1
|
Zhou Z, Yu H, Wang G, Li M, Shi K. High antimony resistance strain Enterobacter sp. Z1 mediates biomineralization of antimony trioxide. ENVIRONMENT INTERNATIONAL 2024; 195:109237. [PMID: 39721567 DOI: 10.1016/j.envint.2024.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The increasing antimony (Sb) contamination prevalence poses a concern owing to its toxicity and potential carcinogenic properties. However, mechanisms underlying the microbial conversion of soluble Sb into insoluble Sb minerals remain unclear. In the present study, Enterobacter sp. Z1 strain demonstrated remarkable resistance to antimony potassium tartrate [Sb(III)] (>250 mM) in R2A medium. Furthermore, Enterobacter sp. Z1 produced antimony trioxide (Sb2O3) via biomineralization during cultivation. Omics analysis revealed the upregulation of pyruvate metabolism and accumulation of DL-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) in the presence of Sb(III).Using pyruvate as the sole carbon source in a chemically defined medium significantly enhanced Sb(III) biomineralization ratio from 20.8 % to 90.4 % compared with that using R2A medium. Additionally, reduced Sb(III) biomineralization and intracellular pH levels were observed following aceE gene knockout in Enterobacter sp. Z1. However, this impaired phenotype was rescued by complementing the aceE gene or introducing purified AceE into the bacterial lysates. Notably, AceE exhibited binding affinity for Sb(III). Our findings revealed the pyruvate-HMG-CoA pathway as the mechanism underlying Sb biomineralization, facilitating the release of Sb ions from tartrate and maintaining intracellular pH stability, thereby catalyzing Sb2O3 synthesis. This study provides insights into the Sb biogeochemical cycle.
Collapse
Affiliation(s)
- Zijie Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Majerová H, Konyariková Z, Strašiftáková D, Puhr C, Kautmanová I, Faragó T, Šottník P, Lalinská-Voleková B. Antimony resistant bacteria isolated from Budúcnosť adit (Pezinok-Kolársky vrch deposit) in western Slovakia. Heliyon 2024; 10:e39853. [PMID: 39605838 PMCID: PMC11599972 DOI: 10.1016/j.heliyon.2024.e39853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Potentially toxic elements (PTE), such as antimony (Sb), are dangerous putative contaminants for ground and surface waters around abandoned mines and ore deposits in Slovakia. Nearby mines antimony is commonly coprecipitated in ochre sediments precipitated from Fe-rich drainage waters and, therefore, these sites function as natural scavengers of this metalloid. Bacteria are well known to contribute to the process of redox state maintenance, biosorption and bioaccumulation of antimony and, consequently, to antimony precipitation or release from iron oxides complexes. Here we isolated 48 bacterial strains from circumneutral hydrous ferric oxides (HFO) rich iron ochres accumulated in the waters running from tailing pounds nearby Budúcnosť mine, Pezinok, Slovakia and polluted with high, but fluctuating, concentrations of antimony (130 μg/l Sb in water and 2317 mg/kg Sb in iron ochre in average). The isolated strains were V1-V9 16S rRNA sequenced and the resulting taxonomic affiliations of isolated strains were compared with taxonomy assignments obtained by V4 16S rRNA next generation sequencing approach, including two independent NGS analysis pipelines and different taxonomy classifiers ((IDTAXA (RDP, GTDB, SILVA, CONTAX), MEGAN (NCBI), RDP a SILVAngs). A Sb resistant subgroup of isolated strains (Pseudomonas A60B, Pseudomonas A59, Pseudomonas A28, Aeromonas A21, Aeromonas A13, Aeromonas A60A, Acinetobacter A14, Buttiauxella A58, Shewanella A20A a Yersinia A68), well growing at high Sb concentration (300 mg/l Sb), was tested for an ability of the strains to retain Sb from cultivation media. Based on ICP-MS measurements of the dried biomasses we concluded that all the strains can retain antimony from growth media to some extent, with strains Shewanella A20A, Buttiauxella A58, Yersinia A68 and Aeromonas A60A being the most effective.
