1
|
Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Njom HA, Ateba CN. Molecular characterization and safety properties of multi drug-resistant Escherichia coli O157:H7 bacteriophages. BMC Microbiol 2024; 24:528. [PMID: 39695941 DOI: 10.1186/s12866-024-03691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
The increase in multi drug resistance (MDR) amongst food-borne pathogens such as Escherichia coli O157:H7, coupled with the upsurge of food-borne infections caused by these pathogens is a major public health concern. Lytic phages have been employed as an alternative to antibiotics for use against food-borne pathogens. However, for effective application, phages should be selectively toxic. Therefore, the objective of this study was to characterise lytic E. coli O157:H7 phages isolated from wastewater as possible biocontrol agents and access their genomes for the absence of genes that denotes virulence, resistance, toxins, and lysogeny using whole genome sequencing. E. coli O157:H7 bacteriophages showed clear plaques ranging in size from 1.0 mm to 2.0 mm. Spot test and Efficiency of plating (EOP) analysis demonstrated that isolated phages could infect various environmental E. coli strains. Four phages; vB_EcoM_EP32a, vB_EcoP_EP32b, vB_EcoM_EP57, and vB_EcoM_EP69 demonstrated broad lytic spectra against E. coli O157:H7 strains. Transmission Electron Microscopy (TEM) showed that all phages have tails and were classified as Caudoviricetes. Growth parameters showed an average latent period of 15 ± 3.8 min, with a maximum burst size of 392 PFU/cell. The phages were stable at three distinct temperatures (4 °C, 28 °C, and 37 °C) and at pH values of 3.5, 5.0, 7.0, 9.0, and 11.0. Based on their morphological distinctiveness, three phages were included in the Whole Genome Sequencing (WGS) analysis. WGS results revealed that E. coli O157:H7 phages (vB_EcoM_EP32a, vB_EcoP_EP32b, and vB_EcoM_EP57) were composed of linear double-stranded DNA (dsDNA) with genome sizes 163,906, 156,698, and 130,723 bp and GC contents of 37.61, 37, and 39% respectively. Phages vB_EcoM_EP32a and vB_EcoP_EP32b genomes were classified under the class Caudoviricetes, Straboviridae family, and the new genus "Phapecoctavirus", while vB_EcoM_EP57 was classified under the class Caudoviricetes, Autographiviridae family. Genome analysis revealed no lysogenic (integrase), virulence, or antimicrobial resistance sequences in all three Escherichia phage genomes. The overall results provided evidence that lytic E. coli O157:H7 bacteriophages in this study, are relatively stable, can infect diverse E. coli strains, and does not contain genes responsible for virulence, resistance, toxins, and lysogeny. Thus, they can be considered as biocontrol candidates against MDR pathogenic E. coli O157:H7 strains in the food industry.
Collapse
Affiliation(s)
- Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Peter Kotsoana Montso
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Henry Akum Njom
- Agricultural Research Council, Private Mail Bag X2046, Potchefstroom, 2531, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
2
|
Rastegar S, Skurnik M, Niaz H, Tadjrobehkar O, Samareh A, Hosseini-Nave H, Sabouri S. Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains. Virus Genes 2024; 60:725-736. [PMID: 39256307 DOI: 10.1007/s11262-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of Acinetobacter baumannii. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three Acinetobacter phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR A. baumannii strains. The phages exhibited siphovirus morphology. Out of a total of 30 XDR A. baumannii isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of A. baumannii. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616913439, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2024:1-23. [PMID: 39545771 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
4
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Temsaah HR, Azmy AF, Ahmed AE, Elshebrawy HA, Kasem NG, El-Gohary FA, Lood C, Lavigne R, Abdelkader K. Characterization and genomic analysis of the lytic bacteriophage vB_EclM_HK6 as a potential approach to biocontrol the spread of Enterobacter cloacae contaminating food. BMC Microbiol 2024; 24:408. [PMID: 39402521 PMCID: PMC11477059 DOI: 10.1186/s12866-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Increased prevalence of Enterobacter cloacae within food products underscores food as an underexplored reservoir for antibiotic resistance, thus requiring particular intervention. Bacteriophages have been explored as a promising approach for controlling bacterial growth in different matrices. Moreover, their specific interaction and self-replication, put them apart from traditional methods for controlling bacteria in different matrices. METHODS Sixteen Enterobacter cloacae strains were recovered from raw chicken. These strains were used to isolate bacteriophages using enrichment protocol. The broad-spectrum bacteriophage was evaluated in terms of thermal, pH, shearing stress and storge. Moreover, its infection kinetics, in vitro antibacterial activity, cytotoxicity were also assessed. Genomic sequencing was performed to exclude any potential virulence or resistance genes. Finally, the capability of the isolated phages to control bacterial growth in different chicken samples was assessed alone and in combination with sodium nitrite. RESULTS The lytic bacteriophage vB_EclM_HK6 was isolated and showed the broadest spectrum being able to infect 8/16 E. cloacae strains with a lytic activity against its host strain, E. cloacae EC21, as low as MOI of 10-6. The phage displays a latent period of 10 min and burst size of 115 ± 44 and resistance frequency of 5.7 × 10-4 ± 3.0 × 10-4. Stability assessment revealed a thermal tolerance up to 60 ˚C, wide range pH stability (3-10) and the ability to withstand shearing stress up to 250 rpm. HK6 shows no cytotoxicity against oral epithelial cells up to 1012 PFU/ml. Genomic analysis revealed a Strabovirus with total size of 177,845 bp that is free from known resistance and virulence genes. Finally, HK6 pretreatment of raw chicken, chicken nuggets and ready-made cheese salad shows a reduced bacterial count up to 4.6, 2.96 and 2.81 log-units, respectively. Moreover, combing HK6 with sodium nitrite further improved the antibacterial activity in both raw chicken and chicken nuggets without significant enhancement in case of cheese salad. CONCLUSION Enterobacter bacteriophage vB_EclM_HK6 presents a safe and effective approach for controlling E. cloacae contaminating stored chicken food samples. Moreover, they could be combined with a reduced concentrations of sodium nitrite to improve the killing capacity.
Collapse
Affiliation(s)
- Hasnaa R Temsaah
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nahed Gomaa Kasem
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma A El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Louvain, 3001, Belgium
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Louvain, 3001, Belgium
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
6
|
Asgharzadeh Kangachar S, Logel DY, Trofimova E, Zhu HX, Zaugg J, Schembri MA, Weynberg KD, Jaschke PR. Discovery and characterisation of new phage targeting uropathogenic Escherichia coli. Virology 2024; 597:110148. [PMID: 38941748 DOI: 10.1016/j.virol.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Antimicrobial resistance is an escalating threat with few new therapeutic options in the pipeline. Urinary tract infections (UTIs) are one of the most prevalent bacterial infections globally and are prone to becoming recurrent and antibiotic resistant. We discovered and characterized six novel Autographiviridae and Guernseyvirinae bacterial viruses (phage) against uropathogenic Escherichia coli (UPEC), a leading cause of UTIs. The phage genomes were between 39,471 bp - 45,233 bp, with 45.0%-51.0% GC%, and 57-84 predicted coding sequences per genome. We show that tail fiber domain structure, predicted host capsule type, and host antiphage repertoire correlate with phage host range. In vitro characterisation of phage cocktails showed synergistic improvement against a mixed UPEC strain population and when sequentially dosed. Together, these phage are a new set extending available treatments for UTI from UPEC, and phage vM_EcoM_SHAK9454 represents a promising candidate for further improvement through engineering.
