1
|
Drescher F, Li Y, Villalobos-Escobedo JM, Haefner S, Huberman LB, Glass NL. Transcriptomic and genetic analysis reveals a Zn2Cys6 transcription factor specifically required for conidiation in submerged cultures of Thermothelomyces thermophilus. mBio 2025; 16:e0311124. [PMID: 39601596 PMCID: PMC11708020 DOI: 10.1128/mbio.03111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Filamentous fungi are important producers of enzymes and secondary metabolites. The industrial thermophilic species, Thermothelomyces thermophilus, is closely related to the model fungus, Neurospora crassa. A critical aspect of the filamentous fungal life cycle is the production of asexual spores (conidia), which are regulated by various stimuli, including nutrient availability. Several species of fungi, including T. thermophilus, produce conidia under submerged fermentation conditions, which can be detrimental to product yields. In this study, transcriptional profiling of T. thermophilus was used to map changes during asexual development in submerged cultures, which revealed commonalities of regulation between T. thermophilus and N. crassa. We further identified a transcription factor, res1, whose deletion resulted in a complete loss of conidia production under fermentation conditions, but which did not affect conidiation on plates. Under fermentation conditions, the ∆res1 deletion strain showed increased biomass production relative to the wild-type strain, indicating that the manipulation of res1 in T. thermophilus has the potential to increase productivity in industrial settings. Overexpression of res1 caused a severe growth defect and early conidia production on both plates and in submerged cultures, indicating res1 overexpression can bypass regulatory aspects associated with conidiation on plates. Using chromatin-immunoprecipitation sequencing, we identified 35 target genes of Res1, including known conidiation regulators identified in N. crassa, revealing common and divergent aspects of asexual reproduction in these two species.IMPORTANCEFilamentous fungi, such as Thermothelomyces thermophilus, are important industrial species and have been harnessed in the Biotechnology industry for the production of industrially relevant chemicals and proteins. However, under fermentation conditions, some filamentous fungi will undergo a switch from mycelial growth to asexual development. In this study, we use transcriptional profiling of asexual development in T. thermophilus and identify a transcription factor that specifically regulates the developmental switch to the production of unwanted asexual propagules under fermentation conditions, thus altering secreted protein production. Mutations in this transcription factor Res1 result in the loss of asexual development in submerged cultures but do not affect asexual sporulation when exposed to air. The identification of stage-specific developmental regulation of asexual spore production and comparative analyses of conidiation in filamentous ascomycete species have the potential to further manipulate these species for industrial advantage.
Collapse
Affiliation(s)
- Florian Drescher
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| | - Yang Li
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| | | | - Stefan Haefner
- Fine Chemicals and Biocatalysis Research, BASF SE, Ludwigshafen am Rhein, Germany
| | - Lori B. Huberman
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - N. Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Wang Z, Wang Y, Kasuga T, Hassler H, Lopez‐Giraldez F, Dong C, Yarden O, Townsend JP. Origins of lineage-specific elements via gene duplication, relocation, and regional rearrangement in Neurospora crassa. Mol Ecol 2024; 33:e17168. [PMID: 37843462 PMCID: PMC11628664 DOI: 10.1111/mec.17168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The origin of new genes has long been a central interest of evolutionary biologists. However, their novelty means that they evade reconstruction by the classical tools of evolutionary modelling. This evasion of deep ancestral investigation necessitates intensive study of model species within well-sampled, recently diversified, clades. One such clade is the model genus Neurospora, members of which lack recent gene duplications. Several Neurospora species are comprehensively characterized organisms apt for studying the evolution of lineage-specific genes (LSGs). Using gene synteny, we documented that 78% of Neurospora LSG clusters are located adjacent to the telomeres featuring extensive tracts of non-coding DNA and duplicated genes. Here, we report several instances of LSGs that are likely from regional rearrangements and potentially from gene rebirth. To broadly investigate the functions of LSGs, we assembled transcriptomics data from 68 experimental data points and identified co-regulatory modules using Weighted Gene Correlation Network Analysis, revealing that LSGs are widely but peripherally involved in known regulatory machinery for diverse functions. The ancestral status of the LSG mas-1, a gene with roles in cell-wall integrity and cellular sensitivity to antifungal toxins, was investigated in detail alongside its genomic neighbours, indicating that it arose from an ancient lysophospholipase precursor that is ubiquitous in lineages of the Sordariomycetes. Our discoveries illuminate a "rummage region" in the N. crassa genome that enables the formation of new genes and functions to arise via gene duplication and relocation, followed by fast mutation and recombination facilitated by sequence repeats and unconstrained non-coding sequences.
