1
|
Xu G, Yang H, Han J, Liu X, Shao K, Li X, Wang G, Yue W, Dou J. Regulatory roles of extracellular polymeric substances in uranium reduction via extracellular electron transfer by Desulfovibrio vulgaris UR1. ENVIRONMENTAL RESEARCH 2024; 262:119862. [PMID: 39208974 DOI: 10.1016/j.envres.2024.119862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The pathway of reducing U(VI) to insoluble U(IV) using electroactive bacteria has become an effective and promising approach to address uranium-contaminated water caused by human activities. However, knowledge regarding the roles of extracellular polymeric substances (EPS) in the uranium reduction process involving in extracellular electron transfer (EET) mechanisms is limited. Here, this study isolated a novel U(VI)-reducing strain, Desulfovibrio vulgaris UR1, with a high uranium removal capacity of 2.75 mM/(g dry cell). Based on a reliable EPS extraction method (45 °C heating), manipulation of EPS in D. vulgaris UR1 suspensions (removal or addition of EPS) highlighted its critical role in facilitating uranium reduction efficiency. On the second day, U(VI) removal rates varied significantly across systems with different EPS contents: 60.8% in the EPS-added system, 48.5% in the pristine system, and 22.2% in the EPS-removed system. Characterization of biogenic solids confirmed the reduction of U(VI) by D. vulgaris UR1, and the main products were uraninite and UO2 (2.88-4.32 nm in diameter). As EPS formed a permeable barrier, these nanoparticles were primarily immobilized within the EPS in EPS-retained/EPS-added cells, and within the periplasm in EPS-removed cells. Multiple electroactive substances, such as tyrosine/tryptophan aromatic compounds, flavins, and quinone-like substances, were identified in EPS, which might be the reason for enhancement of uranium reduction via providing more electron shuttles. Furthermore, proteomics revealed that a large number of proteins in EPS were enriched in the subcategories of catalytic activity and electron transfer activity. Among these, iron-sulfur proteins, such as hydroxylamine reductase (P31101), pyruvate: ferredoxin oxidoreductase (A0A0H3A501), and sulfite reductase (P45574), played the most critical role in regulating EET in D. vulgaris UR1. This work highlighted the importance of EPS in the uranium reduction by D. vulgaris UR1, indicating that EPS functioned as both a reducing agent and a permeation barrier for access to heavy metal uranium.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Juncheng Han
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xindai Li
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guanying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Beijing Boqi Electric Power Science and Technology Co., Ltd, Beijing 100012, PR China
| | - Weifeng Yue
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Juergensen N, Weiler JR, Knoll MT, Gescher J, Edel M. Strategic improvement of Shewanella oneidensis for biocatalysis: Approach to media refinement and scalable application in a microbial electrochemical system. N Biotechnol 2024; 85:31-38. [PMID: 39613153 DOI: 10.1016/j.nbt.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Microbial electrochemical systems offer a sustainable method for the conversion of chemical energy into electrical energy or hydrogen and the production of valuable compounds, contributing to the development of a bio-based economy. This study aimed to enhance the performance of anodic bioelectrochemical systems by improving the current density of Shewanella oneidensis as a biocatalyst through strain modification and medium refinement. The genetic modification, combining the prophage deletion and overexpression of the speC gene, resulted in a 4.2-fold increase in current density compared to the wild type. Furthermore, medium refinement and incorporating riboflavin, led to an additional 5.7-fold increase in current density. The application of the modified strain and medium in a scalable microbial electrolysis cell resulted in a current density of 1.2 A m-², similar to what was achieved previously with an S. oneidensis and Geobacter sulfurreducens co-culture, substantiating the substantial performance increase for a pure culture of S. oneidensis. Furthermore, S. oneidensis was shown to grow in medium containing up to 500 mM sodium chloride and increasing the salt concentration to 400 mM had a minor influence on growth but significantly lowered the cell voltage of the MEC system.