Collapse
Affiliation(s)
- Shahla Asgharzadeh Kangachar
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ellina Trofimova
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
7
|
Gholizadeh O, Ghaleh HEG, Tat M, Ranjbar R, Dorostkar R. The potential use of bacteriophages as antibacterial agents against Klebsiella pneumoniae. Virol J 2024; 21:191. [PMID: 39160541 PMCID: PMC11334591 DOI: 10.1186/s12985-024-02450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
One of the most common bacteria that cause nosocomial infections is Klebsiella pneumonia (K. pneumoniae), especially in patients who are very sick and admitted to the intensive care unit (ICU). The frequency of multi-drug-resistant Klebsiella pneumoniae (MDRKP) has dramatically increased worldwide in recent decades, posing an urgent threat to public health. The Western world's bacteriophage (phage) studies have been revitalized due to the increasing reports of antimicrobial resistance and the restricted development and discovery of new antibiotics. These factors have also spurred innovation in other scientific domains. The primary agent in phage treatment is an obligately lytic organism (called bacteriophage) that kills the corresponding bacterial host while sparing human cells and lessening the broader effects of antibiotic usage on commensal bacteria. Phage treatment is developing quickly, leading to many clinical studies and instances of life-saving medicinal use. In addition, phage treatment has a few immunological adverse effects and consequences in addition to its usefulness. Since K. pneumoniae antibiotic resistance has made treating multidrug-resistant (MDR) infections challenging, phage therapy (PT) has emerged as a novel therapeutic strategy. The effectiveness of phages has also been investigated in K. pneumoniae biofilms and animal infection models. Compared with antibiotics, PT exhibits numerous advantages, including a particular lysis spectrum, co-evolution with bacteria to avoid the emergence of phage resistance, and a higher abundance and diversity of phage resources than found in antibiotics. Moreover, phages are eliminated in the absence of a host bacterium, which makes them the only therapeutic agent that self-regulates at the sites of infection. Therefore, it is essential to pay attention to the role of PT in treating these infections. This study summarizes the state of knowledge on Klebsiella spp. phages and provides an outlook on the development of phage-based treatments that target K. pneumoniae in clinical trials.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ssekatawa K, Ntulume I, Byarugaba DK, Michniewski S, Jameson E, Wampande EM, Nakavuma J. Isolation and Characterization of Novel Lytic Bacteriophages Infecting Carbapenem-Resistant Pathogenic Diarrheagenic and Uropathogenic Escherichia Coli. Infect Drug Resist 2024; 17:3367-3384. [PMID: 39135747 PMCID: PMC11317518 DOI: 10.2147/idr.s466101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background The evolution of antimicrobial resistance has dramatically reduced the efficacy of the first-choice and last-resort antibiotics used to treat E. coli infections. Thus, searching for novel therapeutics to treat and control the emergence of antibiotic resistance is urgent. Therefore, this study aimed to illustrate the lytic effect of phages against carbapenem-resistant pathogenic E. coli. Methods Phages were isolated from hospital effluents by the enrichment assay. This was followed by the evaluation of the host range of the phages by the spot assay. The time taken by phages to bind to the host bacterial cells was determined by the adsorption assay. The phage latent period and burst size were determined using a one-step growth experiment. Phage morphology was determined by the Transmission Electron Microscopy. Molecular characterization of phages was done by whole genome sequencing. Results Two phages named UGKSEcP1 and UGKSEcP2 were isolated from hospital effluents. The phages were professionally lytic with a broad host range. The two phages recorded an average adsorption time of 11.25 minutes, an adsorption rate of 99.3%, a latency period of 20 minutes, and a burst size of approximately 528 phages/infected cell. Phages UGKSEcP1 and UGKSEcP2 had genome lengths of 167433bp, and 167221bp with 277 and 276 predicted genes, respectively, and no undesirable genes were detected. Phylogenetic analysis revealed the two phages belonged genus Tequatrovirus. TEM micrograph showed that the two phages had a similar morphotype with icosahedral heads and contractile tails; thus, classified as members of the Myoviridae phage family. Conclusion The findings demonstrate that the study isolated two novel professionally lytic phages with a broad host range and thus, are candidates for phage-mediated biocontrol.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- Department of Science Technical and Vocational Education, Makerere University, Kampala, Uganda
- Africa Center of Excellence in Materials, Product Development and Nanotechnology (MAPRONANO ACE), Makerere University, Kampala, Uganda
| | - Ibrahim Ntulume
- Department of Biotechnical and Diagnostic Sciences, Makerere University, Kampala, Uganda
| | | | | | - Eleanor Jameson
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, UK
| | - Eddie M Wampande
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, Makerere University, Kampala, Uganda
| | - Jesca Nakavuma
- Department of Biotechnical and Diagnostic Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
9
|
Lyytinen OL, Dapuliga C, Wallinger D, Patpatia S, Audu BJ, Kiljunen SJ. Three novel Enterobacter cloacae bacteriophages for therapeutic use from Ghanaian natural waters. Arch Virol 2024; 169:156. [PMID: 38967872 PMCID: PMC11226500 DOI: 10.1007/s00705-024-06081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are a growing global concern. Enterobacter cloacae complex (ECC) species are particularly adept at developing antibiotic resistance. Phage therapy is proposed as an alternative treatment for pathogens that no longer respond to antibiotics. Unfortunately, ECC phages are understudied when compared to phages of many other bacterial species. In this Ghanaian-Finnish study, we isolated two ECC strains from ready-to-eat food samples and three novel phages from natural waters against these strains. We sequenced the genomic DNA of the novel Enterobacter phages, fGh-Ecl01, fGh-Ecl02, and fGh-Ecl04, and assessed their therapeutic potential. All of the phages were found to be lytic, easy to propagate, and lacking any toxic, integrase, or antibiotic resistance genes and were thus considered suitable for therapy purposes. They all were found to be related to T4-type viruses: fGh-Ecl01 and fGh-Ecl04 to karamviruses and fGh-Ecl02 to agtreviruses. Testing of Finnish clinical ECC strains showed promising susceptibility to these novel phages. As many as 61.1% of the strains were susceptible to fGh-Ecl01 and fGh-Ecl04, and 7.4% were susceptible to fGh-Ecl02. Finally, we investigated the susceptibility of the newly isolated ECC strains to three antibiotics - meropenem, ciprofloxacin, and cefepime - in combination with the novel phages. The use of phages and antibiotics together had synergistic effects. When using an antibiotic-phage combination, even low concentrations of antibiotics fully inhibited the growth of bacteria.
Collapse
Affiliation(s)
- O L Lyytinen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - C Dapuliga
- Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - D Wallinger
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Patpatia
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - B J Audu
- National Veterinary Research Institute, Vom, Nigeria
| | - S J Kiljunen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Sharifi F, Montaseri M, Yousefi MH, Shekarforoush SS, Berizi E, Wagemans J, Vallino M, Hosseinzadeh S. Isolation and characterization of two Staphylococcus aureus lytic bacteriophages "Huma" and "Simurgh". Virology 2024; 595:110090. [PMID: 38718447 DOI: 10.1016/j.virol.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Montaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135, Turin, Italy
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
11
|
González-Gómez JP, Rodríguez-Arellano SN, Gomez-Gil B, Vergara-Jiménez MDJ, Chaidez C. Genomic and biological characterization of bacteriophages against Enterobacter cloacae, a high-priority pathogen. Virology 2024; 595:110100. [PMID: 38714025 DOI: 10.1016/j.virol.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Enterobacter cloacae is a clinically significant pathogen due to its multi-resistance to antibiotics, presenting a challenge in the treatment of infections. As concerns over antibiotic resistance escalate, novel therapeutic approaches have been explored. Bacteriophages, characterized by their remarkable specificity and ability to self-replicate within target bacteria, are emerging as a promising alternative therapy. In this study, we isolated and partially characterized nine lytic bacteriophages targeting E. cloacae, with two selected for comprehensive genomic analysis based on their host range and bacteriolytic activity. All identified phages exhibited a narrow host range, demonstrated stability within a temperature range of 30-60 °C, displayed pH tolerance from 3 to 10, and showed an excellent bacteriolytic capacity for up to 18 h. Notably, the fully characterized phage genomes revealed an absence of lysogenic, virulence, or antibiotic-resistance genes, positioning them as promising candidates for therapeutic intervention against E. cloacae-related diseases. Nonetheless, translating this knowledge into practical therapeutic applications mandates a deeper understanding of bacteriophage interactions within complex biological environments.
Collapse
Affiliation(s)
- Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | | | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, AP 711, Mazatlan, Sinaloa, Mexico
| | | | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
12
|
Han NS, Harada M, Pham-Khanh NH, Kamei K. Isolation, Characterization, and Complete Genome Sequence of Escherichia Phage KIT06 Which Infects Nalidixic Acid-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:581. [PMID: 39061264 PMCID: PMC11274021 DOI: 10.3390/antibiotics13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli (E. coli) is one of the most common sources of infection in humans and animals. The emergence of E. coli which acquires resistance to various antibiotics has made treatment difficult. Bacteriophages can be considered promising agents to expand the options for the treatment of antibiotic-resistant bacteria. This study describes the isolation and characterization of Escherichia phage KIT06, which can infect E. coli resistant to the quinolone antibiotic nalidixic acid. Phage virions possess an icosahedral head that is 93 ± 8 nm in diameter and a contractile tail (116 ± 12 nm × 13 ± 5 nm). The phage was found to be stable under various thermal and pH conditions. A one-step growth curve showed that the latent time of the phage was 20 min, with a burst size of 28 particles per infected cell. Phage KIT06 infected 7 of 12 E. coli strains. It inhibited the growth of the host bacterium and nalidixic acid-resistant E. coli. The lipopolysaccharide and outer membrane proteins of E. coli, tsx and btuB, are phage receptors. Phage KIT06 is a new species of the genus Tequatrovirus with a genome of 167,059 bp consisting of 264 open reading frames (ORFs) that encode gene products related to morphogenesis, replication, regulation, and host lysis. The lack of genes encoding integrase or excisionase indicated that this phage was lytic. Thus, KIT06 could potentially be used to treat antibiotic-resistant E. coli using phage therapy. However, further studies are essential to understand its use in combination with other antimicrobial agents and its safe use in such applications.
Collapse
Affiliation(s)
- Nguyen Song Han
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Mana Harada
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Nguyen Huan Pham-Khanh
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho City 900000, Vietnam;
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| |
Collapse
|
13
|
Kelly L, Jameson E. Bacteriophage cocktail shows no toxicity and improves the survival of Galleria mellonella infected with Klebsiella spp. J Virol 2024; 98:e0027224. [PMID: 38771043 PMCID: PMC11237459 DOI: 10.1128/jvi.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.
Collapse
Affiliation(s)
- Lucy Kelly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
14
|
Teklemariam AD, Al Hindi R, Qadri I, Alharbi MG, Hashem AM, Alrefaei AA, Basamad NA, Haque S, Alamri T, Harakeh S. Phage cocktails - an emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens. Biotechnol Genet Eng Rev 2024; 40:36-64. [PMID: 36927397 DOI: 10.1080/02648725.2023.2178870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad Al Hindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G Alharbi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccine and Immunotherapy Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Abdullah A Alrefaei
- Molecular Virology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Najlaa A Basamad
- Parasitology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese, American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Turki Alamri
- Family and community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Manohar P, Loh B, Turner D, Tamizhselvi R, Mathankumar M, Elangovan N, Nachimuthu R, Leptihn S. In vitro and in vivo evaluation of the biofilm-degrading Pseudomonas phage Motto, as a candidate for phage therapy. Front Microbiol 2024; 15:1344962. [PMID: 38559352 PMCID: PMC10978715 DOI: 10.3389/fmicb.2024.1344962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Infections caused by Pseudomonas aeruginosa are becoming increasingly difficult to treat due to the emergence of strains that have acquired multidrug resistance. Therefore, phage therapy has gained attention as an alternative to the treatment of pseudomonal infections. Phages are not only bactericidal but occasionally show activity against biofilm as well. In this study, we describe the Pseudomonas phage Motto, a T1-like phage that can clear P. aeruginosa infections in an animal model and also exhibits biofilm-degrading properties. The phage has a substantial anti-biofilm activity against strong biofilm-producing isolates (n = 10), with at least a twofold reduction within 24 h. To demonstrate the safety of using phage Motto, cytotoxicity studies were conducted with human cell lines (HEK 293 and RAW 264.7 macrophages). Using a previously established in vivo model, we demonstrated the efficacy of Motto in Caenorhabditis elegans, with a 90% survival rate when treated with the phage at a multiplicity of infection of 10.