Collapse
Affiliation(s)
- Hana Majerová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovak Republic
| | - Zuzana Konyariková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Dana Strašiftáková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Christian Puhr
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, Boku University, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Ivona Kautmanová
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Peter Šottník
- State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic
| | - Bronislava Lalinská-Voleková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Han J, Zhao C, Yang M, Ye M, Li Y, Zhou K, Zhang J, Song P. Comparative Remediation of Arsenic and Antimony Co-Contaminated Soil by Iron- and Manganese-Modified Activated Carbon and Biochar. TOXICS 2024; 12:740. [PMID: 39453161 PMCID: PMC11511182 DOI: 10.3390/toxics12100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
At present, soil contaminated with arsenic (As) and antimony (Sb) is escalating at an alarming rate, which is harmful to human health. In this study, Fe- and Mn-modified activated carbon (AC) and biochar (BC) were prepared and compared for the remediation of As- and Sb-contaminated soil. The effects on the speciation of As and Sb, soil pH, organic matter (SOM), and enzyme activity with various dosages and remediation times were investigated. The results showed that on the whole, the best stabilization effect of As and Sb was achieved with 3% FeMnBC. Furthermore, with increases in time and dosage, the immobilization effect on As and Sb was more significant. Fe/Mn-modified AC and BC enhanced soil pH, with 3% MnAC being particularly effective; 3% AC and 3% FeMnAC demonstrated the most pronounced enhancement in SOM. The modified carbon materials exhibited a dramatic increase in enzymatic activity. In particular, urease activity showed an increasing trend, and catalase activity first decreased and then increased over 30 days. Among the treatments, 3% MnAC showed the most significant enhancements in catalase and urease activities, whereas 1% FeMnBC had the most pronounced effect on increasing sucrase activity. This study provides theoretical support for the remediation of soil co-contaminated with As and Sb by Fe/Mn-modified AC and BC.
Collapse
Affiliation(s)
- Jiayi Han
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Chuang Zhao
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Min Yang
- Ministry of Ecology and Environment of the People’s Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Mingheng Ye
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Yani Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Keke Zhou
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Junrui Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
4
|
Pan Y, Deng R, Jin C, Li Y, Ren B, Hou B, Wang C, Yang X, Hursthouse A. Isolation and Identification of Highly Sb-Resistant Rhodotorula glutinis Strain J5 and its Mechanism of Resistance to Sb(III). Curr Microbiol 2024; 81:335. [PMID: 39215822 DOI: 10.1007/s00284-024-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Sb-resistant strains can detoxify antimony through metabolic mechanisms such as oxidation and affect the migration, transformation, and ultimate fate of antimony in the environment. In this study, a strain of Sb-resistant fungi, Rhodotorula glutinis sp. Strain J5, was isolated from Xikuangshan mine and its growth characteristics, gene expression differences, and functional annotation under Sb(III) stress were further investigated to reveal the mechanism of resistance to Sb(III). We identified strain J5 as belonging to the Rhodotorula glutinis species optimally growing at pH 5.0 and at 28 °C of temperature. According to gene annotation and differential expression, the resistance mechanism of Strain J5 includes: reducing the endocytosis of antimony by aquaporin AQP8 and transmembrane transporter pst, enhancing the efflux of Sb(III) by the gene expression of acr2, acr3 and ABC, improving the oxidation of Sb(III) by iron-sulfur protein and Superoxide dismutase (SOD), glutathione (GSH) and cysteine (Cys) chelation, methylation of methyltransferase and N-methyltransferase, accelerating cell damage repair and EPS synthesis and other biochemical reaction mechanisms. FT-IR analysis shows that the -OH, -COOH, -NH, -PO, C-O, and other active groups of Strain J5 can be complexed with Sb(III), resulting in chemical adsorption. Strain J5 displays significant resistance to Sb(III) with the MIC of 1300 mg/L, playing a crucial role in the global biochemical transformation of antimony and its potential application in soil microbial remediation.
Collapse
Affiliation(s)
- Yulin Pan
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Changsheng Jin
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yinfu Li
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiuzhen Yang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
5
|
Kong T, Sun X, Gu Z, Yang N, Huang Y, Lan L, Gao P, Liu H, Wang Y, Jiang F, Li B, Sun W. Differential Mechanisms of Microbial As(III) and Sb(III) Oxidation and Their Contribution to Tailings Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11447-11458. [PMID: 38899977 DOI: 10.1021/acs.est.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.
Collapse
Affiliation(s)
- Tianle Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhibin Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nie Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Lan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Feng Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Hongxia M, Shuaijun Z, Jiwen L, Jie S, Kaijia R, Jiannan L, Quanrui C, Yinyin S, Tingting S, Jingfeng F. Promoting the denitrification process by heavy metals in Liaohe Estuary sediment. MARINE POLLUTION BULLETIN 2024; 203:116408. [PMID: 38696947 DOI: 10.1016/j.marpolbul.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
The impact of heavy metal ions on the biodenitrification process remains unknown, which is the key to understand the nitrogen cycle in estuarine areas. Here, denitrification rate and the abundance of five denitrifying enzyme genes (narG, nirK, napA, norB and nosZ) in Liaohe Estuary sediments were examined, and the community structure of nirK denitrifying bacteria was also analyzed. The results demonstrate a significant positive correlation between heavy metal content (Cu2+, Zn2+, and Cr) and the denitrification rate, and the abundance of napA/norB (periplasmic nitrate reductase and nitric-oxide reductase) in sediments. The dominant narG denitrifiers were Pseudomonas, Hydrogenophaga, and Serratia known to be tolerant to heavy metal pollution. Sediment particle size, NO3-, NO2-, Zn2+, and Cd2+ were the key factors influencing the denitrifying community structure. These findings suggest that heavy metals may enhance the aerobic denitrification process in sediments and mitigate the adverse effects of high dissolved oxygen levels.