Collapse
Affiliation(s)
- Nikolai Juergensen
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany
| | - Janek R Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany
| | - Melanie T Knoll
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany.
| |
Collapse
|
3
|
Li S, Xi Y, Chu Y, Li X, Li F, Ren N, Ho SH. Multi-dimensional perspectives into the pervasive role of microbial extracellular polymeric substances in electron transport processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175222. [PMID: 39098409 DOI: 10.1016/j.scitotenv.2024.175222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
During the process of biological treatment, most microorganisms are encapsulated in extracellular polymeric substances (EPS), which protect the cell from adverse environments and aid in microbial attachment. Microorganisms utilize extracellular electron transfer (EET) for energy and information interchange with other cells and the outside environment. Understanding the role of steric EPS in EET is critical for studying microbiology and utilizing microorganisms in biogeochemical processes, pollutant transformation, and bioenergy generation. However, the current study shows that understanding the roles of EPS in the EET processes still needs a great deal of research. In view of recent research, this work aims to systematically summarize the production and functional group composition of microbial EPS. Additionally, EET pathways and the role of EPS in EET processes are detailed. Then factors impacting EET processes in EPS are then discussed, with a focus on the spatial structure and composition of EPS, conductive materials and environmental pollution, including antibiotics, pH and minerals. Finally, strategies to enhance EET, as well as current challenges and future prospects are outlined in detail. This review offers novel insights into the roles of EPS in biological electron transport and the application of microorganisms in pollutant transformation.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yucan Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
4
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
5
|
Xia H, Zhu L, Ding J, Chen J, Huang K, Zhao M, Li F, Jiang Y. Earthworm gut digestion drives the transfer behavior of antibiotic resistance genes in layers of extracellular polymeric substances during vermicomposting of dewatered sludge. ENVIRONMENTAL RESEARCH 2024; 259:119489. [PMID: 38925469 DOI: 10.1016/j.envres.2024.119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Gut digestion by earthworms (GDE) is a crucial step in vermicomposting, affecting the fate of antibiotic resistance genes (ARGs) in vermicompost sludge. The extracellular polymeric substance (EPS) matrix of sludge is an important space for ARG transfer. However, the effect of GDE on EPS-associated ARGs remains unclear. Therefore, this study explored the role of GDE in driving the transfer of ARGs within different EPS layers in sludge. For this, the changes in intracellular ARGs and EPS-associated ARGs in sludge were analyzed after 5 days of the GDE process. The results showed that after the GDE process, both nitrate and dissolved organic carbon significantly increased in all EPS layers of sludge, while the proteins and polysaccharides only enhanced in soluble and loosely bound EPS of sludge. In addition, a 7.0% decrease in bacterial diversity was recorded after the GDE process, with a functional bacterial community structure emerging. Moreover, the absolute abundance of total ARGs and mobile genetic elements decreased by 90.71% and 61.83%, respectively, after the GDE process. Intracellular ARGs decreased by 92.1%, while EPS-associated ARGs increased by 4.9%, indicative of intracellular ARG translocation into the EPS during the GDE process. Notably, the ARGs exhibited significant enrichment in both the soluble and loosely bound EPS, whereas they were reduced in the tightly bound EPS. The structural equation modeling revealed that the GDE process effectively mitigated the ARG dissemination risk by modulating both the EPS structure and microenvironment, with the organic structure representing a primary factor influencing ARGs in the EPS.
Collapse
Affiliation(s)
- Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Licheng Zhu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jungang Ding
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Meng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yufeng Jiang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
6
|
Wang L, Lei Z, Zhang Z, Yang X, Chen R. Deciphering the role of extracellular polymeric substances in the adsorption and biotransformation of organic micropollutants during anaerobic wastewater treatment. WATER RESEARCH 2024; 257:121718. [PMID: 38723358 DOI: 10.1016/j.watres.2024.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zixin Zhang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
7
|
Rodríguez-Torres LM, Huerta-Miranda GA, Martínez-García AL, Mazón-Montijo DA, Hernández-Eligio A, Miranda-Hernández M, Juárez K. Influence of support materials on the electroactive behavior, structure and gene expression of wild type and GSU1771-deficient mutant of Geobacter sulfurreducens biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33612-3. [PMID: 38758442 DOI: 10.1007/s11356-024-33612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Antonio Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Ana Luisa Martínez-García
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
| | - Dalia Alejandra Mazón-Montijo
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580, Temixco, Morelos, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
8
|
Sanjurjo-Sánchez J, Alves C, Freire-Lista DM. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168846. [PMID: 38036142 DOI: 10.1016/j.scitotenv.2023.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Biominerals deposition processes, also called biomineralisation, are intimately related to biodeterioration on stone surfaces. They include complex processes not always completely well understood. The study of biominerals implies the identification of organisms, their molecular mechanisms, and organism/rock/atmosphere interactions. Sampling restrictions of monument stones difficult the biominerals study and the in situ demonstrating of biodeterioration processes. Multidisciplinary works are required to understand the whole process. Thus, studies in heritage buildings have taken advantage of previous knowledge acquired thanks to laboratory experiments, investigations carried out on rock outcrops and within caves from some years ago. With the extrapolation of such knowledge to heritage buildings and the advances in laboratory techniques, there has been a huge increase of knowledge regarding biomineralisation and biodeterioration processes in stone monuments during the last 20 years. These advances have opened new debates about the implications on conservation interventions, and the organism's role in stone conservation and decay. This is a review of the existing studies of biominerals formation, biodeterioration on laboratory experiments, rocks, caves, and their application to building stones of monuments.