Collapse
Affiliation(s)
- Prasanth Manohar
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Belinda Loh
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Ramasamy Tamizhselvi
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Marimuthu Mathankumar
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ramesh Nachimuthu
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Sebastian Leptihn
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Usman SS, Christina E. Characterization and genome-informatic analysis of a novel lytic mendocina phage vB_PmeS_STP12 suitable for phage therapy pseudomonas or biocontrol. Mol Biol Rep 2024; 51:419. [PMID: 38483683 DOI: 10.1007/s11033-024-09362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel lytic bacteriophage (phage) was isolated with Pseudomonas mendocina strain STP12 (P. mendocina) from the untreated site of Sewage Treatment Plant of Lovely Professional University, India. P. mendocina is a Gram-negative, rod-shaped, aerobic bacterium belonging to the family Pseudomonadaceae and has been reported in fifteen (15) cases of economically important diseases worldwide. METHODS AND RESULTS Here, a novel phage specifically infecting and killing P. mendocina strain STP12 was isolated from sewage sample using enrichment, spot test and double agar overlay (DAOL) method and was designated as vB_PmeS_STP12. The phage vB-PmeS-STP12 was viable at wide range of pH and temperature ranging from 4 to10 and - 20 to 70 °C respectively. Host range and efficiency of plating (EOP) analysis indicated that phage vB-PmeS-STP12 was capable of infecting and killing P. mendocina strain STP6 with EOP of 0.34. Phage vB_PmeS_STP12 was found to have a significant bacterial reduction (p < 0.005) at all the doses administered, particularly at optimal MOI of 1 PFU/CFU, compared to the control. Morphological analysis using high resolution transmission electron microscopy (HR-TEM) revealed an icosahedral capsid of ~ 55 nm in diameter on average with a short, non-contractile tail. The genome of vB_PmeS_STP12 is a linear, dsDNA containing 36,212 bp in size with a GC content of 58.87% harbouring 46 open reading frames (ORFs). The 46 predicted ORFs encode proteins with functional information categorized as lysis, replication, packaging, regulation, assembly, infection, immune, and hypothetical. However, the genome of vB_PmeS_STP12 appeared to be devoid of tRNAs, integrase gene, toxins genes, virulence factors, antimicrobial resistance genes (ARGs) and CRISPR arrays. The blast analysis with phylogeny revealed that vB_PmeS_STP12 is genetically similar to Pseudomonas phage PMBT14, Pseudomonas phage Almagne and Serratia phage Serbin with a highest identity of 74.00%, 74.93% and 59.48% respectively. CONCLUSIONS Taken together, characterization, morphological analysis and genome-informatics indicated that vB_PmeS_STP12 is podovirus morphotype belonging to the class Caudoviticetes, family Zobellviridae which appeared to be devoid of integrase gene, ARGs, CRISPR arrays, virulence factors and toxins genes, exhibiting stability and infectivity at wide range of pH (4 to10) and temperature (-20 to 70 °C), thereby making vB_PmeS_STP12 suitable for phage therapy or biocontrol. Based on the bibliometric analysis and data availability with respect to sequences deposited in GenBank, this is the first report of a phage infecting Pseudomonas mendocina.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India.
| |
Collapse
|
17
|
Kifelew LG, Warner MS, Morales S, Gordon DL, Thomas N, Mitchell JG, Speck PG. Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep 2024; 14:3515. [PMID: 38347019 PMCID: PMC10861545 DOI: 10.1038/s41598-024-53317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Complications of diabetes, such as diabetic foot ulcers (DFUs), are common, multifactorial in origin, and costly to treat. DFUs are the cause of nearly 90% of limb amputations among persons with diabetes. In most chronic infections such as DFU, biofilms are involved. Bacteria in biofilms are 100-1000 times more resistant to antibiotics than their planktonic counterparts. Multidrug-resistant (MDR) Staphylococcus aureus and Pseudomonas aeruginosa infections in DFUs may require alternative therapeutic agents such as bacteriophages ("phages"). This study describes the lytic activity of phage cocktails AB-SA01 (3-phage cocktail) and AB-PA01 (4-phage cocktail), which target S. aureus and P. aeruginosa, respectively. The host range and lytic effect of AB-SA01 and AB-PA01 on a planktonic culture, single-species biofilm, and mixed-species biofilm were evaluated. In vitro testing showed that 88.7% of S. aureus and 92.7% of P. aeruginosa isolates were susceptible to AB-SA01 and AB-PA01, respectively, in the planktonic state. The component phages of AB-SA01 and AB-PA01 infected 66% to 94.3% of the bacterial isolates tested. Furthermore, AB-SA01 and AB-PA01 treatment significantly (p < 0.05) reduced the biofilm biomass of their hosts, regardless of the antibiotic-resistant characteristics of the isolates and the presence of a non-susceptible host. In conclusion, the strong lytic activity, broad host range, and significant biofilm biomass reduction of AB-SA01 and AB-PA01 suggest the considerable potential of phages in treating antibiotic-resistant S. aureus and P. aeruginosa infections alone or as coinfections in DFUs.
Collapse
Affiliation(s)
- Legesse Garedew Kifelew
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
- St Paul's Hospital Millennium Medical College, 1271, Addis Ababa, Ethiopia.
| | - Morgyn S Warner
- Infectious Diseases Unit, Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sandra Morales
- AmpliPhi Australia Pty Ltd., Brookvale, NSW, 2100, Australia
- Phage Consulting, Sydney, NSW, 2100, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Nicky Thomas
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA, 5011, Australia
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
18
|
Rastegar S, Sabouri S, Tadjrobehkar O, Samareh A, Niaz H, Sanjari N, Hosseini-Nave H, Skurnik M. Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. Pathog Dis 2024; 82:ftae028. [PMID: 39435653 PMCID: PMC11536755 DOI: 10.1093/femspd/ftae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections globally. The increasing prevalence of multidrug-resistant (MDR) A. baumannii has become an important public health concern. To combat drug resistance, alternative methods such as phage therapy have been suggested. In total, 30 MDR A. baumannii strains were isolated from clinical specimens, and their antibiotic susceptibilities were determined. The Acinetobacter phage vB_AbaS_SA1, isolated from hospital sewage, was characterized. In addition to its plaque size, particle morphology, and host range, its genome sequence was determined and annotated. Finally, the antibacterial effects of phage alone, antibiotics alone, and phage/antibiotic combinations were assessed against the A. baumannii strains. Phage vB_AbaS_SA1 had siphovirus morphology, showed a latent period of 20 min, and a 250 PFU/cell (plaque forming unit/cell) burst size. When combined with antibiotics, vB_AbaS_SA1 (SA1) showed a significant phage-antibiotic synergy effect and reduced the overall effective concentration of antibiotics in time-kill assessments. The genome of SA1 is a linear double-stranded DNA of 50 108 bp in size with a guanine-cytosine (GC) content of 39.15%. Despite the potent antibacterial effect of SA1, it is necessary to perform additional research to completely elucidate the mechanisms of action and potential constraints associated with utilizing this bacteriophage.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nafise Sanjari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Malik S, Nehra K, Mann A, Jagdish R, Rana JS. Characterization and synergy studies of Caudoviricete Escherichia phage FS2B infecting multi-drug resistant uropathogenic Escherichia coli isolates. Int Microbiol 2024; 27:155-166. [PMID: 37247084 DOI: 10.1007/s10123-023-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.
Collapse
Affiliation(s)
- Shikha Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India.
| | - Avantika Mann
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Renu Jagdish
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - J S Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| |
Collapse
|
20
|
Singh D, Pal S, Subramanian S, Manickam N. Characterization and complete genome analysis of Klebsiella phage Kp109 with lytic activity against Klebsiella pneumoniae. Virus Genes 2024:10.1007/s11262-024-02053-y. [PMID: 38279974 DOI: 10.1007/s11262-024-02053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/06/2024] [Indexed: 01/29/2024]
Abstract
Klebsiella pneumonia is a serious pathogen involved in a range of infections. The increasing frequency of infection associated with K. pneumoniae and accelerated development of antimicrobial resistance has limited the available options of antibiotics for the treatment of infection. Bacteriophages are an attractive substitute to alleviate the problem of antibiotic resistance. In this study, isolation, microbiological and genomic characterization of bacteriophage Kp109 having the ability to infect K. pneumoniae has been shown. Phage Kp109 showed good killing efficiency and tolerance to a broad range of temperatures (4-60 °C) and pH (3-9). Transmission electron microscopy and genomic analysis indicated that phage Kp109 belongs to the genus Webervirus and family Drexlerviridae. Genomic analysis showed that the Kp109 has a 51,630 bp long double-stranded DNA genome with a GC content of 51.64%. The absence of known lysogenic, virulence, and antibiotic-resistant genes (ARGs) in its genome makes phage Kp109 safer to be used as a biocontrol agent for different purposes including phage therapy. The computational analysis of the putative endolysin gene revealed a binding energy of - 6.23 kcal/mol between LysKp109 and ligand NAM-NAG showing its potential to be used as an enzybiotic. However, future research is required for experimental validation of the in silico work to further corroborate the results obtained in the present study. Overall, phenotypic, genomic, and computational characterization performed in the present study showed that phages Kp109 and LysKp109 are promising candidates for future in vivo studies and could potentially be used for controlling K. pneumoniae infection.