Collapse
Affiliation(s)
- Zheng Wang
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Yen‐Wen Wang
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Takao Kasuga
- College of Biological SciencesUniversity of California, DavisDavisCaliforniaUSA
| | - Hayley Hassler
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | | | - Caihong Dong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Jeffrey P. Townsend
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
3
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Zhang Y, Jia C, Liu Y, Li G, Li B, Shi W, Zhang Y, Hou J, Qin Q, Zhang M, Qin J. The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20816-20830. [PMID: 39261294 DOI: 10.1021/acs.jafc.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
Collapse
Affiliation(s)
- Yinshan Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yue Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yubin Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qingming Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Yang S, Sun J, Xue A, Li G, Sun C, Hou J, Qin QM, Zhang M. Novel Botrytis cinerea Zn(II) 2Cys 6 Transcription Factor BcFtg1 Enhances the Virulence of the Gray Mold Fungus by Promoting Organic Acid Secretion and Carbon Source Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18824-18839. [PMID: 39140189 DOI: 10.1021/acs.jafc.4c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The Zn(II)2Cys6 zinc cluster protein family comprises a subclass of zinc-finger proteins that serve as transcriptional regulators involved in a diverse array of fugal biological processes. However, the roles and mechanisms of the Zn(II)2Cys6 transcription factors in mediating Botrytis cinerea, a necrotrophic fungus that causes gray mold in over 1000 plant species, development and virulence remain obscure. Here, we demonstrate that a novel B. cinerea pathogenicity-associated factor BcFTG1 (fungal transcription factor containing the GAL4 domain), identified from a virulence-attenuated mutant M20162 from a B. cinerea T-DNA insertion mutant library, plays an important role in oxalic acid (OA) secretion, carbon source absorption and cell wall integrity. Loss of BcFTG1 compromises the ability of the pathogen to secrete OA, absorb carbon sources, maintain cell wall integrity, and promote virulence. Our findings provide novel insights into fungal factors mediating the pathogenesis of the gray mold fungus via regulation of OA secretion, carbon source utilization and cell wall integrity.
Collapse
Affiliation(s)
- Song Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiao Sun
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong University, Datong, Shanxi 037009, China
| | - Aoran Xue
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chenhao Sun
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Yan J, Wang R, Wu M, Cai M, Qu J, Liu L, Xie J, Yin W, Luo C. Transcriptional Activator UvXlnR Is Required for Conidiation and Pathogenicity of Rice False Smut Fungus Ustilaginoidea virens. PHYTOPATHOLOGY 2024; 114:1603-1611. [PMID: 38506745 DOI: 10.1094/phyto-01-24-0038-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Transcription factors play critical roles in diverse biological processes in fungi. XlnR, identified as a transcriptional activator that regulates the expression of the extracellular xylanase genes in fungi, has not been extensively studied for its function in fungal development and pathogenicity in rice false smut fungus Ustilaginoidea virens. In this study, we characterized UvXlnR in U. virens and established that the full-length, N-terminal, and C-terminal forms have the ability to activate transcription. The study further demonstrated that UvXlnR plays crucial roles in various aspects of U. virens biology. Deletion of UvXlnR affected growth, conidiation, and stress response. UvXlnR mutants also exhibited reduced pathogenicity, which could be partially attributed to the reduced expression of xylanolytic genes and extracellular xylanase activity of U. virens during the infection process. Our results indicate that UvXlnR is involved in regulating growth, conidiation, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiali Yan
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Wang
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minzheng Cai
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Qu
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianmeng Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiatao Xie
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- The National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Ding X, Liu W, Liu K, Gao X, Liu Y. The Deletion of LeuRS Revealed Its Important Roles in Osmotic Stress Tolerance, Amino Acid and Sugar Metabolism, and the Reproduction Process of Aspergillus montevidensis. J Fungi (Basel) 2024; 10:36. [PMID: 38248946 PMCID: PMC10820851 DOI: 10.3390/jof10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Aspergillus montevidensis is an important domesticated fungus that has been applied to produce many traditional fermented foods under high osmotic conditions. However, the detailed mechanisms of tolerance to osmotic stress remain largely unknown. Here, we construct a target-deleted strain (ΔLeuRS) of A. montevidensis and found that the ΔLeuRS mutants grew slowly and suppressed the development of the cleistothecium compared to the wide-type strains (WT) under salt-stressed and non-stressed conditions. Furthermore, differentially expressed genes (p < 0.001) governed by LeuRS were involved in salt tolerance, ABC transporter, amino acid metabolism, sugar metabolism, and the reproduction process. The ΔLeuRS strains compared to WT strains under short- and long-term salinity stress especially altered accumulation levels of metabolites, such as amino acids and derivatives, carbohydrates, organic acids, and fatty acids. This study provides new insights into the underlying mechanisms of salinity tolerance and lays a foundation for flavor improvement of foods fermented with A. montevidensis.
