1
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
2
|
Peters Haugrud AR, Shi G, Seneviratne S, Running KLD, Zhang Z, Singh G, Szabo-Hever A, Acharya K, Friesen TL, Liu Z, Faris JD. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:54. [PMID: 37337566 PMCID: PMC10276793 DOI: 10.1007/s11032-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01400-5.
Collapse
Affiliation(s)
- Amanda R. Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | | | - Zengcui Zhang
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Agnes Szabo-Hever
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Timothy L. Friesen
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| |
Collapse
|
3
|
Taylor J, Jorgensen D, Moffat CS, Chalmers KJ, Fox R, Hollaway GJ, Cook MJ, Neate SM, See PT, Shankar M. An international wheat diversity panel reveals novel sources of genetic resistance to tan spot in Australia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:61. [PMID: 36912976 PMCID: PMC10011302 DOI: 10.1007/s00122-023-04332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
KEY MESSAGE Novel sources of genetic resistance to tan spot in Australia have been discovered using one-step GWAS and genomic prediction models that accounts for additive and non-additive genetic variation. Tan spot is a foliar disease in wheat caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr) and has been reported to generate up to 50% yield losses under favourable disease conditions. Although farming management practices are available to reduce disease, the most economically sustainable approach is establishing genetic resistance through plant breeding. To further understand the genetic basis for disease resistance, we conducted a phenotypic and genetic analysis study using an international diversity panel of 192 wheat lines from the Maize and Wheat Improvement Centre (CIMMYT), the International Centre for Agriculture in the Dry Areas (ICARDA) and Australian (AUS) wheat research programmes. The panel was evaluated using Australian Ptr isolates in 12 experiments conducted in three Australian locations over two years, with assessment for tan spot symptoms at various plant development stages. Phenotypic modelling indicated high heritability for nearly all tan spot traits with ICARDA lines displaying the greatest average resistance. We then conducted a one-step whole-genome analysis of each trait using a high-density SNP array, revealing a large number of highly significant QTL exhibiting a distinct lack of repeatability across the traits. To better summarise the genetic resistance of the lines, a one-step genomic prediction of each tan spot trait was conducted by combining the additive and non-additive predicted genetic effects of the lines. This revealed multiple CIMMYT lines with broad genetic resistance across the developmental stages of the plant which can be utilised in Australian wheat breeding programmes to improve tan spot disease resistance.
Collapse
Affiliation(s)
- Julian Taylor
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | - Dorthe Jorgensen
- Department of Primary Industries and Regional Development, Agriculture and Food, 3 Baron Hay Ct, South Perth, WA, 6151, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Ken J Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Rebecca Fox
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Grant J Hollaway
- Agriculture Victoria, Private Bag 260, Horsham, VIC, 3401, Australia
| | - Melissa J Cook
- Agriculture Victoria, Private Bag 260, Horsham, VIC, 3401, Australia
| | - Stephen M Neate
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Pao Theen See
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Manisha Shankar
- Department of Primary Industries and Regional Development, Agriculture and Food, 3 Baron Hay Ct, South Perth, WA, 6151, Australia.
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| |
Collapse
|
4
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
5
|
Yu DS, Outram MA, Crean E, Smith A, Sung YC, Darma R, Sun X, Ma L, Jones DA, Solomon PS, Williams SJ. Optimized Production of Disulfide-Bonded Fungal Effectors in Escherichia coli Using CyDisCo and FunCyDisCo Coexpression Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:109-118. [PMID: 34672679 DOI: 10.1094/mpmi-08-21-0218-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effectors are a key part of the arsenal of plant-pathogenic fungi and promote pathogen virulence and disease. Effectors typically lack sequence similarity to proteins with known functional domains and motifs, limiting our ability to predict their functions and understand how they are recognized by plant hosts. As a result, cross-disciplinary approaches involving structural biology and protein biochemistry are often required to decipher and better characterize effector function. These approaches are reliant on high yields of relatively pure protein, which often requires protein production using a heterologous expression system. For some effectors, establishing an efficient production system can be difficult, particularly those that require multiple disulfide bonds to achieve their naturally folded structure. Here, we describe the use of a coexpression system within the heterologous host Escherichia coli, termed CyDisCo (cytoplasmic disulfide bond formation in E. coli) to produce disulfide bonded fungal effectors. We demonstrate that CyDisCo and a naturalized coexpression approach termed FunCyDisCo (Fungi CyDisCo) can significantly improve the production yields of numerous disulfide-bonded effectors from diverse fungal pathogens. The ability to produce large quantities of functional recombinant protein has facilitated functional studies and crystallization of several of these reported fungal effectors. We suggest this approach could be broadly useful in the investigation of the function and recognition of a broad range of disulfide bond-containing effectors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Daniel S Yu
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Emma Crean
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Ashley Smith
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Reynaldi Darma
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Xizhe Sun
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, China
| | - Lisong Ma
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - David A Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Dinglasan EG, Peressini T, Marathamuthu KA, See PT, Snyman L, Platz G, Godwin I, Voss-Fels KP, Moffat CS, Hickey LT. Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2823-2839. [PMID: 34061222 DOI: 10.1007/s00122-021-03861-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicides.