Collapse
Affiliation(s)
- Deeksha Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shilpee Pal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srikrishna Subramanian
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
21
|
Ali SF, Teh SH, Yang HH, Tsai YC, Chao HJ, Peng SS, Chen SC, Lin LC, Lin NT. Therapeutic Potential of a Novel Lytic Phage, vB_EclM_ECLFM1, against Carbapenem-Resistant Enterobacter cloacae. Int J Mol Sci 2024; 25:854. [PMID: 38255926 PMCID: PMC10815064 DOI: 10.3390/ijms25020854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The global rise of multidrug-resistant Enterobacter cloacae strains, especially those that are resistant to carbapenems and produce metallo-β-lactamases, poses a critical challenge in clinical settings owing to limited treatment options. While bacteriophages show promise in treating these infections, their use is hindered by scarce resources and insufficient genomic data. In this study, we isolated ECLFM1, a novel E. cloacae phage, from sewage water using a carbapenem-resistant clinical strain as the host. ECLFM1 exhibited rapid adsorption and a 15-min latent period, with a burst size of approximately 75 PFU/infected cell. Its genome, spanning 172,036 bp, was characterized and identified as a member of Karamvirus. In therapeutic applications, owing to a high multiplicity of infection, ECLFM1 showed increased survival in zebrafish infected with E. cloacae. This study highlights ECLFM1's potential as a candidate for controlling clinical E. cloacae infections, which would help address challenges in treating multidrug-resistant strains and contribute to the development of alternative treatments.
Collapse
Affiliation(s)
- Saieeda Fabia Ali
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Yun-Chan Tsai
- Department of Life Sciences, College of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Huei-Jen Chao
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Si-Shiuan Peng
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Shu-Chen Chen
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Nien-Tsung Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| |
Collapse
|
22
|
Unnikrishnan VK, Sundaramoorthy NS, Nair VG, Ramaiah KB, Roy JS, Rajendran M, Srinath S, Kumar S, S PS, S SM, Nagarajan S. Genome analysis of triple phages that curtails MDR E. coli with ML based host receptor prediction and its evaluation. Sci Rep 2023; 13:23040. [PMID: 38155176 PMCID: PMC10754912 DOI: 10.1038/s41598-023-49880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Infections by multidrug resistant bacteria (MDR) are becoming increasingly difficult to treat and alternative approaches like phage therapy, which is unhindered by drug resistance, are urgently needed to tackle MDR bacterial infections. During phage therapy phage cocktails targeting different receptors are likely to be more effective than monophages. In the present study, phages targeting carbapenem resistant clinical isolate of E. coli U1007 was isolated from Ganges River (U1G), Cooum River (CR) and Hospital waste water (M). Capsid architecture discerned using TEM identified the phage families as Podoviridae for U1G, Myoviridae for CR and Siphoviridae for M phage. Genome sequencing showed the phage genomes varied in size U1G (73,275 bp) CR (45,236 bp) and M (45,294 bp). All three genomes lacked genes encoding tRNA sequence, antibiotic resistant or virulent genes. A machine learning (ML) based multi-class classification model using Random Forest, Logistic Regression, and Decision Tree were employed to predict the host receptor targeted by receptor binding protein of all 3 phages and the best performing algorithm Random Forest predicted LPS O antigen, LamB or OmpC for U1G; FhuA, OmpC for CR phage; and FhuA, LamB, TonB or OmpF for the M phage. OmpC was validated as receptor for U1G by physiological experiments. In vivo intramuscular infection study in zebrafish showed that cocktail of dual phages (U1G + M) along with colsitin resulted in a significant 3.5 log decline in cell counts. Our study highlights the potential of ML tool to predict host receptor and proves the utility of phage cocktail to restrict E. coli U1007 in vivo.
Collapse
Affiliation(s)
- Vineetha K Unnikrishnan
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, ASK-I-312, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Niranjana Sri Sundaramoorthy
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
- Translational Health Sciences Technology Institute, Faridabad, India
| | - Veena G Nair
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, ASK-I-312, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Kavi Bharathi Ramaiah
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, ASK-I-312, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Jean Sophy Roy
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Malarvizhi Rajendran
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Sneha Srinath
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Santhosh Kumar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Prakash Sankaran S
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Suma Mohan S
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| | - Saisubramanian Nagarajan
- Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
- Antimicrobial Resistance Lab, ASK-I-312, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
23
|
Nasr-Eldin MA, Gamal E, Hazza M, Abo-Elmaaty SA. Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt. Folia Microbiol (Praha) 2023; 68:911-924. [PMID: 37184760 PMCID: PMC10689537 DOI: 10.1007/s12223-023-01059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Reducing bacterial pathogen contamination not only improves overall global public health but also diminishes food waste and loss. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a beneficial tool for suppressing bacterial growth during dairy products storage time. Four Enterobacter cloacae (E. cloacae) complex isolates which were previously isolated from contaminated dairy products were used to identify lytic phages in wastewater. Phages specific to multi-drug resistant (MDR) E. cloacae complex 6AS1 were isolated from local sewage. Two novel phages vB_EclM-EP1 and vB_EclM-EP2 were identified as myoviral particles and have double-stranded DNA genome. Their host range and lytic capabilities were detected using spot test and efficiency of plating (EOP) against several bacterial isolates. The phages had a latent period of 30 min, and a large burst size of about 100 and 142 PFU/cell for vB_EclM-EP1 and vB_EclM-EP2, respectively. Both phages were viable at pH ranging 5-9 and stable at 70 °C for 60 min. The individual phages and their cocktail preparations (vB_EclM-EP1 and vB_EclM-EP2) reduced and inhibited the growth of E. cloacae complex 6AS1 during challenge test in milk and yogurt samples. These results indicate that the E. cloacae complex-specific phages (vB_EclM-EP1 and vB_EclM-EP2) have a potential application as microbicidal agents in packaged milk and milk derivatives during storage time. In addition, our environment is a rich sources of lytic phages which have potential use in eliminating multidrug-resistant isolates in food industry as well as in biocontrol.
Collapse
Affiliation(s)
- Mohamed A Nasr-Eldin
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt.
| | - Eman Gamal
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Mahmoud Hazza
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Sabah A Abo-Elmaaty
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
24
|
Wortelboer K, de Jonge PA, Scheithauer TPM, Attaye I, Kemper EM, Nieuwdorp M, Herrema H. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat Commun 2023; 14:5600. [PMID: 37699894 PMCID: PMC10497675 DOI: 10.1038/s41467-023-41329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacteriophages (phages) are bacterial viruses that have been shown to shape microbial communities. Previous studies have shown that faecal virome transplantation can decrease weight gain and normalize blood glucose tolerance in diet-induced obese mice. Therefore, we performed a double-blind, randomised, placebo-controlled pilot study in which 24 individuals with metabolic syndrome were randomised to a faecal filtrate transplantation (FFT) from a lean healthy donor (n = 12) or placebo (n = 12). The primary outcome, change in glucose metabolism, and secondary outcomes, safety and longitudinal changes within the intestinal bacteriome and phageome, were assessed from baseline up to 28 days. All 24 included subjects completed the study and are included in the analyses. While the overall changes in glucose metabolism are not significantly different between both groups, the FFT is well-tolerated and without any serious adverse events. The phage virion composition is significantly altered two days after FFT as compared to placebo, which coincides with more virulent phage-microbe interactions. In conclusion, we provide evidence that gut phages can be safely administered to transiently alter the gut microbiota of recipients.
Collapse
Affiliation(s)
- Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Patrick A de Jonge
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Ilias Attaye
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pharmacy and Clinical Pharmacology, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije University Medical Center, Department of Internal Medicine, Diabetes Center, Amsterdam, The Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Tan S, Huang S, Liu Z, Chen M, Chen H, Ye Q, Wu S, Yang X, Zhang S, Zhang J, Wu Q, Yang M. Genome Characterization of the Novel Lytic Enterobacter cloacae Phage vB_EclM_Q7622. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:236-245. [PMID: 37306924 DOI: 10.1007/s12560-023-09558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Enterobacter cloacae is a widespread opportunistic pathogen that causes urinary tract infection. The abuse of antibiotics enabled multidrug-resistant strains to spread. Bacteriophage therapy is a naturally, safe, and efficient alternative treatment technology against multi-resistant bacteria. In this study, a virulent phage vB_EclM_Q7622 (Q7622) was isolated from the sewage of Jiangcun poultry market in Guangzhou city. Transmission electron microscopy indicated that Q7622 had an icosahedral head (97.8 ± 5.6 nm in diameter) and a short, contractile tail (113.7 ± 4.5 nm). Its double-stranded DNA genome is composed of 173,871 bp with a GC content of 40.02%. It possesses 297 open reading frames and 9 tRNAs. No known virulence and resistance genes were detected, indicated that phage Q7622 could be used for pathogens prevention and control safely. Comparative genomic and phylogenetic analysis showed that Q7622 was highly similar to the phages vB_EclM_CIP9 and vB_EhoM-IME523. The highest nucleotide similarity between Q7622 and the similar phages in NCBI calculated by pyANI and VIRIDIC were 94.9% and 89.1% with vB_EhoM-IME523 respectively, below 95%. Thus, according to the result of nucleotide similarity calculation results, Q7622 was a novel virulent Enterobacter cloacae phage strain of the genus Kanagawavirus.