Collapse
Affiliation(s)
| | | | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China (Y.L.)
| | | | | |
Collapse
|
8
|
Wang Z, Wang YW, Kasuga T, Lopez-Giraldez F, Zhang Y, Zhang Z, Wang Y, Dong C, Sil A, Trail F, Yarden O, Townsend JP. Lineage-specific genes are clustered with HET-domain genes and respond to environmental and genetic manipulations regulating reproduction in Neurospora. PLoS Genet 2023; 19:e1011019. [PMID: 37934795 PMCID: PMC10684091 DOI: 10.1371/journal.pgen.1011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/28/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Takao Kasuga
- College of Biological Sciences, University of California, Davis, California, United States of America
| | | | - Yang Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaning Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Frances Trail
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Zhang Y, Zhuang X, Meng J, Zan F, Liu Z, Qin C, Hao L, Wang Z, Wang L, Li H, Li H, Ding S. A Putative Zn(II) 2Cys 6-Type Transcription Factor FpUme18 Is Required for Development, Conidiation, Cell Wall Integrity, Endocytosis and Full Virulence in Fusarium pseudograminearum. Int J Mol Sci 2023; 24:10987. [PMID: 37446163 PMCID: PMC10341630 DOI: 10.3390/ijms241310987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we identified a putative Zn(II)2Cys6 fungal-type domain-containing transcription factor and named it FpUme18. The expression of FpUME18 was induced during the infection of wheat by F. pseudograminearum. The ΔFpume18 deletion mutant showed defects in growth, conidial production, and conidial germination. In the responses to the cell wall, salt and oxidative stresses, the ΔFpume18 mutant inhibited the rate of mycelial growth at a higher rate compared with the wild type. The staining of conidia and mycelia with lipophilic dye FM4-64 revealed a delay in endocytosis when FpUME18 was deleted. FpUME18 also positively regulated the expression of phospholipid-related synthesis genes. The deletion of FpUME18 attenuated the pathogenicity of wheat coleoptiles. FpUME18 also participated in the production of the DON toxin by regulating the expression of TRI genes. Collectively, FpUme18 is required for vegetative growth, conidiation, stress response, endocytosis, and full virulence in F. pseudograminearum.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xunyu Zhuang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jiaxing Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Feifei Zan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zheran Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Cancan Qin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Lingjun Hao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhifang Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Limin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| |
Collapse
|
10
|
Wang Y, Tong LL, Yuan L, Liu MZ, Du YH, Yang LH, Ren B, Guo DS. Integration of Physiological, Transcriptomic and Metabolomic Reveals Molecular Mechanism of Paraisaria dubia Response to Zn 2+ Stress. J Fungi (Basel) 2023; 9:693. [PMID: 37504682 PMCID: PMC10381912 DOI: 10.3390/jof9070693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Utilizing mycoremediation is an important direction for managing heavy metal pollution. Zn2+ pollution has gradually become apparent, but there are few reports about its pollution remediation. Here, the Zn2+ remediation potential of Paraisaria dubia, an anamorph of the entomopathogenic fungus Ophiocordyceps gracilis, was explored. There was 60% Zn2+ removed by Paraisaria dubia mycelia from a Zn2+-contaminated medium. To reveal the Zn2+ tolerance mechanism of Paraisaria dubia, transcriptomic and metabolomic were executed. Results showed that Zn2+ caused a series of stress responses, such as energy metabolism inhibition, oxidative stress, antioxidant defense system disruption, autophagy obstruction, and DNA damage. Moreover, metabolomic analyses showed that the biosynthesis of some metabolites was affected against Zn2+ stress. In order to improve the tolerance to Zn2+ stress, the metabolic mechanism of metal ion transport, extracellular polysaccharides (EPS) synthesis, and microcycle conidiation were activated in P. dubia. Remarkably, the formation of microcycle conidiation may be triggered by reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signaling pathways. This study supplemented the gap of the Zn2+ resistance mechanism of Paraisaria dubia and provided a reference for the application of Paraisaria dubia in the bioremediation of heavy metals pollution.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. mSystems 2022; 7:e0023222. [PMID: 35638725 PMCID: PMC9239088 DOI: 10.1128/msystems.00232-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes-a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa-as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5, poi-2, and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to roles that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa, and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage.