Collapse
Affiliation(s)
- Eric G Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Tamaya Peressini
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Pao Theen See
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Lisle Snyman
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
7
|
Jacques S, Lenzo L, Stevens K, Lawrence J, Tan KC. An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. PLANT METHODS 2021; 17:52. [PMID: 34011363 PMCID: PMC8136220 DOI: 10.1186/s13007-021-00751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes tan (syn. yellow) spot of wheat and accounts for significant yield losses worldwide. Understanding the molecular mechanisms of this economically important crop disease is crucial to counteract the yield and quality losses of wheat globally. Substantial progress has been made to comprehend the race structure of this phytopathogen based on its production of necrotrophic effectors and genomic resources of Ptr. However, one limitation for studying Ptr in a laboratory environment is the difficulty to isolate high spore numbers from vegetative growth with mycelial contamination common. These limitations reduce the experimental tractability of Ptr. RESULTS Here, we optimized a multitude of parameters and report a sporulation method for Ptr that yields robust, high quality and pure spores. Our methodology encompasses simple and reproducible plugging and harvesting techniques, resulting in spore yields up to 1500 fold more than the current sporulation methods and was tested on multiple isolates and races of Ptr as well as an additional seven modern Australian Ptr isolates. Moreover, this method also increased purity and spore harvest numbers for two closely related fungal pathogens (Pyrenophora teres f. maculata and f. teres) that cause net blotch diseases in barley (Hordeum vulgare), highlighting the usability of this optimized sporulation protocol for the wider research community. CONCLUSIONS Large-scale spore infection and virulence assays are essential for the screening of wheat and barley cultivars and combined with the genetic mapping of these populations allows pinpointing and exploiting sources of host genetic resistance. We anticipate that improvements in spore numbers and purity will further advance research to increase our understanding of the pathogenicity mechanisms of these important fungal pathogens.
Collapse
Affiliation(s)
- Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Leon Lenzo
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kofi Stevens
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Julie Lawrence
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Perth, Australia.
| |
Collapse
|
8
|
Zhan N, Wang T, Zhang L, Shan A. A eukaryotic expression strategy for producing the novel antimicrobial peptide PRW4. Braz J Microbiol 2020; 51:999-1008. [PMID: 32415637 DOI: 10.1007/s42770-020-00291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial peptide PMAP-36 is a cationic peptide derived from porcine myeloid. The N-terminally paired lysine of PMAP-36 was substituted with tryptophan, and the C-terminal hydrophobic tail was deleted, thereby obtaining the antimicrobial peptide PRW4. PRW4 is a α-helical antimicrobial peptide with broad-spectrum antimicrobial activity. In this study, PRW4 was fused to the 6× His-Trx, and the fusion protein was successfully expressed in Pichia pastoris GS115 from the vector pPICZαA. The maximal induction of recombinant protein occurred in the presence of 1% methanol after 96 h at pH 6.0. After purification by a Ni-NTA resin column and digestion by enterokinase protease, 15 mg of recombinant PRW4 with a purity of 90% was obtained from 1 L of fermentation culture. The results indicated that recombinant PRW4 had similar antimicrobial activity as synthetic PRW4 against bacteria such as Escherichia coli ATCC 25922, Escherichia coli UB 1005, Salmonella typhimurium C7731, Salmonella typhimurium 7913, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis ATCC 12228, and Streptococcus faecalis ATCC 29212. We have successfully expressed PRW4 in P. pastoris, and this work provides a reference for the production of modified antimicrobial peptides in P. pastoris.