Collapse
Affiliation(s)
- Shilin Tan
- College of Agriculture, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shixuan Huang
- College of Agriculture, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zekun Liu
- College of Agriculture, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hanfang Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- College of Agriculture, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Meiyan Yang
- College of Agriculture, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
26
|
da Silva JD, Bens L, Santos AJDC, Lavigne R, Soares J, Melo LDR, Vallino M, Dias RS, Drulis-Kawa Z, de Paula SO, Wagemans J. Isolation and Characterization of the Acadevirus Members BigMira and MidiMira Infecting a Highly Pathogenic Proteus mirabilis Strain. Microorganisms 2023; 11:2141. [PMID: 37763984 PMCID: PMC10537623 DOI: 10.3390/microorganisms11092141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Proteus mirabilis is an opportunistic pathogen and is responsible for more than 40% of all cases of catheter-associated urinary tract infections (CAUTIs). Healthcare-associated infections have been aggravated by the constant emergence of antibiotic-resistant bacterial strains. Because of this, the use of phages to combat bacterial infections gained renewed interest. In this study, we describe the biological and genomic features of two P. mirabilis phages, named BigMira and MidiMira. These phages belong to the Acadevirus genus (family Autographiviridae). BigMira and MidiMira are highly similar, differing only in four missense mutations in their phage tail fiber. These mutations are sufficient to impact the phages' depolymerase activity. Subsequently, the comparative genomic analysis of ten clinical P. mirabilis strains revealed differences in their antibiotic resistance profiles and lipopolysaccharide locus, with the latter potentially explaining the host range data of the phages. The massive presence of antimicrobial resistance genes, especially in the phages' isolation strain P. mirabilis MCS, highlights the challenges in treating infections caused by multidrug-resistant bacteria. The findings reinforce BigMira and MidiMira phages as candidates for phage therapy purposes.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Lene Bens
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| | - Adriele J. do Carmo Santos
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| | - José Soares
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Luís D. R. Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy;
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, 50-335 Wroclaw, Poland;
| | - Sérgio Oliveira de Paula
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| |
Collapse
|
27
|
Choe J, Kim B, Park MK, Roh E. Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. BIOLOGY 2023; 12:1060. [PMID: 37626946 PMCID: PMC10452218 DOI: 10.3390/biology12081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Erwinia amylovora is a devastating phytobacterium causing fire blight in the Rosaceae family. In this study, ΦFifi106, isolated from pear orchard soil, was further purified and characterized, and its efficacy for the control of fire blight in apple plants was evaluated. Its genomic analysis revealed that it consisted of 84,405 bp and forty-six functional ORFs, without any genes encoding antibiotic resistance, virulence, and lysogenicity. The phage was classified into the genus Kolesnikvirus of the subfamily Ounavirinae. ΦFifi106 specifically infected indigenous E. amylovora and E. pyrifoliae. The lytic activity of ΦFifi106 was stable under temperature and pH ranges of 4-50 °C and 4-10, as well as the exposure to ultraviolet irradiation for 6 h. ΦFifi106 had a latent period of 20 min and a burst size of 310 ± 30 PFU/infected cell. ΦFifi106 efficiently inhibited E. amylovora YKB 14808 at a multiplicity of infection (MOI) of 0.1 for 16 h. Finally, the pretreatment of ΦFifi106 at an MOI of 1000 efficiently reduced disease incidence to 37.0% and disease severity to 0.4 in M9 apple plants. This study addressed the use of ΦFifi106 as a novel, safe, efficient, and effective alternative to control fire blight in apple plants.
Collapse
Affiliation(s)
- Jaein Choe
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Byeori Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
28
|
Alexyuk P, Bogoyavlenskiy A, Alexyuk M, Akanova K, Moldakhanov Y, Berezin V. Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms 2023; 11:1524. [PMID: 37375026 DOI: 10.3390/microorganisms11061524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Colibacillosis in chickens can cause the death of young stock, decrease weight gain and lead to significant economic losses. Currently, antibiotic therapy is the main method of treatment of infected animals, but unchecked use of antibiotics has led to widespread antibiotic resistance among microorganisms. Therefore, it is necessary to develop alternative methods of treating bacterial infections that are fully consistent with the One Health concept and introduce them into practice. Phage therapy meets the specified requirements perfectly. This study describes the isolation and characterization of the lytic jumbo phage vB_EcoM_Lh1B and evaluates its potential use in controlling antibiotic-resistant E. coli infection in poultry. The complete phage genome is 240,200 bp long. Open reading frame (ORF) prediction shows that the phage genome does not contain genes encoding antibiotic resistance and lysogeny factors. Based on phylogenetic and electron microscopic analysis, vB_EcoM_Lh1B belongs to the group of myoviruses of the Seoulvirus genus of the Caudoviricetes class. The bacteriophage has good resistance to a wide range of pH and temperatures and has the ability to suppress 19 out of 30 studied pathogenic E. coli strains. The biological and lytic properties of the isolated vB_EcoM_Lh1B phage make it a promising target of further study as a therapeutic agent against E. coli infections in poultry.
Collapse
Affiliation(s)
- Pavel Alexyuk
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| | - Andrey Bogoyavlenskiy
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| | - Madina Alexyuk
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| | - Kuralay Akanova
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| | - Yergali Moldakhanov
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| | - Vladimir Berezin
- Laboratory of Antiviral Protection, Department of Virology, Research and Production Center for Microbiology and Virology, Bogenbai Batyr Street 105, Almaty 050010, Kazakhstan
| |
Collapse
|
29
|
Jokar J, Saleh RO, Rahimian N, Ghasemian A, Ghaznavi G, Radfar A, Zarenezhad E, Najafipour S. Antibacterial effects of single phage and phage cocktail against multidrug-resistant Klebsiella pneumoniae isolated from diabetic foot ulcer. Virus Genes 2023:10.1007/s11262-023-02004-z. [PMID: 37259013 DOI: 10.1007/s11262-023-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Diabetic foot ulcer (DFU) is associated with long-term hospitalization and amputation. Antibiotic resistance has made the infection eradication more difficult. Hence, seeking alternative therapies such as phage therapy seems necessary. Bacteriophages are viruses targeting specific bacterial species. Klebsiella pneumoniae (K. pneumoniae) is among causative agents of the DFU. In this study, the therapeutic effects of single phage and phage cocktail were investigated against multidrug-resistant (MDR) K. pneumonia isolated from DFU. Bacteriophages were isolated from animal feces and sewage samples, and were enriched and propagated using K. pneumoniae as the host. Thirty K. pneumoniae clinical isolates were collected from hospitalized patients with DFU. The antibiotic susceptibility pattern was determined using agar disk diffusion test. The phages' morphological traits were determined using transmission electron microscopy (TEM). The killing effect of isolated phages was assessed using plaque assay. Four phage types were isolated and recognized including KP1, KP2, KP3, and KP4. The bacterial rapid regrowth was observed following each single phage-host interaction, but not phage cocktail due to the evolution of mutant strains. Phage cocktail demonstrated significantly higher antibacterial activity than each single phage (p < 0.05) without any bacterial regrowth. The employment of phage cocktail was promising for the eradication of MDR-K. pneumoniae isolates. The development of phage therapy in particular, phage cocktail is promising as an efficient approach to eradicate MDR-K. pneumoniae isolated from DFU. The application of a specific phage cocktail can be investigated to try and achieve the eradication of various infections.
Collapse
Affiliation(s)
- Javad Jokar
- School of Advanced Technologies in Medicine, Fasa University of Medical Science, Fasa, Iran
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghazal Ghaznavi
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, School of Advanced Medical Science, and Technologies, Shiraz University If Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Medical Parasitology, School of Advanced Medical Science, and Technologies, Shiraz University If Medical Sciences, Shiraz, Iran
| | - Elham Zarenezhad
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
30
|
Choi J, Chang Y. Complete Genome Sequence of Bacteriophage EO1, Which Infects Both Escherichia coli O157:H7 and Shigella. Microbiol Resour Announc 2023:e0017723. [PMID: 37184395 DOI: 10.1128/mra.00177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The lytic bacteriophage EO1 has been newly isolated. This phage infects Escherichia coli O157:H7 and has a broad antibacterial spectrum, including against Shigella. The complete genome sequence of phage EO1 was determined; its full length is 166,941 bp, and it has a G+C content of 35.46%.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
32
|
Expansion of Kuravirus-like Phage Sequences within the Past Decade, including Escherichia Phage YF01 from Japan, Prompt the Creation of Three New Genera. Viruses 2023; 15:v15020506. [PMID: 36851720 PMCID: PMC9965538 DOI: 10.3390/v15020506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteriophages, viruses that infect bacteria, are currently receiving significant attention amid an ever-growing global antibiotic resistance crisis. In tandem, a surge in the availability and affordability of next-generation and third-generation sequencing technologies has driven the deposition of a wealth of phage sequence data. Here, we have isolated a novel Escherichia phage, YF01, from a municipal wastewater treatment plant in Yokohama, Japan. We demonstrate that the YF01 phage shares a high similarity to a collection of thirty-five Escherichia and Shigella phages found in public databases, six of which have been previously classified into the Kuravirus genus by the International Committee on Taxonomy of Viruses (ICTV). Using modern phylogenetic approaches, we demonstrate that an expansion and reshaping of the current six-membered Kuravirus genus is required to accommodate all thirty-six member phages. Ultimately, we propose the creation of three additional genera, Vellorevirus, Jinjuvirus, and Yesanvirus, which will allow a more organized approach to the addition of future Kuravirus-like phages.