Collapse
Affiliation(s)
| | - Carlos Alves
- LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020) and Earth Sciences Department/School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Freire-Lista
- Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências da Vida e do Ambiente, Quinta dos Prados, 5000-801 Vila Real, Portugal; Centro de Geociências, Universidade de Coimbra, Portugal
| |
Collapse
|
9
|
Srinivasan KR, Wong JWC, Murugesan K. Production of bioflocculant from Klebsiella pneumoniae: evaluation of fish waste extract as substrate and flocculation performance. ENVIRONMENTAL TECHNOLOGY 2023; 44:4046-4059. [PMID: 35567323 DOI: 10.1080/09593330.2022.2078672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The bioflocculant producing bacterial strain - UKD24 was isolated from the domestic sewage treatment plant. The isolated strain was identified as Klebsiella pneumoniae by using 16S rRNA gene sequencing. The K. pneumoniae UKD24 showed remarkable flocculation rates when grown with the carbon sources namely glucose, sucrose and lactose, and many commercial nitrogen sources. Furthermore, the fish waste extract (FE) was used to enhance the productivity of the bioflocculant as a nitrogen supplement and it showed a significant level of flocculation rate similar to the commercial nitrogen sources. The Box-Behnken experiments were designed to predict the optimal conditions for bioflocculant production and it suggested that glucose - 3.247 g L-1, FE - 0.5 g L-1 and inoculum size - 1% are the suitable levels for bioflocculant production. The FTIR analysis of the bioflocculant showed the functional groups related to the polysaccharides and the EEM analysis showed the fluorescence components related to the proteins and humic acids. The biochemical composition of the bioflocculant was identified as polysaccharides (24.36 ± 1.5%) and protein (12.15 ± 0.2%). The tested optimum conditions of the bioflocculant to induce flocculation were tested in the kaolin wastewater and it showed that the optimum dosage of the flocculant was 5 mg L-1 and the pH range was broad as 5-10. The cation dependency tests revealed that the monovalent and divalent cations are highly suitable for flocculation while the trivalent cations showed moderate flocculation. The Cr(VI) removal efficiency of the bioflocculant showed that ∼35% of heavy metal is trapped into flocks during the flocculation.