Collapse
Affiliation(s)
- Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Tianyu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
9
|
Corsi B, Percival-Alwyn L, Downie RC, Venturini L, Iagallo EM, Campos Mantello C, McCormick-Barnes C, See PT, Oliver RP, Moffat CS, Cockram J. Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:935-950. [PMID: 31915874 PMCID: PMC7021774 DOI: 10.1007/s00122-019-03517-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
Genetic mapping of sensitivity to the Pyrenophora tritici-repentis effector ToxB allowed development of a diagnostic genetic marker, and investigation of wheat pedigrees allowed transmission of sensitive alleles to be tracked. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, is a major disease of wheat (Triticum aestivum). Secretion of the P. tritici-repentis effector ToxB is thought to play a part in mediating infection, causing chlorosis of plant tissue. Here, genetic analysis using an association mapping panel (n = 480) and a multiparent advanced generation intercross (MAGIC) population (n founders = 8, n progeny = 643) genotyped with a 90,000 feature single nucleotide polymorphism (SNP) array found ToxB sensitivity to be highly heritable (h2 ≥ 0.9), controlled predominantly by the Tsc2 locus on chromosome 2B. Genetic mapping of Tsc2 delineated a 1921-kb interval containing 104 genes in the reference genome of ToxB-insensitive variety 'Chinese Spring'. This allowed development of a co-dominant genetic marker for Tsc2 allelic state, diagnostic for ToxB sensitivity in the association mapping panel. Phenotypic and genotypic analysis in a panel of wheat varieties post-dated the association mapping panel further supported the diagnostic nature of the marker. Combining ToxB phenotype and genotypic data with wheat pedigree datasets allowed historic sources of ToxB sensitivity to be tracked, finding the variety 'Maris Dove' to likely be the historic source of sensitive Tsc2 alleles in the wheat germplasm surveyed. Exploration of the Tsc2 region gene space in the ToxB-sensitive line 'Synthetic W7984' identified candidate genes for future investigation. Additionally, a minor ToxB sensitivity QTL was identified on chromosome 2A. The resources presented here will be of immediate use for marker-assisted selection for ToxB insensitivity and the development of germplasm with additional genetic recombination within the Tsc2 region.
Collapse
Affiliation(s)
- Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | | | - Rowena C Downie
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Plant Sciences Department, University of Cambridge, Cambridge, UK
| | - Luca Venturini
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Camila Campos Mantello
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Genetracer Biotech, Calle Albert Einstein 22, 39011, Santander, Spain
| | - Charlie McCormick-Barnes
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
10
|
Wei B, Moscou MJ, Sato K, Gourlie R, Strelkov S, Aboukhaddour R. Identification of a Locus Conferring Dominant Susceptibility to Pyrenophora tritici-repentis in Barley. FRONTIERS IN PLANT SCIENCE 2020; 11:158. [PMID: 32180780 PMCID: PMC7059616 DOI: 10.3389/fpls.2020.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 05/17/2023]
Abstract
The fungus Pyrenophora tritici-repentis (Ptr) causes tan spot, a destructive foliar disease of wheat worldwide. The pathogen produces several necrotrophic effectors, which induce necrosis or chlorosis on susceptible wheat lines. Multiple races of Ptr have been identified, based on their ability to produce one or more of these effectors. Ptr has a wide host range of cereal and non-cereal grasses, but is known to cause damage only on wheat. Previously, we showed that Ptr can interact specifically with cultivated barley (Hordeum vulgare ssp. vulgare), and that the necrotrophic effector Ptr ToxB induces mild chlorosis in a highly selective manner when infiltrated into certain barley genotypes. In the present study, a barley doubled-haploid (DH) population was evaluated for reaction to Ptr race 5, a Ptr ToxB-producer. Then a comprehensive genetic map composed of 381 single nucleotide polymorphism (SNP) markers was used to map the locus conditioning this chlorosis. The F1 seedlings, and 92 DH lines derived from a cross between the resistant Japanese malting barley cultivar Haruna Nijo and the susceptible wild barley (H. vulgare ssp. spontaneum) OUH602 were inoculated with a conidial suspension of Ptr race 5 isolate at the two-leaf stage. The seedlings were monitored daily for symptoms and assessed for chlorosis development on the second leaf, 6 days after inoculation. All tested F1 seedlings exhibited chlorosis symptoms similar to the susceptible parent, and the DH lines segregated 1:1 for susceptible:resistant phenotypes, indicating the involvement of a single locus. Marker-trait linkage analysis based on interval mapping identified a single locus on the distal region of the short arm of chromosome 2H. We designate this locus Susceptibility to P. tritici-repentis1 (Spr1). The region encompassing this locus has 99 high confidence gene models, including membrane receptor-like kinases (RLKs), intracellular nucleotide-binding, leucine-rich repeat receptors (NLRs), and ankyrin-repeat proteins (ANKs). This shows the involvement of a dominant locus conferring susceptibility to Ptr in barley. Further work using high-resolution mapping and transgenic complementation will be required to identify the underlying gene.
