZF1 in this work demonstrated remarkable potential for ecological restoration, and can be an effective and environmentally friendly alternative in remediating atrazine-contaminated soil.
Collapse
|
14
|
Jia W, Li N, Yang T, Dai W, Jiang J, Chen K, Xu X. Bioaugmentation of Atrazine-Contaminated Soil With Paenarthrobacter sp. Strain AT-5 and Its Effect on the Soil Microbiome. Front Microbiol 2021; 12:771463. [PMID: 34956132 PMCID: PMC8692732 DOI: 10.3389/fmicb.2021.771463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Atrazine, a triazine herbicide, is widely used around the world. The residue of atrazine due to its application in the fore-rotating crop maize has caused phytotoxicity to the following crop sweet potato in China. Bioaugmentation of atrazine-contaminated soil with atrazine-degrading strains is considered as the most potential method to remove atrazine from soil. Nevertheless, the feasibility of bioaugmentation and its effect on soil microbiome still need investigation. In this study, Paenarthrobacter sp. AT-5, an atrazine-degrading strain, was inoculated into agricultural soils contaminated with atrazine to investigate the bioaugmentation process and the reassembly of the soil microbiome. It was found that 95.9% of 5 mg kg−1 atrazine was removed from the soils when inoculated with strain AT-5 with 7 days, and the phytotoxicity of sweet potato caused by atrazine was significantly alleviated. qRT-PCR analysis revealed that the inoculated strain AT-5 survived well in the soils and maintained a relatively high abundance. The inoculation of strain AT-5 significantly affected the community structure of the soil microbiome, and the abundances of bacteria associated with atrazine degradation were improved.
Collapse
Affiliation(s)
- Weibin Jia
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ning Li
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weixian Dai
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
A Synergistic Consortium Involved in rac-Dichlorprop Degradation as Revealed by DNA Stable Isotope Probing and Metagenomic Analysis. Appl Environ Microbiol 2021; 87:e0156221. [PMID: 34524896 DOI: 10.1128/aem.01562-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rac-Dichlorprop, a commonly used phenoxyalkanoic acid herbicide, is frequently detected in environments and poses threats to environmental safety and human health. Microbial consortia are thought to play key roles in rac-dichlorprop degradation. However, the compositions of the microbial consortia involved in rac-dichlorprop degradation remain largely unknown. In this study, DNA stable isotope probing (SIP) and metagenomic analysis were integrated to reveal the key microbial consortium responsible for rac-dichlorprop degradation in a rac-dichlorprop-degrading enrichment. OTU340 (Sphingobium sp.) and OTU348 (Sphingopyxis sp.) were significantly enriched in the rac-[13C]dichlorprop-labeled heavy DNA fractions. A rac-dichlorprop degrader, Sphingobium sp. strain L3, was isolated from the enrichment by a traditional enrichment method but with additional supplementation of the antibiotic ciprofloxacin, which was instructed by metagenomic analysis of the associations between rac-dichlorprop degraders and antibiotic resistance genes. As revealed by functional profiling of the metagenomes of the heavy DNA, the genes rdpA and sdpA, involved in the initial degradation of the (R)- and (S)-enantiomers of dichlorprop, respectively, were mostly taxonomically assigned to Sphingobium species, indicating that Sphingopyxis species might harbor novel dichlorprop-degrading genes. In addition, taxonomically diverse bacterial genera such as Dyella, Sphingomonas, Pseudomonas, and Achromobacter were presumed to synergistically cooperate with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. IMPORTANCE Understanding of the key microbial consortium involved in the degradation of the phenoxyalkanoic acid herbicide rac-dichlorprop is pivotal for design of synergistic consortia used for enhanced bioremediation of herbicide-contaminated sites. However, the composition of the microbial consortium and the interactions between community members during the biodegradation of rac-dichlorprop are unclear. In this study, DNA-SIP and metagenomic analysis were integrated to reveal that the metabolite 2,4-dichlorophenol degraders Dyella, Sphingomonas, Pseudomonas, and Achromobacter synergistically cooperated with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. Our study provides new insights into the synergistic degradation of rac-dichlorprop at the community level and implies the existence of novel degrading genes for rac-dichlorprop in nature.
Collapse
|
16
|
You X, Suo F, Yin S, Wang X, Zheng H, Fang S, Zhang C, Li F, Li Y. Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126047. [PMID: 33992003 DOI: 10.1016/j.jhazmat.2021.126047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
A 35-day microcosmic experiment was conducted with lettuce (Lactuca sativa L.) and two metalaxyl (MET) enantiomers (R-MET and S-MET) to understand the roles of biochar in the enantioselective fate of chiral pesticides in soil-plant ecosystems. Wood waste-derived biochar (WBC) amendment effectively decreased the shoot concentrations of R-MET/S-MET and their metabolites R-MET/S-MET acid by 57.7-86.3% and 13.3-32.5%, respectively. The reduced uptake was mainly attributed to the decreased bioavailability of R-MET and S-MET. A lower fraction of R-MET was accumulated by the lettuce in the WBC-amended soils relative to the control, suggesting a decrease in the enantioselective uptake of the chiral pesticide MET in the presence of biochar. Regardless of the WBC amendment, no enantiomerization of MET or MET acid occurred. The application of WBC stimulated soil bacterial diversity, shifted the bacterial community, and enhanced the abundance of pesticide degrading bacteria (e.g., Luteimonas, Methylophilus, and Hydrogenophaga), which were responsible for the enantioselective degradation of MET in the soil. This work expands our understanding of the enantioselective fate of chiral pesticides in the biochar-amended soil ecosystems. These findings can be used to develop biochar-based technologies to remediate soils contaminated with these chiral pesticides to ensure food safety.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China
| | - Hao Zheng
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China.
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengmin Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
17
|
Mineralization of the herbicide swep by a two-strain consortium and characterization of a new amidase for hydrolyzing swep. Microb Cell Fact 2020; 19:4. [PMID: 31910844 PMCID: PMC6945715 DOI: 10.1186/s12934-020-1276-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swep is an excellent carbamate herbicide that kills weeds by interfering with metabolic processes and inhibiting cell division at the growth point. Due to the large amount of use, swep residues in soil and water not only cause environmental pollution but also accumulate through the food chain, ultimately pose a threat to human health. This herbicide is degraded in soil mainly by microbial activity, but no studies on the biotransformation of swep have been reported. RESULTS In this study, a consortium consisting of two bacterial strains, Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34, was enriched from a contaminated soil sample and shown to be capable of mineralizing swep. Swep was first transformed by Comamonas sp. SWP-3 to the intermediate 3,4-dichloroaniline (3,4-DCA), after which 3,4-DCA was mineralized by Alicycliphilus sp. PH-34. An amidase gene, designated as ppa, responsible for the transformation of swep into 3,4-DCA was cloned from strain SWP-3. The expressed Ppa protein efficiently hydrolyzed swep and a number of other structural analogues, such as propanil, chlorpropham and propham. Ppa shared less than 50% identity with previously reported arylamidases and displayed maximal activity at 30 °C and pH 8.6. Gly449 and Val266 were confirmed by sequential error prone PCR to be the key catalytic sites for Ppa in the conversion of swep. CONCLUSIONS These results provide additional microbial resources for the potential remediation of swep-contaminated sites and add new insights into the catalytic mechanism of amidase in the hydrolysis of swep.
Collapse
|