Collapse
Affiliation(s)
- Ming Hongxia
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Zan Shuaijun
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Liu Jiwen
- Ocean University of China, Qingdao 266100, China
| | - Su Jie
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Ren Kaijia
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Lin Jiannan
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chen Quanrui
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shi Yinyin
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Shi Tingting
- National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Fan Jingfeng
- Ecological Environment Monitoring and Scientistic Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China; National Marine Environmental Monitoring Center, Dalian 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China.
| |
Collapse
|
7
|
Prieto-Fernández F, Lambert S, Kujala K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front Microbiol 2024; 15:1386120. [PMID: 38855773 PMCID: PMC11160943 DOI: 10.3389/fmicb.2024.1386120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.
Collapse
|
8
|
Chen X, Yu T, Xiao L, Zeng XC. Can Sb(III)-oxidizing prokaryote also oxidize As(III) under aerobic and anaerobic conditions, and vice versa? JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134135. [PMID: 38574656 DOI: 10.1016/j.jhazmat.2024.134135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Linhai Xiao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
9
|
Yu T, Chen X, Zeng XC, Wang Y. Biological oxidation of As(III) and Sb(III) by a novel bacterium with Sb(III) oxidase rather than As(III) oxidase under anaerobic and aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169893. [PMID: 38185173 DOI: 10.1016/j.scitotenv.2024.169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.
Collapse
Affiliation(s)
- Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
10
|
Chen X, Yu T, Zeng XC. Functional features of a novel Sb(III)- and As(III)-oxidizing bacterium: Implications for the interactions between bacterial Sb(III) and As(III) oxidation pathways. CHEMOSPHERE 2024; 352:141385. [PMID: 38316280 DOI: 10.1016/j.chemosphere.2024.141385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) and arsenic (As) share similar chemical characteristics and commonly coexist in contaminated environments. It has been reported that the biogeochemical cycles of antimony and arsenic affect each other. However, there is limited understanding regarding microbial coupling between the biogeochemical processes of antimony and arsenic. Here, we aimed to solve this issue. We successfully isolated a novel bacterium, Shinella sp. SbAsOP1, which possesses both Sb(III) and As(III) oxidase, and can effectively oxidize both Sb(III) and As(III) under aerobic and anaerobic conditions. SbAsOP1 exhibits greater aerobic oxidation activity for the oxidation of As(III) or Sb(III) compared to its anaerobic activity. SbAsOP1 also significantly catalyzes the oxidative mobilization of solid-phase Sb(III) under aerobic conditions. The activity of SbAsOP1 in oxidizing solid Sb(III) is 3 times lower than its activity in oxidizing soluble form. It is noteworthy that, in the presence of both Sb(III) and As(III) under aerobic conditions, either As(III) or Sb(III) significantly inhibits the oxidation of Sb(III) or As(III), respectively. In comparison, under anaerobic conditions and in the coexistence of Sb(III) and As(III), As(III) significantly inhibits Sb(III) oxidation, whereas Sb(III) almost completely inhibits As(III) oxidation. These findings suggest that under both aerobic and anaerobic conditions, SbAsOP1 demonstrates a partial preference for Sb(III) oxidation. Additionally, bacterial oxidations of Sb(III) and As(III) mutually inhibit each other to varying degrees. These observations gain a novel understanding of the interplay between the biogeochemical processes of antimony and arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China.
| |
Collapse
|
11
|
Valenzuela-Cantú AK, Atilano-Camino MM, Cervantes FJ, Pat Espadas AM. Biochar mitigates the adverse effects of antimony on methanogenic activity: role as methane production-enhancer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:788-798. [PMID: 38358502 PMCID: wst_2024_030 DOI: 10.2166/wst.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Antimony, extensively used in energy applications, poses toxicity and contamination concerns, especially in anaerobic environments where its impact on microbial activity is poorly understood. Emerging remedies, like biochar, show promise in soil and water treatment. This study investigates biochar's influence on methanogenic activity under Sb(V) and Sb(III) stress using anaerobic sludge as inoculum and lactate as the carbon source. Sb(III) and Sb(V) were introduced at varied concentrations (5-80 mg/L), with or without biochar, monitoring changes in biogas production, pH, Sb, and lactate levels over time. Experiments with Sb(V) also involved calculating mass balance and electron distribution. Results showcased the following significant enhancements: biochar notably improved COD removal and biogas production in Sb(III) spiked conditions, up to 5-fold and 2-fold increases, respectively. Sb(III) removal reached up to 99% with biochar, while in high Sb(V) concentrations, biochar reduced the adverse effect on biogas production by 96%. Adsorption capacities favored biomass (60.96 mg Sb(III)/gVSS, and 22.4 mg Sb(V)/gVSS) over biochar (3.33 mg Sb(III)/g, and 1.61 mg Sb(V)/g) for both Sb species. This study underscores biochar's potential to mitigate metalloid impact on methanogenic activity while aiding Sb removal from liquid phase, suggesting promising implications for remediation and methane production enhancement strategies.