Collapse
|
33
|
Abid Fazaa ALmiyah S. Detection of AcrA and AcrB Efflux Pumps in Multidrug-Resistant Klebsiella pneumonia that Isolated from Wounds Infection Patients in Al-Diwaniyah Province. ARCHIVES OF RAZI INSTITUTE 2023; 78:269-276. [PMID: 37312720 PMCID: PMC10258248 DOI: 10.22092/ari.2022.358956.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Many infections produced by multidrug-resistant (MDR) Klebsiella pneumoniae are the main cause of death and treatment restrictions worldwide. In K. pneumoniae, the efflux pump system is dangerous in drug resistance. Therefore, this study was designed to investigate the involvement of the AcrA and AcrB efflux pumps in antibiotic resistance in Klebsiella pneumoniae isolated from wound patients. During June 2021-February 2022, 87 clinical isolates of Klebsiella pneumonia bacteria were obtained from wound samples patients consulted to the hospitals in AL-Diwaniyah province, Iraq. The disc diffusion method performed an antibiotic susceptibility test after microbiological/biochemical identification. The polymerase chain reaction (PCR) technique was used to examine efflux genes' prevalence (acrA and acrB). The results showed that resistance to Carbenicillin 72 (82.7%), Erythromycin 66 (75.8%), Rifampin 58 (66.6%), Ceftazidime 52 (59.7%), Cefotaxime 44 (50.5%), Novobiocin 38 (43.6%), Tetracycline 32 (36.7%), Ciprofloxacin 22 (25.2%), Gentamicin 16 (18.3%), Nitrofurantoin 6 (10.3%) in Klebsiella pneumoniae isolates. The PCR procedure revealed that the occurrence of the acrA and acrB genes is 55 (100%) and 55 (100%), respectively. The findings of this investigation show that the AcrA and AcrB efflux pumps play a crucial character in antibiotic resistance in multidrug-resistant Klebsiella pneumoniae bacterial isolates. As a result of the unintentional transmission of antimicrobial resistance genes, precise detection of resistance genes using molecular approaches is required to switch the extent of resistant strains.
Collapse
Affiliation(s)
- S Abid Fazaa ALmiyah
- Biology Department, Collage of Science, AL-Qadisiyah University, Ad Diwaniyah, Iraq
| |
Collapse
|
34
|
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2023; 175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Globally, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the major cause of nosocomial infections. These pathogens are multidrug resistant, and their negative impacts have brought serious health challenges and economic burden on many countries worldwide. Thus, this narrative review exploits different emerging alternative therapeutic strategies including combination antibiotics, antimicrobial peptides ((AMPs), bacteriophage and photodynamic therapies used in the treatment of the ESKAPE pathogens, their merits, limitations, and future prospects. Our findings indicate that ESKAPE pathogens exhibit resistance to drug using different mechanisms including drug inactivation by irreversible enzyme cleavage, drug-binding site alteration, diminution in permeability of drug or drug efflux increment to reduce accumulation of drug as well as biofilms production. However, the scientific community has shown significant interest in using these novel strategies with numerous benefits although they have some limitations including but not limited to instability and toxicity of the therapeutic agents, or the host developing immune response against the therapeutic agents. Thus, comprehension of resistance mechanisms of these pathogens is necessary to further develop or modify these approaches in order to overcome these health challenges including the barriers of bacterial resistance.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
35
|
Kim Y, Lee SM, Nong LK, Kim J, Kim SB, Kim D. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction. Front Microbiol 2023; 13:990910. [PMID: 36762092 PMCID: PMC9902359 DOI: 10.3389/fmicb.2022.990910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns over Klebsiella pneumoniae resistance to the last-line antibiotic treatment have prompted a reconsideration of bacteriophage therapy in public health. Biotechnological application of phages and their gene products as an alternative to antibiotics necessitates the understanding of their genomic context. This study sequenced, annotated, characterized, and compared two Klebsiella phages, KP1 and KP12. Physiological validations identified KP1 and KP12 as members of Myoviridae family. Both phages showed that their activities were stable in a wide range of pH and temperature. They exhibit a host specificity toward K. pneumoniae with a broad intraspecies host range. General features of genome size, coding density, percentage GC content, and phylogenetic analyses revealed that these bacteriophages are distantly related. Phage lytic proteins (endolysin, anti-/holin, spanin) identified by the local alignment against different databases, were subjected to further bioinformatic analyses including three-dimensional (3D) structure prediction by AlphaFold. AlphaFold models of phage lysis proteins were consistent with the published X-ray crystal structures, suggesting the presence of T4-like and P1/P2-like bacteriophage lysis proteins in KP1 and KP12, respectively. By providing the primary sequence information, this study contributes novel bacteriophages for research and development pipelines of phage therapy that ultimately, cater to the unmet clinical and industrial needs against K. pneumoniae pathogens.
Collapse
Affiliation(s)
- Youngju Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea,Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea,*Correspondence: Donghyuk Kim,
| |
Collapse
|
36
|
Zhao Y, Feng L, Zhou B, Zhang X, Yao Z, Wang L, Wang Z, Zhou T, Chen L. A newly isolated bacteriophage vB8388 and its synergistic effect with aminoglycosides against multi-drug resistant Klebsiella oxytoca strain FK-8388. Microb Pathog 2023; 174:105906. [PMID: 36494020 DOI: 10.1016/j.micpath.2022.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The bacteriophage vB8388 can lyse multi-drug resistant Klebsiella oxytoca strain FK-8388 and maintain stability in a wide range of temperatures (from 4 °C to 80 °C) and pHs (3-11). Bioinformatics analysis showed that vB8388 is a linear double-stranded DNA virus that is 39,750 long with 50.65% G + C content and 44 putative open reading frames (ORFs). Phage vB8388 belongs to the family Autographviridae and possesses a non-contractile tail. The latency period of vB8388 was approximately 20 min. The combination of phage vB8388 and gentamicin, amikacin, or tobramycin could effectively inhibit the growth of K. oxytoca strain FK-8388, with a decrease of more than 4 log units within 12 h in vitro. Phage vB8388 showed a strong synergistic effect with gentamicin that could enhance the anti-biofilm effect of vB8388. The phage + gentamicin combination also showed synergy in vivo in the larval infection model of Galleria mellonella. In conclusion, the findings of this study suggest the potential of phage + antibiotic combination therapy to be used as an alternative therapeutic approach for treating infectious diseases caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Beibei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
37
|
Narulita E, Cahyati VIN, Febrianti RA, Iqbal M. Potential bacteriophages to overcome bacterial infection of Alcaligenes faecalis in diabetic ulcer. Pediatr Endocrinol Diabetes Metab 2023; 29:61-66. [PMID: 37728456 PMCID: PMC10411081 DOI: 10.5114/pedm.2023.125363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Diabetes is a non-contagious disease, but it can cause various complications. One of the most common complications of diabetes is diabetic ulcers. Diabetic ulcers are infections that occur in the legs of diabetics due to the destruction of the deepest skin tissue. Recent studies have reported the presence of Alcaligenes faecalis with extensive drug resistance (XDR) properties as a cause of diabetic ulcers. Bacteriophages are known to have the ability to infect bacteria specifically so that they can be used as an alternative solution for treating diabetic ulcers. The purpose of this study was to determine the characteristics of bacteriophages capable of infecting Alcaligenes faecalis bacteria. MATERIAL AND METHODS The method used is the spot test method, host range, and identification of nucleic acid types. RESULTS The results showed that the 6 bacteriophages isolated, namely AFaV1, AFaV2, AFaV3, AFaV4, AFaV5, and AFaV6, had cloudy plaques with a diameter of ±3 mm. AFaV1, AFaV2, and AFaV4 isolates could infect all bacteria used; they were Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Meanwhile, bacteriophage isolates AFaV3, AFaV5, and AFaV6 could infect Klebsiella pneumoniae and Staphylococcus aureus bacteria only. The nucleic acid types of the 6 bacteriophage samples were dsDNA with band length > 1 Kb. CONCLUSIONS The 6 isolates that were isolated had the ability to infect by forming a prophage that could inhibit the growth of Alcaligenes faecalis and other pathogenic bacteria in diabetic ulcers.
Collapse
Affiliation(s)
- Erlia Narulita
- Biology Education, Universitas Jember, Indonesia
- Laboratory of Molecular Medicine, Universitas Jember, Indonesia
| | | | | | | |
Collapse
|
38
|
Baqer AA, Fang K, Mohd-Assaad N, Adnan SNA, Md Nor NS. In Vitro Activity, Stability and Molecular Characterization of Eight Potent Bacteriophages Infecting Carbapenem-Resistant Klebsiella pneumoniae. Viruses 2022; 15:117. [PMID: 36680156 PMCID: PMC9860934 DOI: 10.3390/v15010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment, including bacteriophage therapy. Bacteriophages are considered very safe and effective in treating bacterial infections. In this study, we characterize eight lytic bacteriophages that were previously isolated by our team against carbapenem-resistant Klebsiella pneumoniae. METHODS The one-step-growth curves, stability and lytic ability of eight bacteriophages were characterized. Restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD) typing analysis and protein profiling were used to characterize the microbes at the molecular level. Phylogenetic trees of four important proteins were constructed for the two selected bacteriophages. RESULTS AND CONCLUSIONS All eight bacteriophages showed high efficiency for reducing bacterial concentration with high stability under different physical and chemical conditions. We found four major protein bands out of at least ten 15-190 KDa bands that were clearly separated by SDS-PAGE, which were assumed to be the major head and tail proteins. The genomes were found to be dsDNA, with sizes of approximately 36-87 Kb. All bacteriophages reduced the optical density of the planktonic K. pneumoniae abruptly, indicating great potential to reduce K. pneumoniae infection. In this study, we have found that tail fiber protein can further distinguished closely related bacteriophages. The characterised bacteriophages showed promising potential as candidates against carbapenem-resistant Klebsiella pneumoniae via bacteriophage therapy.