Collapse
|
14
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
15
|
Jiang KX, Liu QQ, Bai N, Zhu MC, Zhang KQ, Yang JK. AoSsk1, a Response Regulator Required for Mycelial Growth and Development, Stress Responses, Trap Formation, and the Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:jof8030260. [PMID: 35330262 PMCID: PMC8952730 DOI: 10.3390/jof8030260] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Ssk1, a response regulator of the two-component signaling system, plays an important role in the cellular response to hyperosmotic stress in fungi. Herein, an ortholog of ssk1 (Aossk1) was characterized in the nematode-trapping fungus Arthrobotrys oligospora using gene disruption and multi-phenotypic comparison. The deletion of Aossk1 resulted in defective growth, deformed and swollen hyphal cells, an increased hyphal septum, and a shrunken nucleus. Compared to the wild-type (WT) strain, the number of autophagosomes and lipid droplets in the hyphal cells of the ΔAossk1 mutant decreased, whereas their volumes considerably increased. Aossk1 disruption caused a 95% reduction in conidial yield and remarkable defects in tolerance to osmotic and oxidative stress. Meanwhile, the transcript levels of several sporulation-related genes were significantly decreased in the ΔAossk1 mutant compared to the WT strain, including abaA, brlA, flbC, fluG, and rodA. Moreover, the loss of Aossk1 resulted in a remarkable increase in trap formation and predation efficiency. In addition, many metabolites were markedly downregulated in the ΔAossk1 mutant compared to the WT strain. Our results highlight that AoSsk1 is a crucial regulator of asexual development, stress responses, the secondary metabolism, and pathogenicity, and can be useful in probing the regulatory mechanism underlying the trap formation and lifestyle switching of nematode-trapping fungi.
Collapse
Affiliation(s)
- Ke-Xin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qian-Qian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
16
|
Abstract
Aspergillus flavusaflR, a gene encoding a Zn(II)2Cys6 DNA-binding domain, is an important transcriptional regulator of the aflatoxin biosynthesis gene cluster. Our previous results of Gene ontology (GO) analysis for the binding sites of AflR in A. flavus suggest that AflR may play an integrative regulatory role. In this study the ΔaflR and overexpression (OE) strains based on the well-established double-crossover recombinational technique were constructed to investigate the integrative function of the aflR gene in A. flavus. The disruption of aflR severely affected the aflatoxin biosynthetic pathway, resulting in a significant decrease in aflatoxin production. The aflatoxin B1 (AFB1) of the ΔaflR strain was 180 ng/mL and aflatoxin B2 (AFB2) was 2.95 ng/mL on YES medium for 5 days, which was 1/1,000 of that produced by the wild-type strain (WT). In addition, the ΔaflR strain produced relatively sparse conidia and a very small number of sclerotia. On the seventh day, the sclerotia yield on each plate of the WT and OE strains exceeded 1,000, while the sclerotial formation of the ΔaflR strain was not detected until 14 days. However, the biosynthesis of cyclopiazonic acid (CPA) was not affected by aflR gene disruption. Transcriptomic analysis of the ΔaflR strain grown on potato dextrose agar (PDA) plates at 0 h, 24 h, and 72 h showed that expression of clustering genes involved in the biosynthesis of aflatoxin was significantly downregulated. Meanwhile, the ΔaflR strain compared with the WT strain showed significant expression differences in genes involved in spore germination, sclerotial development, and carbohydrate metabolism compared to the WT. The results demonstrated that the A. flavusaflR gene also played a positive role in the fungal growth and development in addition to aflatoxin biosynthesis. IMPORTANCE Past studies of the A. flavusaflR gene and its orthologues in related Aspergillus species were solely focused on their roles in secondary metabolism. In this study, we used the ΔaflR and OE strains to demonstrate the role of aflR in growth and development of A. flavus. For the first time, we confirmed that the ΔaflR strain also was defective in production of conidia and sclerotia, asexual propagules of A. flavus. Our transcriptomic analysis further showed that genes involved in spore germination, sclerotial development, aflatoxin biosynssssthesis, and carbohydrate metabolism exhibited significant differences in the ΔaflR strain compared with the WT strain. Our study indicates that AflR not only plays an important role in regulating aflatoxin synthesis but also in playing a positive role in the conidial formation and sclerotial development in A. flavus. This study reveals the critical and positive role of the aflR gene in fungal growth and development, and provides a theoretical basis for the genetic studies of other aspergilli.