Collapse
Affiliation(s)
- Ana K Valenzuela-Cantú
- Departamento de Ingeniería Química y Metalurgia, Facultad Interdisciplinaria de Ingeniería, Universidad de Sonora, Hermosillo 83000, México E-mail: ;
| | - Marina M Atilano-Camino
- Instituto de Ecología, UNAM, Estación Regional del Noroeste (ERNO). Luis D. Colosio y Madrid,, Hermosillo, Sonora 83000, México
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 2001, Querétaro 76230, México
| | - Aurora M Pat Espadas
- CONACYT-UNAM Instituto de Geología, Estación Regional del Noroeste (ERNO). Luis D. Colosio y Madrid, Hermosillo, Sonora 83000, México
| |
Collapse
|
12
|
Wang L, Yin Z, Yan W, Hao J, Tian F, Shi J. Nitrate-dependent antimony oxidase in an uncultured Symbiobacteriaceae member. THE ISME JOURNAL 2024; 18:wrae204. [PMID: 39413245 PMCID: PMC11521347 DOI: 10.1093/ismejo/wrae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
Autotrophic antimony (Sb) oxidation coupled to nitrate reduction plays an important role in the transformation and detoxification of Sb. However, the specific oxidase involved in this process has yet to be identified. Herein, we enriched the microbiota capable of nitrate-dependent Sb(III) oxidation and identified a new Sb(III) oxidase in an uncultured member of Symbiobacteriaceae. Incubation experiments demonstrated that nitrate-dependent Sb(III) oxidation occurred in the microcosm supplemented with Sb(III) and nitrate. Both the 16S rRNA gene and metagenomic analyses indicated that a species within Symbiobacteriaceae played a crucial role in this process. Furthermore, carbon-13 isotope labeling with carbon dioxide-fixing Rhodopseudomonas palustris in combination with nanoscale secondary ion mass spectrometry revealed that a newly characterized oxidase from the dimethylsulfoxide reductase family, designated as NaoABC, was responsible for autotrophic Sb(III) oxidation coupled with nitrate reduction. The NaoABC complex functions in conjunction with the nitrate reductase NarGHI, forming a redox loop that transfers electrons from Sb(III) to nitrate, thereby generating the energy necessary for autotrophic growth. This research offers new insights into the understanding of how microbes link Sb and nitrogen biogeochemical cycles in the environment.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- CAS Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
13
|
Zhang H, Sun Y, Cheng M, Sui X, Huang Y, Hu X. How iron-bearing minerals affect the biological reduction of Sb(V): A newly discovered function of nitrate reductase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167001. [PMID: 37704155 DOI: 10.1016/j.scitotenv.2023.167001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.
Collapse
Affiliation(s)
- Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Yanyu Sun
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Manman Cheng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaori Sui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanyan Huang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoke Hu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
14
|
Luo X, Guo J, Lan Y, An L, Zhang X, Shi K, Zheng S, Li M. Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation. ENVIRONMENT INTERNATIONAL 2023; 178:108040. [PMID: 37356310 DOI: 10.1016/j.envint.2023.108040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Antimony (Sb) is toxic to ecosystems and potentially to public health via its accumulation in the food chain. Bioavailability and toxicity of Sb have been reduced using various methods for the remediation of Sb-contaminated soil in most studies. However, Sb-contaminated soil remediation by microbial agents has been rarely evaluated. In this study, we evaluated the potential for the use of Comamonas testosteroni JL40 in the bioremediation of Sb-contamination. Strain JL40 immobilized more than 30 % of the Sb(III) in solution and oxidized over 18 % to Sb(V) for detoxification. Meanwhile, strain JL40 responds to Sb toxicity through such as Sb efflux, intracellular accumulation, biofilm production, and scavenging of reactive oxygen species (ROS), etc. The results of the pot experiment showed the average Sb content of the brown rice was decreased by 59.1%, 38.8%, and 48.4%, for 1.8, 50, and 100 mg/kg Sb spiked soils, respectively. In addition, the results of plant, soil enzyme activity, and rice agronomic trait observations showed that the application of strain JL40 could maintain the health of plants and soil and improve rice production. The single-step and sequential extraction of Sb from rhizosphere soil showed that strain JL40 also plays a role in Sb immobilization and oxidation in the soil environment. During rice potted cultivation, bacterial community analysis and plate counting showed that the strain JL40 could still maintain 103 CFU/g after 30 days of inoculation. With phenotypic and differential proteomics analysis, strain JL40 conferred Sb(III) tolerance by a combination of immobilization, oxidation, efflux and scavenging of ROS, etc. Our study demonstrates the application of Sb-immobilizing and oxidizing bacteria to lower soil Sb and reduce accumulation of Sb in rice. Our results provide guidance for bacterial remediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiayi Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yan Lan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lijin An
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyan Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
15
|
Jingyi D, Chaoyang L, Yu S, Yunlin Z, Huimin H, Yingzi M, Zhenggang X. Adsorption capacity of Penicillium amphipolaria XK11 for cadmium and antimony. Arch Microbiol 2023; 205:139. [PMID: 36964410 DOI: 10.1007/s00203-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
Heavy metal pollution is a global problem that affects both the environment and human health. Microorganisms play an important role in remediation. Most studies on the use of microorganisms for heavy metal remediation focus on single heavy metals. In this study, a strain of Penicillium amphipolaria, XK11 with high resistance to both antimony (Sb III) and cadmium (Cd II) was screened from the mineral slag. The strain also had a high phosphate solubilization capacity. The single-factor adsorption experiment results showed that the initial pH (pH0), adsorption time (T), and initial solution concentration (C0) all affected the adsorption of Sb and Cd by XK11. When the initial pH0 (Cd = 6, Sb = 4) and adsorption time (T = 7 d) were constant, XK11 achieved the maximum removal rate of Cd (45.6%) and Sb (34.6%). These results confirm that XK11 has potential as a biomaterial or remediation of Sb and Cd pollution.