Collapse
Affiliation(s)
| | - J W C Wong
- Department of Biology and Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | | |
Collapse
|
10
|
Zhang S, Li C, Ke C, Liu S, Yao Q, Huang W, Dang Z, Guo C. Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. WATER RESEARCH 2023; 243:120339. [PMID: 37482009 DOI: 10.1016/j.watres.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
11
|
Yang Z, Sun T, Kappler A, Jiang J. Biochar facilitates ferrihydrite reduction by Shewanella oneidensis MR-1 through stimulating the secretion of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157560. [PMID: 35901870 DOI: 10.1016/j.scitotenv.2022.157560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Biochar can mediate extracellular electron transfer (EET) of Shewanella oneidensis MR-1 and subsequently facilitate dissimilatory reduction of iron(III) minerals. Previous studies mainly focused on the interaction of biochar and membrane cytochrome complexes to reveal the mediating mechanisms between biochar and S. oneidensis MR-1. However, the influence of biochar on the production and activity of extracellular polymeric substances (EPS) has long been neglected, despite the fact that EPS are commonly exudated by S. oneidensis MR-1 and can participate in a variety of electron transfer processes due to their redox activity. Here, we performed a series of microbial ferrihydrite reduction experiments in combination with electrochemical voltametric and impedance analyses to investigate the role of biochar in the formation and transformation of cell EPS during EET. Results showed that the added biochar not only functioned as an electron shuttle facilitating electron transfer, but also induced the secretion of five times more EPS by S. oneidensis MR-1, leading to a 1.4-fold faster ferrihydrite reduction in comparison with biochar-free setups. We further extracted the secreted EPS and found that the proportion of redox-active exoproteins was significantly (p < 0.05) increased in the EPS and resulted in a higher electron exchange capacity in secreted EPS. Such increased exoprotein content also induced a higher ratio of exoprotein to exopolysaccharide, which largely dropped diffusion and electron transfer impedance of EPS to 1.1 and 18 Ω, respectively, and accelerated the EET and thus the ferrihydrite reduction. Overall, our findings revealed the interactions between biochar and EPS matrices, which could potentially play a critical role in EET processes in both environmental or biotechnological systems.
Collapse
Affiliation(s)
- Zhen Yang
- College of Urban and Environmental Science, Peking University, Beijing 100781, China; Geomicrobiology, Center for Applied Geoscience, Tuebingen 72076, Germany.
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Jie Jiang
- College of Environmental Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Hao X, Tang J, Yi X, Gao K, Yao Q, Feng C, Huang W, Dang Z. Extracellular polymeric substance induces biogenesis of vivianite under inorganic phosphate-free conditions. J Environ Sci (China) 2022; 120:115-124. [PMID: 35623765 DOI: 10.1016/j.jes.2021.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.
Collapse
Affiliation(s)
- Xinrui Hao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Jie Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Li J, Hu X, Wang J, Yao Y, Zhang Y, Ni L, Li S. Efficient removal of organic compounds in eutrophic water via a synergy of cyanobacterial extracellular polymeric substances and permanganate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70532-70541. [PMID: 35585454 DOI: 10.1007/s11356-022-20827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study provides a new thinking for the efficient utilization of permanganate (Mn (VII)) in eutrophic water treatment. Eutrophic water contained a large amount of extracellular polymeric substances (EPS) with reduction and chelation; this study used phenol as typical organic matter and cyanobacteria EPS as a representative EPS to explore the mechanism by which EPS influences the oxidation of phenol by Mn(VII) at pH 5.0-9.0. The results showed that under the condition of pH 5.0-7.0, adding 0.2-10 mg/L EPS to the Mn(VII) system could effectively improve the oxidation efficiency of Mn(VII) for phenol. EPS promoted the continuous formation and stability of in situ EPS-MnO2 colloids and significantly enhanced the oxidation of Mn(VII). EPS also combined with phenol and increased the electron cloud density to promote the oxidation of phenol by Mn(VII).
Collapse
Affiliation(s)
- Jing Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Youru Yao
- School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
14
|
Häuser L, Erben J, Pillot G, Kerzenmacher S, Dreher W, Küstermann E. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv 2022; 12:17784-17793. [PMID: 35765339 PMCID: PMC9199086 DOI: 10.1039/d2ra01162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures. The use of magnetic resonance imaging can contribute to a better understanding of limiting processes occurring in electroactive biofilms especially inside opaque porous electrodes.![]()
Collapse
Affiliation(s)
- Luca Häuser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | | | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Wolfgang Dreher
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| | - Ekkehard Küstermann
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| |
Collapse
|
15
|
Gaylarde C, Little B. Biodeterioration of stone and metal - Fundamental microbial cycling processes with spatial and temporal scale differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153193. [PMID: 35122860 DOI: 10.1016/j.scitotenv.2022.153193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Fundamental processes for the biodeterioration of stone and metal involve many of the same microbially mediated reactions - oxidation, reduction, acid dissolution and elemental cycling - resulting from the activities of many of the same groups of environmental microorganisms. Differences depend on the nature of the substratum - stone vs. metal - and the composition of the surroundings, whether terrestrial (stone) or aquatic (stone and metal). Reactions within surface-related biofilms dominate the biodeterioration of metals and contribute greatly to the biodeterioration of stone. In the latter, phototrophic organisms, and especially cyanobacteria, are important first participants, while metal biodeterioration is almost entirely associated with bacteria, archaea and fungi. Biofilms on metal surfaces can produce chemical and electrochemical responses. While electrochemical responses are absent in stone, extracellular electron transfer can be a biodeterioration mechanism in some iron-rich rocks. Microorganisms in biofilms can penetrate and create fissures or cracks in stone and metals. However, the most obvious differences in the reactions of built stone and metal structures are related to the definition of failure, length of time required for a defined failure of the substratum, the area over which the failure occurs and the consequences of failure. Time and space are, similarly, quite distinct for biological breakdown and mineral cycling of metal and stone, with stone/rock cycling potentially occurring over thousands of years and kilometers.