Collapse
Affiliation(s)
- Bohan Wei
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ryan Gourlie
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Stephen Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Reem Aboukhaddour
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- *Correspondence: Reem Aboukhaddour,
| |
Collapse
|
11
|
Kamel S, Cherif M, Hafez M, Despins T, Aboukhaddour R. Pyrenophora tritici-repentis in Tunisia: Race Structure and Effector Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1562. [PMID: 31921233 PMCID: PMC6930679 DOI: 10.3389/fpls.2019.01562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Tan spot is a destructive foliar wheat disease worldwide and caused by the ascomycete fungus Pyrenophora tritici-repentis (Ptr); it has become more frequent in Tunisia over the last decade. In this study, the virulence of 73 single-spore isolates, collected from durum and bread wheat fields during 2017-2018 growing season, was evaluated on four differential wheat genotypes. This was followed by polymerase chain reaction tests with specific primers for the effector genes ToxA, ToxB, and toxb (ToxB-homolog). Sequence analysis to validate the identity of the amplified genes was followed, and ToxA amplicons from a subset of 22 isolates were analyzed to determine its haplotype identity. Ptr isolates from Tunisia were grouped in races 2, 4, 5, and 7, and 44% of the tested isolates did not fit under any known race, and were denoted here as atypical. These atypical isolates induced the same symptoms as race 7 isolates, extensive necrosis, and chlorosis on susceptible genotypes, but lacked the ToxA gene. ToxA is the only identified necrosis-inducing effector in Ptr, and was amplified in 51% of tested isolates, and shared identical sequence to previously identified haplotype (H15). ToxB and its homolog toxb were present in 97% and 93% of tested isolates, respectively. Ptr in Tunisia lacked Ptr ToxC activity, and none of the tested isolates induced the specific symptoms of that effector. Race 7 and the atypical isolates dominated the Tunisian Ptr population, while races 2, 4, and 5 were found at low percentages. In conclusion, ToxB and its homolog were the most dominant genes in Ptr from Tunisia, and the majority of the isolates induced necrosis and chlorosis on Ptr ToxA and Ptr ToxB susceptible wheat genotypes. However, only about half of that necrosis can be attributed to ToxA presence, this result necessitates further research to investigate the prevalence of additional necrotic effector(s). Terminology: in this paper, Pyrenophora tritici-repentis abbreviated as Ptr, the effectors are referred to by Ptr ToxA, Ptr ToxB and Ptr ToxC, and the genes coding for them are written in italic as ToxA, ToxB, and ToxC, respectively.
Collapse
Affiliation(s)
- Sana Kamel
- Laboratory of Genetics and Cereal Breeding, Department of Agronomy and Plant Biotechnology, National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Mejda Cherif
- Laboratory of Genetics and Cereal Breeding, Department of Agronomy and Plant Biotechnology, National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Mohamed Hafez
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Therese Despins
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Reem Aboukhaddour
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnol Adv 2019; 37:107387. [DOI: 10.1016/j.biotechadv.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
|
13
|
Prasad P, Savadi S, Bhardwaj SC, Gangwar OP, Kumar S. Rust pathogen effectors: perspectives in resistance breeding. PLANTA 2019; 250:1-22. [PMID: 30980247 DOI: 10.1007/s00425-019-03167-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases. Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant-pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant-pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|