Collapse
Affiliation(s)
- Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Li Chaoyang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, 410014, Hunan, China
| | - Sun Yu
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Huang Huimin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ma Yingzi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China.
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Wang W, Cheng X, Song Y, Wang H, Wu M, Ma L, Lu X, Liu X, Tuovinen OH. Elevated antimony concentration stimulates rare taxa of potential autotrophic bacteria in the Xikuangshan groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161105. [PMID: 36566853 DOI: 10.1016/j.scitotenv.2022.161105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microbial communities composed of few abundant and many rare species are widely involved in the biogeochemical cycles of elements. Yet little is known about the ecological roles of rare taxa in antimony (Sb) contaminated groundwater. Groundwater samples were collected along an Sb concentration gradient in the Xikuangshan antimony mine area and subjected to high through-put sequencing of 16S rRNA genes to investigate the bacterial communities. Results suggested that both abundant and rare sub-communities were dominated by Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria, whereas rare sub-communities showed higher alpha-diversities. Multivariate analysis showed that both the abundant and rare taxa were under the stress of Sb, but the impact on rare taxa was greater. Nitrate explained a large part for the variation of the abundant sub-communities, indicating the critical role of nitrate for their activities under anoxic conditions. In contrast, bicarbonate significantly impacted rare sub-communities, suggesting their potential autotrophic characteristics. To further explore the role of rare taxa in the communities and the mechanism of affecting the community composition, a network was constructed to display the co-occurrence pattern of bacterial communities. The rare taxa contributed most of the network nodes and served as keystone species to maintain the stability of community. Abiotic factors (mainly Sb and pH) and bacterial interspecific interactions (interactions between keystone species and other bacterial groups) jointly affect the community dynamics. Functional prediction was performed to further reveal the ecological function of rare taxa in the Sb-disturbed groundwater environment. The results indicated that the rare taxa harbored much more diverse functions than their abundant counterparts. Notably, elevated Sb concentration promoted some potential autotrophic functions in rare taxa such as the oxidation of S-, N-, and Fe(II)-compounds. These results offer new insights into the roles of rare species in elemental cycles in the Sb-impacted groundwater.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaolu Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
17
|
Li Y, Guo L, Kolton M, Yang R, Zhang M, Qi F, Soleimani M, Sun X, Li B, Gao W, Yan G, Xu R, Sun W. Chemolithotrophic Biological Nitrogen Fixation Fueled by Antimonite Oxidation May Be Widespread in Sb-Contaminated Habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:231-243. [PMID: 36525577 DOI: 10.1021/acs.est.2c06424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) deficiency in mining-contaminated habitats usually hinders plant growth and thus hampers tailing revegetation. Biological N fixation (BNF) is an essential biogeochemical process that contributes to the initial accumulation of N in oligotrophic mining-contaminated regions. Previous studies reported that chemolithotrophic rather than heterotrophic diazotrophs frequently dominated in the mining-contaminated regions. Chemolithotrophic diazotrophs may utilize elements abundant in such habitats (e.g., sulfur (S), arsenic (As), and antimony (Sb)) as electron donors to fix N2. BNF fueled by the oxidation of S and As has been detected in previous studies. However, BNF fueled by Sb(III) oxidation (Sb-dependent BNF) has never been reported. The current study observed the presence of Sb-dependent BNF in slurries inoculated from Sb-contaminated habitats across the South China Sb belt, suggesting that Sb-dependent BNF may be widespread in this region. DNA-stable isotope probing identified bacteria associated with Rhodocyclaceae and Rhizobiaceae as putative microorganisms responsible for Sb-dependent BNF. Furthermore, metagenomic-binning demonstrated that Rhodocyclaceae and Rhizobiaceae contained essential genes involved in Sb(III) oxidation, N2 fixation, and carbon fixation, suggesting their genetic potential for Sb-dependent BNF. In addition, meta-analysis indicated that these bacteria are widespread among Sb-contaminated habitats with different niche preferences: Rhodocyclaceae was enriched in river sediments and tailings, while Rhizobiaceae was enriched only in soils. This study may broaden our fundamental understanding of N fixation in Sb-mining regions.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lifang Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rui Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangjie Qi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan 83111-84156, Iran
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Lalinská-Voleková B, Majerová H, Kautmanová I, Brachtýr O, Szabóová D, Arendt D, Brčeková J, Šottník P. Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits - Interdisciplinary assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153248. [PMID: 35051450 DOI: 10.1016/j.scitotenv.2022.153248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.