Collapse
Affiliation(s)
- Christine Gaylarde
- Department of Microbiology and Plant Biology, Oklahoma University, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Brenda Little
- BJ Little Corrosion Consulting, LLC, 6528 Alakoko Drive, Diamondhead, MS 39525, USA.
| |
Collapse
|
16
|
Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. Int J Mol Sci 2022; 23:ijms23105566. [PMID: 35628373 PMCID: PMC9143384 DOI: 10.3390/ijms23105566] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesion of microorganisms via EPS increase the possibility and the rate of metal corrosion. Many components of EPS are electrochemical and redox active, making them closely related to metal corrosion. Functional groups in EPS have specific adsorption ability, causing them to play a key role in biocorrosion. This review emphasizes EPS properties related to metal corrosion and protection and the underlying microbially influenced corrosion (MIC) mechanisms. Future perspectives regarding a comprehensive study of MIC mechanisms and green methodologies for corrosion protection are provided.
Collapse
|
17
|
Zhao M, Bai X, Zhang Y, Yuan Y, Sun J. Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128350. [PMID: 35149498 DOI: 10.1016/j.jhazmat.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris (R.palustris) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Cheng XL, Xu Q, Sun JD, Li CR, Yang QW, Li B, Zhang XY, Zhou J, Yong XY. Quorum sensing signals improve the power performance and chlortetracycline degradation efficiency of mixed-culture electroactive biofilms. iScience 2022; 25:104299. [PMID: 35573194 PMCID: PMC9097700 DOI: 10.1016/j.isci.2022.104299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive biofilms (EABs) play an important role in bioelectrochemical systems due to their abilities to generate electrons and perform extracellular electron transfer (EET). Here, we investigated the effects of quorum sensing (QS) signals on power output, chlortetracycline degradation, and structure of EABs in MFCs treating antibiotic wastewater. The voltage output of MFCs with C4-HSL and PQS increased by 21.57% and 13.73%, respectively, compared with that without QS signals. The chlortetracycline degradation efficiency in closed-circuit MFCs with C4-HSL and PQS increased by 56.53% and 50.04%, respectively, which resulted from the thicker biofilms, higher biomass, and stronger activities. Additionally, QS signals induced the heterogeneous distribution of EPS for a balance between self-protection and EET under environmental pressure. Geobacter prevailed by the addition of QS signals to resist high chlortetracycline concentration. Our results provided a broader understanding on regulating EABs within electrode interface to improve their performance for environmental remediation and clean energy development. The voltage output of MFCs was enhanced with the addition of QS signals QS signals increased the bioelectrochemical degradation efficiency of CTC EABs exhibited heterogeneity in composition and interaction by the QS signals QS signals induced a balance between self-protection and EET of EABs
Collapse
|
19
|
Yasmeen N, Etienne M, Sharma PS, El-Kirat-Chatel S, Helú MB, Kutner W. Molecularly imprinted polymer as a synthetic receptor mimic for capacitive impedimetric selective recognition of Escherichia coli K-12. Anal Chim Acta 2021; 1188:339177. [PMID: 34794582 DOI: 10.1016/j.aca.2021.339177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
We fabricated an electrochemical molecularly imprinted polymer (MIP) chemosensor for rapid identification and quantification of E. coli strain using 2-aminophenyl boronic acid as the functional monomer. This strain is a modified Gram-negative strain of Escherichia coli bacterium, an ordinary human gut component. The E. coli strongly interacts with a boronic acid because of porous and flexible polymers of the cell wall. The SEM imaging showed that the bacteria template was partially entrapped within the polymeric matrix in a single step. Moreover, this imaging confirmed E. coli K-12 cell template extraction effectiveness. The prepared MIP determined the E. coli K-12 strain up to 2.9 × 104 cells mL-1. The interference study performed in the presence of E. coli variants expressing different surface appendages (type 1 fimbriae or Antigen 43 protein) or Shewanella oneidensis MR1, another Gram-negative bacteria, demonstrated that the bacterial surface composition notably impacts sensing properties of the bacteria imprinted polymer.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mathieu Etienne
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815, Warsaw, Poland
| |
Collapse
|
20
|