Collapse
Affiliation(s)
- Abeer Ameen Baqer
- Medical Laboratory Techniques Department, Dijlah University College, Baghdad 10021, Iraq;
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| | - Kokxin Fang
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| | - Norfarhan Mohd-Assaad
- Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
- Institute for Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia
| | - Siti Noor Adnalizawati Adnan
- Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Kuala Lumpur 55100, SGR, Malaysia;
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, SGR, Malaysia;
| |
Collapse
|
39
|
Mulani MS, Kumkar SN, Pardesi KR. Characterization of Novel Klebsiella Phage PG14 and Its Antibiofilm Efficacy. Microbiol Spectr 2022; 10:e0199422. [PMID: 36374021 PMCID: PMC9769620 DOI: 10.1128/spectrum.01994-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of infections caused by multidrug-resistant Klebsiella pneumoniae demands the development of unconventional therapies. Here, we isolated, characterized, and sequenced a Klebsiella phage PG14 that infects and lyses carbapenem-resistant K. pneumoniae G14. Phage PG14 showed morphology similar to the phages belonging to the family Siphoviridae. The adsorption curve of phage PG14 showed more than 90% adsorption of phages on a host within 12 min. A latent period of 20 min and a burst size of 47 was observed in the one step growth curve. Phage PG14 is stable at a temperature below 30°C and in the pH range of 6 to 8. The PG14 genome showed no putative genes associated with virulence and antibiotic resistance. Additionally, it has shown lysis against 6 out of 13 isolates tested, suggesting the suitability of this phage for therapeutic applications. Phage PG14 showed more than a 7-log cycle reduction in K. pneumoniae planktonic cells after 24 h of treatment at a multiplicity of infection (MOI) of 10. The phage PG14 showed a significant inhibition and disruption of biofilm produced by K. pneumoniae G14. The promising results of this study nominate phage PG14 as a potential candidate for phage therapy. IMPORTANCE Klebsiella pneumoniae is one of the members of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) group of pathogens and is responsible for nosocomial infections. The global increase of carbapenem-resistant K. pneumoniae has developed a substantial clinical threat because of the dearth of therapeutic choices available. K. pneumoniae is one of the commonly found bacteria responsible for biofilm-related infections. Due to the inherent tolerance of biofilms to antibiotics, there is a growing need to develop alternative strategies to control biofilm-associated infections. This study characterized a novel bacteriophage PG14, which can inhibit and disrupt the K. pneumoniae biofilm. The genome of phage PG14 does not show any putative genes related to antimicrobial resistance or virulence, making it a potential candidate for phage therapy. This study displays the possibility of treating infections caused by multidrug-resistant (MDR) isolates of K. pneumoniae using phage PG14 alone or combined with other therapeutic agents.
Collapse
Affiliation(s)
- Mansura S. Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
- Abeda Inamdar Senior College, Pune, Maharashtra, India
| | - Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
40
|
Martins WMBS, Li M, Sands K, Lenzi MH, Portal E, Mathias J, Dantas PP, Migliavacca R, Hunter JR, Medeiros EA, Gales AC, Toleman MA. Effective phage cocktail to combat the rising incidence of extensively drug-resistant Klebsiella pneumoniae sequence type 16. Emerg Microbes Infect 2022; 11:1015-1023. [PMID: 35259067 PMCID: PMC9004492 DOI: 10.1080/22221751.2022.2051752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
Abstract
Bacteriophages are the most abundant organisms on Earth. As there are few effective treatment options against some pathogens, the interest in the bacteriophage control of multi-drug-resistant bacterial pathogens is escalating, especially for Klebsiella pneumoniae. This study aimed to develop a phage-based solution to the rising incidence of extensively drug-resistant clinical Klebsiella pneumoniae sequence type (ST16) infections starting from a set of phages recently characterized against this lineage. A phage-cocktail (Katrice-16) composed of eight lytic phages was characterized for potential use in humans. In vitro and in vivo broth inhibition and Galleria mellonella rescue assays were used to demonstrate the efficacy of this approach using a collection of 56 strains of K. pneumoniae ST16, with distinct genetic backgrounds that were collected from clinical infections from four disparate nations. Additionally, Katrice-16 anti-biofilm activity, synergism with meropenem, and activity in human body fluids were also assessed. Katrice-16 was highly active in vitro against our K. pneumoniae ST16 collection (AUC% median = 86.48%; Q1 = 83.8%; Q2 = 96.85%; Q3 = 98.85%). It additionally demonstrated excellent in vivo activity in G. mellonella rescue assays, even with larvae infected by isolates that exhibited moderate in vitro inhibition. We measured significant anti-biofilm activity over 12 h (p = .0113) and synergic activity with meropenem. In addition, we also demonstrate that Katrice-16 maintained high activity in human body fluids. Our results indicate that our cocktail will likely be an effective solution for human infections with this increasingly prevalent and often highly resistant bacterial clone.
Collapse
Affiliation(s)
- Willames M. B. S. Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mei Li
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Michael H. Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Jordan Mathias
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Priscila P. Dantas
- Division of Infection Control and Hospital Epidemiology, Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - James R. Hunter
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Eduardo A. Medeiros
- Division of Infection Control and Hospital Epidemiology, Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana C. Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mark A. Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
41
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
42
|
Antibiofilm activity of a lytic Salmonella phage on different Salmonella enterica serovars isolated from broiler farms. Int Microbiol 2022; 26:205-217. [PMID: 36334144 PMCID: PMC10148789 DOI: 10.1007/s10123-022-00294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AbstractBacteriophages have been mainly used in treating infections caused by planktonic bacterial cells in the veterinary sector. However, their applications as antibiofilm agents have received little attention. Accordingly, a previously isolated Salmonella infecting Siphoviridae phage was investigated for host range against 15 Salmonella enterica isolates (S. Cape, S. Gallinarum, 4 S. Enteritidis, 3 S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, S. Agona, S. Daula, and S. Aba) recovered from the litters of commercial broiler farms. All S. enterica isolates were examined for their biofilm activity using a microtiter plate assay and for adrA, csgD, and gcpA genes using conventional PCR. The phage efficacy against established biofilms produced by the selected seven S. enterica isolates (S. Gallinarum, S. Enteritidis, S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, and S. Agona) was assessed using microtiter plate assay and reverse transcriptase real-time PCR over different incubation times of 5 and 24 h. All S. enterica isolates were strong biofilm formers. Moreover, the phage effectively reduced the biofilm activity of the established S. enterica biofilms in the microtiter plate assay using the independent sample t-test (P < 0.050). Furthermore, the relative expression levels of csgD, gcpA, and adrA genes in the biofilm cells of S. enterica isolate after phage treatment were significantly up-regulated to variable degrees using the independent sample t-test (P < 0.050). In conclusion, the present study revealed the potential use of Salmonella phage in reducing established biofilms produced by S. enterica serovars isolated from broiler farms.
Collapse
|
43
|
Shahriar A, Rob Siddiquee MF, Ahmed H, Mahmud AR, Ahmed T, Mahmud MR, Acharjee M. Catheter-associated urinary tract infections: Etiological analysis, biofilm formation, antibiotic resistance, and a novel therapeutic era of phage. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.86-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens has put global public health at its utmost risk, especially in developing countries where people are unaware of personal hygiene and proper medication. In general, the infection frequently occurs in the urethra, bladder, and kidney, as reported by the physician. Moreover, many UTI patients whose acquired disorder from the hospital or health-care center has been addressed previously have been referred to as catheter-associated UTI (CAUTI). Meanwhile, the bacterial biofilm triggering UTI is another critical issue, mostly by catheter insertion. In most cases, the biofilm inhibits the action of antibiotics against the UTI-causing bacteria. Therefore, new therapeutic tools should be implemented to eliminate the widespread multidrug resistance (MDR) UTI-causing bacteria. Based on the facts, the present review emphasized the current status of CAUTI, its causative agent, clinical manifestation, and treatment complications. This review also delineated a model of phage therapy as a new therapeutic means against bacterial biofilm-originated UTI. The model illustrated the entire mechanism of destroying the extracellular plyometric substances of UTI-causing bacteria with several enzymatic actions produced by phage particles. This review will provide a complete outline of CAUTI for the general reader and create a positive vibe for the researchers to sort out alternative remedies against the CAUTI-causing MDR microbial agents.
Collapse
Affiliation(s)
- Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1208, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Tasnia Ahmed
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Md. Rayhan Mahmud
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
44
|
Cao S, Yang W, Zhu X, Liu C, Lu J, Si Z, Pei L, Zhang L, Hu W, Li Y, Wang Z, Pang Z, Xue X, Li Y. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet Res 2022; 18:386. [PMID: 36329508 PMCID: PMC9632116 DOI: 10.1186/s12917-022-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Salmonella infection in livestock and poultry causes salmonellosis, and is mainly treated using antibiotics. However, the misuse use of antibiotics often triggers the emergence of multi-drug-resistant Salmonella strains. Currently, Salmonella phages is safe and effective against Salmonella, serving as the best drug of choice. This study involved 16 Salmonella bacteriophages separated and purified from the sewage and the feces of the broiler farm. A phage, vB_SalP_LDW16, was selected based on the phage host range test. The phage vB_SalP_LDW16 was characterized by the double-layer plate method and transmission electron microscopy. Furthermore, the clinical therapeutic effect of phage vB_SalP_LDW16 was verified by using the pathogenic Salmonella Enteritidis in the SPF chicken model. RESULTS The phage vB_SalP_LDW16 with a wide host range was identified to the family Siphoviridae and the order Caudoviridae, possess a double-stranded DNA and can lyse 88% (22/25) of Salmonella strains stored in the laboratory. Analysis of the biological characteristics, in addition, revealed the optimal multiplicity of infection (MOI) of vB_SalP_LDW16 to be 0.01 and the phage titer to be up to 3 × 1014 PFU/mL. Meanwhile, the phage vB_SalP_LDW16 was found to have some temperature tolerance, while the titer decreases rapidly above 60 ℃, and a wide pH (i.e., 5-12) range as well as relative stability in pH tolerance. The latent period of phage was 10 min, the burst period was 60 min, and the burst size was 110 PFU/cell. Furthermore, gastric juice was also found to highly influence the activity of the phage. The clinical treatment experiments showed that phage vB_SalP_LDW16 was able to significantly reduce the bacterial load in the blood through phage treatment, thereby improving the pathological changes in the intestinal, liver, and heart damage, and promoting the growth and development of the chicken. CONCLUSIONS The phage vB_SalP_LDW16 is a highly lytic phage with a wide host range, which can be potentially used for preventing and treating chicken salmonellosis, as an alternative or complementary antibiotic treatment in livestock farming.