Collapse
Affiliation(s)
| | - Hana Majerová
- Hana Majerová, Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ivona Kautmanová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Ondrej Brachtýr
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dana Szabóová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Darina Arendt
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Jana Brčeková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Šottník
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
20
|
Rong Q, Ling C, Lu D, Zhang C, Zhao H, Zhong K, Nong X, Qin X. Sb(III) resistance mechanism and oxidation characteristics of Klebsiella aerogenes X. CHEMOSPHERE 2022; 293:133453. [PMID: 34971630 DOI: 10.1016/j.chemosphere.2021.133453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Resistant bacteria are potential natural materials for the bioremediation of soil metalloid pollution. A strain isolated from farmland soil chronically exposed to Sb was identified as K. aerogenes X with high antimonite [Sb(III)] tolerance and oxidation ability. The resistance mechanism of K. aerogenes X and its extracellular polymeric substances (EPS), antioxidant enzymes, and oxidation characteristics in Sb(III) stress were investigated in this study by stress incubation experiments and FTIR. The biotoxicity of Sb was limited by the binding of the organic compounds in EPS, and the anionic functional groups (e.g., amino, carboxyl and hydroxyl groups, etc.) present in the cell envelope were the components primarily responsible for the metalloid-binding capability of K. aerogenes X. The K. aerogenes X can oxidize Sb(III), and its metabolites induce changes in reactive oxygen species (ROS), catalase (CAT), total superoxide dismutase (SOD) and glutathione s-transferase (GSH-S) activity, indicating that the resistance mechanisms of K. aerogenes X are mediated by oxidative stress, EPS restriction and cell damage. Oxidation of Sb(III) is driven by interactions in intracellular oxidation, cell electron transport, extracellular metabolism including proteins and low molecular weight components (LMWs). LMWs (molecular weight <3 kDa) are the main driving factor of Sb(III) oxidation. In addition, Sb resistance genes arsA, arsB, arsC, arsD and acr3 and potential oxidation gene arsH were identified in K. aerogenes X. Owing to its natural origin, high tolerance and oxidation ability, K. aerogenes X could serve as a potential bioremediation material for the mitigation of Sb(III) in contaminated areas.
Collapse
Affiliation(s)
- Qun Rong
- College of Life Science and Technology GuangXi University, Nanning, PR China
| | - Caiyuan Ling
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Dingtian Lu
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Chaolan Zhang
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China.
| | - Hecheng Zhao
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Kai Zhong
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Xinyu Nong
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Xingzi Qin
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| |
Collapse
|
21
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
22
|
Li J, Zhang Y, Wang X, Walk ST, Wang G. Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms. Front Microbiol 2021; 12:617050. [PMID: 33584619 PMCID: PMC7876068 DOI: 10.3389/fmicb.2021.617050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Antimony (Sb)-resistant bacteria have potential applications in the remediation of Sb-contaminated sites. However, the effect of Sb(III) exposure on whole-cell metabolic change has not been studied. Herein, we combined untargeted metabolomics with a previous proteomics dataset and confirmatory gene transcription analysis to identify metabolic responses to Sb(III) exposure in Agrobacterium tumefaciens GW4. Dynamic changes in metabolism between control and Sb(III)-exposed groups were clearly shown. KEGG pathway analysis suggested that with Sb(III) exposure: (1) the branching pathway of gluconeogenesis is down-regulated, resulting in the up-regulation of pentose phosphate pathway to provide precursors of anabolism and NADPH; (2) glycerophospholipid and arachidonic acid metabolisms are down-regulated, resulting in more acetyl-CoA entry into the TCA cycle and increased capacity to produce energy and macromolecular synthesis; (3) nucleotide and fatty acid synthesis pathways are all increased perhaps to protect cells from DNA and lipid peroxidation; (4) nicotinate metabolism increases which likely leads to increased production of co-enzymes (e.g., NAD+ and NADP+) for the maintenance of cellular redox and Sb(III) oxidation. Expectedly, the total NADP+/NADPH content, total glutathione, and reduced glutathione contents were all increased after Sb(III) exposure in strain GW4, which contribute to maintaining the reduced state of the cytoplasm. Our results provide novel information regarding global bacterial responses to Sb(III) exposure from a single gene level to the entire metabolome and provide specific hypotheses regarding the metabolic change to be addressed in future research.