Taşkan B, Taşkan E. Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. CHEMOSPHERE 2021; 285:131538. [PMID: 34273699 DOI: 10.1016/j.chemosphere.2021.131538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Anode biofilm thickness is a key point for high and sustainable power generation in microbial fuel cells (MFCs). Over time, the formation of a thicker biofilm on anode electrode hinders the power generation performance of MFC by causing a longer electron transfer path and the accumulation of undesirable components in anode biofilm. To overcome these limitations, we used a novel strategy named quorum quenching (QQ) for the first time in order to control the biofilm thickness on the anode surface by inactivation of signal molecules among microorganisms. For this purpose, the isolated QQ bacteria (Rhodococcus sp. BH4) were immobilized into alginate beads (20, 40, and 80 mg/10 ml sodium alginate) and added to the anode chamber of MFCs. The MFC exhibited the best electrochemical activity (1924 mW m-2) with a biofilm thickness of 26 μm at 40 mg Rhodococcus sp. BH4/10 ml sodium alginate. The inhibition of signal molecules in anode chamber reduced the production of extracellular polymeric substance (EPS) by preventing microbial communication amonganode microorganisms. Microscopic observations revealed that anode biofilm thickness and the abundance of dead bacteria significantly decreased with an increase in Rhodococcus sp. BH4 concentration in MFCs. Microbiome diversity showed an apparent difference among the microbial community structures of anode biofilms in MFCs containing vacant and Rhodococcus sp. BH4 beads. The data revealed that the QQ strategy is an efficient application for improving MFC performance and may shed light on future studies.
Collapse
Affiliation(s)
- Banu Taşkan
- Firat University, Department of Environmental Engineering, Elazig, 23119, Turkey.
| | - Ergin Taşkan
- Firat University, Department of Environmental Engineering, Elazig, 23119, Turkey.
| |
Collapse
|
21
|
Wang H, Zheng Y, Zhu B, Zhao F. In situ role of extracellular polymeric substances in microbial electron transfer by Methylomonas sp. LW13. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Yan W, Guo W, Wang L, Jing C. Extracellular polymeric substances from Shewanella oneidensis MR-1 biofilms mediate the transformation of Ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147245. [PMID: 34088061 DOI: 10.1016/j.scitotenv.2021.147245] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Extracellular polymeric substances (EPS) of dissimilatory iron-reducing bacteria (DIRB) such as Shewanella oneidensis MR-1 play a crucial role in the biotransformation of iron-containing minerals, but the mechanism has not been fully deciphered. Herein, abiotic and biotic transformation of ferrihydrite (Fh) were compared to clarify the contributions of MR-1, EPS-free MR-1 (MR-1-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). The results of abiotic Fh transformation indicated that EPS did not block the Fh surfaces and thus has an insignificant effect on the adsorbed Fe(II)-Fh interaction. The complexation of the Fe(III) intermediate (Fe(III)active) with EPS, especially LB-EPS, however, inhibited the nucleation of secondary Fe minerals and changed the crystallization pathway. For biotic Fh transformation, on the other hand, EPS had dual effects that accelerated Fh bioreduction due to the enhanced extracellular electron transfer (EET) and constrained the following Fh mineralization by cutting of the chain reactions leading to mineral crystallization. Our finding also suggested that the effects of EPS on Fh biotransformation largely depend on the chemical properties of EPS, especially the polar functional groups such as carboxyl and phosphate, because of their important abilities for the cell attachment and Fe(II)/Fe(III) binding.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
Cooper RE, Wegner CE, Kügler S, Poulin RX, Ueberschaar N, Wurlitzer JD, Stettin D, Wichard T, Pohnert G, Küsel K. Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms. THE ISME JOURNAL 2020; 14:2675-2690. [PMID: 32690937 PMCID: PMC7784907 DOI: 10.1038/s41396-020-0718-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 02/02/2023]
Abstract
Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or -oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner's cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation. Furthermore, the upregulation of hydrogenases in Sideroxydans sp. CL21 points to competition for H2 as electron donor. Our findings reveal that a complex metabolic and transcriptomic response, but not accelerated formation of Fe-end products, drive interactions of Fe-cycling microorganisms.