Collapse
Affiliation(s)
- Shengliang Cao
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wenwen Yang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xihui Zhu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhenshu Si
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Lanying Pei
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Leilei Zhang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wensi Hu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Yanlan Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhiwei Wang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zheyu Pang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Sinder Industrial Park, Shungeng Road, Zhucheng Development Zone, Weifang, Shandong, 262200, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
| |
Collapse
|
45
|
Abstract
We describe the complete genome sequence of bacteriophage Motto, which infects clinical strains of Pseudomonas aeruginosa. Motto is a T1-like siphovirus related to members of the family Drexlerviridae and has a capsid width of ~57 nm and a tail length of ~255 nm. The 49.9-kb genome contains 84 protein-coding genes.
Collapse
|
46
|
Abstract
EMBL-EBI The European Bioinformatics Institute; E. coli Escherichia coli; E. faecalis Enterobacter faecalis; B. fragilis Bacteroides fragilis; B. vulgatus Bacteroides vulgatus; SaPIs Staphylococcus aureus pathogenicity islands; ARGs Antibiotic resistance genes; STEC Shiga toxigenic E. coli; Stx Shiga toxin; BLAST Basic Local Alignment Search Tool; TSST-1 Toxic shock toxin 1; RBPs Receptor-binding proteins; LPS lipopolysaccharide; OMVs Outer membrane vesicles; PT Phosphorothioate; BREX Bacteriophage exclusion; OCR Overcome classical restriction; Pgl Phage growth limitation; DISARM Defense island system associated with restrictionmodification; R-M system Restriction-modification system; BREX system Bacteriophage exclusion system; CRISPR Clustered regularly interspaced short palindromic repeats; Cas CRISPR-associated; PAMs Prospacer adjacent motifs; crRNA CRISPR RNA; SIE; OMPs; Superinfection exclusion; Outer membrane proteins; Abi Abortive infection; TA Toxin-antitoxin; TLR Toll-like receptor; APCs Antigen-presenting cells; DSS Dextran sulfate sodium; IELs Intraepithelial lymphocytes; FMT Fecal microbiota transfer; IFN-γ Interferon-gamma; IBD Inflammatory bowel disease; AgNPs Silver nanoparticles; MDSC Myeloid-derived suppressor cell; CRC Colorectal cancer; VLPs Virus-like particles; TMP Tape measure protein; PSMB4 Proteasome subunit beta type-4; ALD Alcohol-related liver disease; GVHD Graft-versus-host disease; ROS Reactive oxygen species; RA Rheumatoid arthritis; CCP Cyclic citrullinated protein; AMGs Accessory metabolic genes; T1DM Type 1 diabetes mellitus; T2DM Type 2 diabetes mellitus; SCFAs Short-chain fatty acids; GLP-1 Glucagon-like peptide-1; A. baumannii Acinetobacter baumannii; CpG Deoxycytidylinate-phosphodeoxyguanosine; PEG Polyethylene glycol; MetS Metabolic syndrome; OprM Outer membrane porin M.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Ding Kefeng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Colorectal Surgery and Oncology, Cancer Center Zhejiang University, Hangzhou, China,CONTACT Ding Kefeng Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Building 6 room 2018, Hangzhou, Zhejiang310009, China
| |
Collapse
|
47
|
A Lysozyme Murein Hydrolase with Broad-Spectrum Antibacterial Activity from Enterobacter Phage myPSH1140. Antimicrob Agents Chemother 2022; 66:e0050622. [PMID: 35950843 PMCID: PMC9487488 DOI: 10.1128/aac.00506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.
Collapse
|
48
|
Mutai IJ, Juma AA, Inyimili MI, Nyachieo A, Nyamache AK. Efficacy of diversely isolated lytic phages against multi-drug resistant Enterobacter cloacae isolates in Kenya. Afr J Lab Med 2022; 11:1673. [PMID: 36091354 PMCID: PMC9453119 DOI: 10.4102/ajlm.v11i1.1673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/04/2022] [Indexed: 11/07/2022] Open
Abstract
Background Enterobacter cloacae causes nosocomial infections in 15% of patients in low- and middle-income countries with emergence of carbapenem resistance. The utilisation of bacteriophages for therapeutic purposes is crucial for eradicating these resistant bacterial strains. Objective This study evaluated the efficacy of lytic phages on bacterial isolates of E. cloacae and determined their stability in various physicochemical conditions. Methods Twenty-nine lytic phages were isolated from the waste water of six informal settlements in Nairobi County, Kenya, from July 2019 to December 2020 and cross-reacted with 30 anonymised clinical isolates of E. cloacae. Six phages were then selected for physicochemical property studies. Phages were described as potent upon lysing any bacterial strain in the panel. Results Selected phages were stable at 4 °C – 50 °C with a 5.1% decrease in titre in four of six phages and a 1.8% increase in titre in two of six phages at 50 °C. The phages were efficient following two weeks incubation at 4 °C with optimal activity at human body temperature (37 °C) and an optimal pH of 7.5. Phages were active at 0.002 M and 0.015 M concentrations of Ca2+ ions. The efficiency of all phages decreased with increased exposure to ultraviolet light. All phages (n = 29) showed cross-reactivity against anonymised clinical isolates of E. cloacae strains (n = 30). The most potent phage lysed 67.0% of bacterial strains; the least potent phage lysed 27.0%. Conclusion This study reveals the existence of therapeutic phages in Kenya that are potent enough for treatment of multi-drug resistant E. cloacae.
Collapse
Affiliation(s)
- Ivy J Mutai
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, Biotechnology and Microbiology, Faculty of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Angela A Juma
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
| | | | - Atunga Nyachieo
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
| | - Anthony K Nyamache
- Department of Biochemistry, Biotechnology and Microbiology, Faculty of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
49
|
Cieślik M, Harhala M, Orwat F, Dąbrowska K, Górski A, Jończyk-Matysiak E. Two Newly Isolated Enterobacter-Specific Bacteriophages: Biological Properties and Stability Studies. Viruses 2022; 14:1518. [PMID: 35891499 PMCID: PMC9319786 DOI: 10.3390/v14071518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
In an era of antibiotic therapy crisis caused by spreading antimicrobial resistance, and when recurrent urinary tract infections constitute a serious social and medical problem, the isolation and complex characterization of phages with a potential therapeutic application represents a promising solution. It is an inevitable, and even a necessary direction in the development of current phage research. In this paper, we present two newly isolated myoviruses that show lytic activity against multidrug-resistant clinical isolates of Enterobacter spp. (E. cloacae, E. hormaechei, and E. kobei), the genomes of which belong to a poorly represented phage group. Both phages were classified as part of the Tevenvirinae subfamily (Entb_43 was recognized as Karamvirus and Entb_45 as Kanagawavirus). Phage lytic spectra ranging from 40 to 60% were obtained. The most effective phage-to-bacteria ratios (MOI = 0.01 and MOI = 0.001) for both the phage amplification and their lytic activity against planktonic bacteria were also estimated. Complete adsorption to host cells were obtained after about 20 min for Entb_43 and 10 min for Entb_45. The phage lysates retained their initial titers even during six months of storage at both -70 °C and 4 °C, whereas storage at 37 °C caused a complete loss in their activity. We showed that phages retained their activity after incubation with solutions of silver and copper nanoparticles, which may indicate possible synergistic antibacterial activity. Moreover, a significant reduction in phage titers was observed after incubation with a disinfectant containing octenidinum dihydrochloridum and phenoxyethanol, as well as with 70% ethanol. The observed maintenance of phage activity during incubation in a urine sample, along with other described properties, may suggest a therapeutic potential of phages at the infection site after intravesical administration.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (F.O.); (A.G.)
| | - Marek Harhala
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.H.); (K.D.)
| | - Filip Orwat
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (F.O.); (A.G.)
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.H.); (K.D.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (F.O.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (F.O.); (A.G.)
| |
Collapse
|
50
|
Li L, Wu Y, Ma D, Zhou Y, Wang L, Han K, Cao Y, Wang X. Isolation and characterization of a novel Escherichia coli phage Kayfunavirus ZH4. Virus Genes 2022; 58:448-457. [PMID: 35716226 DOI: 10.1007/s11262-022-01916-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Escherichia coli, a gram-negative bacterium, was generally considered conditional pathogenic bacteria and the proportion of bacteria resistant to commonly used specified antibacterial drugs exceeded 50%. Phage therapeutic application has been revitalized since antibiotic resistance in bacteria was increasing. Compared with antibiotics, phage is the virus specific to bacterial hosts. However, further understanding of phage-host interactions is required. In this study, a novel phage specific to a E. coli strain, named as phage Kayfunavirus ZH4, was isolated and characterized. Transmission electron microscopy showed that phage ZH4 belongs to the family Autographiviridae. The whole-genome analysis showed that the length of phage ZH4 genome was 39,496 bp with 49 coding domain sequence (CDS) and no tRNA was detected. Comparative genome and phylogenetic analysis demonstrated that phage ZH4 was highly similar to phages belonging to the genus Kayfunavirus. Moreover, the highest average nucleotide identity (ANI) values of phage ZH4 with all the known phages was 0.86, suggesting that ZH4 was a relatively novel phage. Temperature and pH stability tests showed that phage ZH4 was stable from 4° to 50 °C and pH range from 3 to 11. Host range of phage ZH4 showed that there were only 2 out of 17 strains lysed by phage ZH4. Taken together, phage ZH4 was considered as a novel phage with the potential for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yuxing Wu
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Dongxin Ma
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|