Collapse
Affiliation(s)
- Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuxiao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Park SC, Boyanov MI, Kemner KM, O'Loughlin EJ, Kwon MJ. Distribution and speciation of Sb and toxic metal(loid)s near an antimony refinery and their effects on indigenous microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123625. [PMID: 32818830 DOI: 10.1016/j.jhazmat.2020.123625] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Although several studies have investigated the effects of Sb contamination on surrounding environments and indigenous microorganisms, little is known about the effect of co-contamination of Sb and toxic metal(loid)s. In this study, the occurrence of Sb and other toxic metal(loid)s near an operating Sb refinery and near-field landfill site were investigated. Topsoil samples near the refinery had high Sb levels (∼3250 mg kg-1) but relatively low concentrations of other toxic metal(loid)s. However, several soil samples taken at greater depth from the near-field landfill site contained high concentrations of As and Pb, as well as extremely high Sb contents (∼21,400 mg kg-1). X-ray absorption fine structure analysis showed that Sb in the soils from both sites was present as Sb(V) in the form of tripuhyite (FeSbO4), a stable mineral. Three-dimensional principal coordinate analysis showed that microbial community compositions in samples with high toxic metal(loid)s concentrations were significantly different from other samples and had lower microbial populations (∼104 MPN g-1). Sequential extraction results revealed that Sb is present primarily in the stable residual fraction (∼99 %), suggesting low Sb bioavailability. However, microbial redundancy analysis suggested that the more easily extractable Pb might be the major factor controlling microbial community compositions at the site.
Collapse
Affiliation(s)
- Soo-Chan Park
- Dept. Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, 1113, Bulgaria; Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439 USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439 USA
| | | | - Man Jae Kwon
- Dept. Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Zhang X, Liu T, Li F, Li X, Du Y, Yu H, Wang X, Liu C, Feng M, Liao B. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. J Environ Sci (China) 2021; 100:90-98. [PMID: 33279057 DOI: 10.1016/j.jes.2020.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
Nitrate (NO3-) is known to be actively involved in the processes of mineralization and heavy metal transformation; however, it is unclear whether and how it affects the bioavailability of antimony (Sb) in paddy soils and subsequent Sb accumulation in rice. Here, the effects of NO3- on Sb transformation in soil-rice system were investigated with pot experiments over the entire growth period. Results demonstrated that NO3- reduced Sb accumulation in brown rice by 15.6% compared to that in the control. After amendment with NO3-, the Sb content in rice plants increased initially and then gradually decreased (in roots by 46.1%). During the first 15 days, the soil pH increased, the oxidation of Sb(III) and sulfides was promoted, but the reduction of iron oxide minerals was inhibited, resulting in the release of adsorbed and organic-bound Sb from soil. The microbial arsenite-oxidizing marker gene aoxB played an important role in Sb(III) oxidation. From days 15 to 45, after NO3- was partially consumed, the soil pH decreased, and the reductive dissolution of Fe(III)-bearing minerals was enhanced; consequently, iron oxide-bound Sb was transformed into adsorbed and dissolved Sb species. After day 45, NO3- was completely reduced, Sb(V) was evidently reduced to Sb(III), and green rust was generated gradually. Thus, the available Sb decreased due to its enhanced affinity for iron oxides. Moreover, NO3- inhibited the reductive dissolution of iron minerals, which ultimately caused low Sb availability. Therefore, NO3- can chemically and biologically reduce the Sb availability in paddy soils and alleviate Sb accumulation in rice. This study provides a potential strategy for decreasing Sb accumulation in rice in the Sb-contaminated sites.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanhong Du
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Huanyun Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Xiangqin Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Chuanpin Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Mi Feng
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Bing Liao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
25
|
Shi K, Dai X, Fan X, Zhang Y, Chen Z, Wang G. Simultaneous removal of chromate and arsenite by the immobilized Enterobacter bacterium in combination with chemical reagents. CHEMOSPHERE 2020; 259:127428. [PMID: 34883557 DOI: 10.1016/j.chemosphere.2020.127428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/02/2020] [Accepted: 06/14/2020] [Indexed: 06/13/2023]
Abstract