Collapse
Affiliation(s)
- Rebecca E Cooper
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany
| | - Stefan Kügler
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Remington X Poulin
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldstr. 8, 07743, Jena, Germany
| | - Jens D Wurlitzer
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany
| | - Daniel Stettin
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Thomas Wichard
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
24
|
Yu HQ. Molecular Insights into Extracellular Polymeric Substances in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7742-7750. [PMID: 32479069 DOI: 10.1021/acs.est.0c00850] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Extracellular polymeric substances (EPS) are known to crucially affect the properties and performance of activated sludge, but the detailed influential mechanisms and the pertinence to specific compositional, structural properties of EPS are still elusive. Such knowledge gaps have severely limited our ability in optimizing biological wastewater treatment processes, for which long-term robust and efficient sludge performance remains one of the main bottlenecks. Here, we overview the new knowledge on the molecular structure of sludge EPS gained over the past few years and discuss the future challenges and opportunities for further advancing EPS study and engineering. The structural and functional features of several macromolecules in sludge EPS and their important structural roles in granular sludge are analyzed in detail. The EPS-pollutant interactions and environment-dependent regulation machinery on EPS production are deciphered. Lastly, the remaining knowledge gaps are identified, and the future research needs that may lead to molecular-level understanding and precise engineering of sludge EPS are highlighted.
Collapse
Affiliation(s)
- Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Basu A, Wanner C, Johnson TM, Lundstrom CC, Sanford RA, Sonnenthal EL, Boyanov MI, Kemner KM. Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2295-2303. [PMID: 31909614 DOI: 10.1021/acs.est.9b05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
U isotope fractionation may serve as an accurate proxy for U(VI) reduction in both modern and ancient environments, if the systematic controls on the magnitude of fractionation (ε) are known. We model the effect of U(VI) reduction kinetics on U isotopic fractionation during U(VI) reduction by a novel Shewanella isolate, Shewanella sp. (NR), in batch incubations. The measured ε values range from 0.96 ± 0.16 to 0.36 ± 0.07‰ and are strongly dependent on the U(VI) reduction rate. The ε decreases with increasing reduction rate constants normalized by cell density and initial U(VI). Reactive transport simulations suggest that the rate dependence of ε is due to a two-step process, where diffusive transport of U(VI) from the bulk solution across a boundary layer is followed by enzymatic reduction. Our results imply that the spatial decoupling of bulk U(VI) solution and enzymatic reduction should be taken into account for interpreting U isotope data from the environment.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth Sciences, Royal Holloway , University of London , Egham TW20 0EX , U.K
| | - Christoph Wanner
- Institute of Geological Sciences , University of Bern , Baltzerstrasse 3 , Bern CH-3012 , Switzerland
| | - Thomas M Johnson
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Craig C Lundstrom
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric L Sonnenthal
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Maxim I Boyanov
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Kenneth M Kemner
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
26
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron-Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020; 59:4750-4755. [PMID: 31894618 DOI: 10.1002/anie.201915084] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/08/2022]
Abstract
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate "unnatural" polymers in the presence of "host" cells, thus setting up the possibility of making natural-synthetic hybrid structures and conjugates.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| |
Collapse
|
27
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron‐Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mechelle R. Bennett
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Phil J. Hill
- Division of Microbiology, Brewing and BiotechnologySchool of BiosciencesUniversity of Nottingham Sutton Bonington Campus Nottingham LE12 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Frankie J. Rawson
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| |
Collapse
|