Simultaneous chromate [Cr(VI)] reduction and arsenite [As(III)] oxidation is a promising pretreatment process for Cr and As removal. Here, a facultative anaerobic bacterium, Enterobacter sp. Z1, presented capacities of simultaneous Cr(VI) reduction and As(III) oxidation during anoxic cultivation in a wild range of temperature (20-45 °C) and pH (Cerkez et al., 2015; Chen et al., 2015; China Environmental Prote, 1996; Fan et al., 2008, 2019) conditions. Strikingly, strain Z1 could simultaneously contribute up to 92.8% of the reduction of Cr(VI) and 45.8% of the oxidation of As(III) in wastewater. The cells of strain Z1 were embedded with sodium alginate to produce biobeads, and the biobeads exhibited stable ratio of Cr(VI) reduction (91.8%) and As(III) oxidation (29.6%) even in the 5 continuous cycles of wastewater treatment. Moreover, in a process pretreated with the Z1 biobeads followed a precipitation with Ca(OH)2 and FeCl3, the removal efficiencies in wastewater were 98.9% and 98.3% for total Cr and As, respectively, which were 44.1% and 9.8% higher than those of using Ca(OH)2 and FeCl3, only. The residual amounts of Cr and As met the national standard levels of wastewater discharge. Proteomics analysis showed that cysteine, sulfur and methionine metabolisms, As resistance and oxidoreductase (CysH, CysI, CysJ, NemA and HemF) were induced by Cr(VI) and As(III). Moreover, the addition of cysteine to the medium also significantly improved bacterial Cr(VI) reduction rate. Our results provide a novel microbial pretreatment approach for enhancing remediation of Cr(VI) and As(III) pollution in wastewater, and reveal the evident that cysteine, sulfur and methionine metabolisms, As resistance and oxidoreductases are associated with the redox conversion of Cr(VI) and As(III).
Collapse
Affiliation(s)
- Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xingli Dai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xia Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuxiao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
26
|
Li M, Liu Y, Shen C, Li F, Wang CC, Huang M, Yang B, Wang Z, Yang J, Sand W. One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121840. [PMID: 31859170 DOI: 10.1016/j.jhazmat.2019.121840] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Developing advanced technologies to achieve decontamination of emerging contaminants such as antimony (Sb) is highly demanded. Herein, we successfully designed a dual-functional photoelectrochemical filter system for "one-step" detoxification and sequestration of highly toxic Sb(III). The key to this technology is a photoelectrical-responsive CNT filter functionalized with nanoscale MIL-88B(Fe) photocatalysts. At 2.5 V and under illumination, a 97.7 ± 1.5 % Sb(III) transformation and a 92.9 ± 2.3 % Sbtotal removal efficiency can be obtained using an optimal hybrid filter (e.g. CM(50:3)) over 2 h continuous filtration. This can be explained by the synergistic effects of the filter's flow-through design, photoelectrochemical reactivity, fine pore size, and plentiful exposed sorption sites. Various advanced characterization techniques validated the system efficacy. Improved Sb(III) removal kinetics were observed when compared with conventional batch system (97.5 % vs 75.8 %). A synergistic effect between photocatalytic (PC) and electrochemical (EC) process were identified (kPEC =0.99 h-1 >kPC=0.21 h-1 + kEC =0.30 h-1). EPR and photochemical characterizations suggested that hydroxyl radicals dominated the Sb(III) conversion. The proposed technology works effectively across a wide range of pH values and water matrixes. The outcomes of this study can facilitate mechanistic insights into photoelectrocatalysis and provide a promising nanotechnology for efficient Sb(III) decontamination.
Collapse
Affiliation(s)
- Mohua Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, 201620, Shanghai, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany
| |
Collapse
|
27
|
Li J, Gu T, Li L, Wu X, Shen L, Yu R, Liu Y, Qiu G, Zeng W. Complete genome sequencing and comparative genomic analyses of Bacillus sp. S3, a novel hyper Sb(III)-oxidizing bacterium. BMC Microbiol 2020; 20:106. [PMID: 32354325 PMCID: PMC7193398 DOI: 10.1186/s12866-020-01737-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce. RESULTS Here, we identified a 5,436,472 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As (III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Furthermore, a wide variety of genes associated with Sb(III) and other heavy metal (loid) s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), Bacillus sp. S3 was proved to a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed the evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal (loid) s resistance genes emphasized its indispensable role in the harsh eco-environment of Bacillus genus. Real-time quantitative PCR (RT-qPCR) analysis indicated that Sb(III)-related genes were all induced under the Sb(III) stress, while arsC gene was down-regulated. CONCLUSIONS The results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationships between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.
Collapse
Affiliation(s)
- Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Tianyuan Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
28
|
Altermann E, Hickey WJ. Grand Challenges in Microbiotechnology: Through the Prism of Microbiotechnology. Front Microbiol 2020; 11:430. [PMID: 32265872 PMCID: PMC7099634 DOI: 10.3389/fmicb.2020.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Eric Altermann
- AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - William J Hickey
- Department of Soil Science, University of Wisconsin, Madison, WI, United States
| |
Collapse
|