Collapse
|
17
|
Zhou D, Zhu Y, Bai N, Xie M, Zhang KQ, Yang J. Aolatg1 and Aolatg13 Regulate Autophagy and Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Cell Infect Microbiol 2022; 11:824407. [PMID: 35145926 PMCID: PMC8821819 DOI: 10.3389/fcimb.2021.824407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotes that plays an important role in cell growth, development, and pathogenicity. Atg1 and Atg13 form the Atg1–Atg13 complex, which is essential for autophagy in yeast. Here, we characterized the roles of the Aolatg1 and Aolatg13 genes encoding these autophagy-related proteins in the nematode-trapping fungus Arthrobotrys oligospora. Investigation of the autophagy process by using the AoAtg8-GFP fusion protein showed that autophagosomes accumulated inside vacuoles in the wild-type (WT) A. oligospora strain, whereas in the two mutant strains with deletions of Aolatg1 or Aolatg13, GFP signals were observed outside vacuoles. Similar results were observed by using transmission electron microscopy. Furthermore, deletion of Aolatg1 caused severe defects in mycelial growth, conidiation, conidial germination, trap formation, and nematode predation. In addition, transcripts of several sporulation-related genes were significantly downregulated in the ΔAolatg1 mutant. In contrast, except for the altered resistance to several chemical stressors, no obvious differences were observed in phenotypic traits between the WT and ΔAolatg13 mutant strains. The gene ontology analysis of the transcription profiles of the WT and ΔAolatg1 mutant strains showed that the set of differentially expressed genes was highly enriched in genes relevant to membrane and cellular components. The Kyoto Encyclopedia of Genes and Genomes analysis indicated that differentially expressed genes were highly enriched in those related to metabolic pathways, autophagy and autophagy-related processes, including ubiquitin-mediated proteolysis and SNARE interaction in vesicular transport, which were enriched during trap formation. These results indicate that Aolatg1 and Aolatg13 play crucial roles in the autophagy process in A. oligospora. Aolatg1 is also involved in the regulation of asexual growth, trap formation, and pathogenicity. Our results highlight the importance of Aolatg1 in the growth and development of A. oligospora, and provide a basis for elucidating the role of autophagy in the trap formation and pathogenicity of nematode-trapping fungi.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yingmei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- *Correspondence: Jinkui Yang,
| |
Collapse
|
18
|
Lan N, Ye S, Hu C, Chen Z, Huang J, Xue W, Li S, Sun X. Coordinated Regulation of Protoperithecium Development by MAP Kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol 2021; 12:769615. [PMID: 34899653 PMCID: PMC8662359 DOI: 10.3389/fmicb.2021.769615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.
Collapse
Affiliation(s)
- Nan Lan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiling Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun Huang
- Shandong Jinniu Group Company, Ltd., Jinan, China
| | - Wei Xue
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci U S A 2021; 118:2022590118. [PMID: 33526697 DOI: 10.1073/pnas.2022590118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Codon usage bias is a fundamental feature of all genomes and plays an important role in determining gene expression levels. The codon usage was thought to influence gene expression mainly due to its impact on translation. Recently, however, codon usage was shown to affect transcription of fungal and mammalian genes, indicating the existence of a gene regulatory phenomenon with unknown mechanism. In Neurospora, codon usage biases strongly correlate with mRNA levels genome-wide, and here we show that the correlation between codon usage and RNA levels is maintained in the nucleus. In addition, codon optimality is tightly correlated with both total and nuclear RNA levels, suggesting that codon usage broadly influences mRNA levels through transcription in a translation-independent manner. A large-scale RNA sequencing-based genetic screen in Neurospora identified 18 candidate factors that when deleted decreased the genome-wide correlation between codon usage and RNA levels and reduced the codon usage effect on gene expression. Most of these factors, such as the H3K36 methyltransferase, are chromatin regulators or transcription factors. Together, our results suggest that the transcriptional effect of codon usage is mediated by multiple transcriptional regulatory mechanisms.
Collapse
|
20
|
Muñoz-Guzmán F, Caballero V, Larrondo LF. A global search for novel transcription factors impacting the Neurospora crassa circadian clock. G3 (BETHESDA, MD.) 2021; 11:jkab100. [PMID: 33792687 PMCID: PMC8495738 DOI: 10.1093/g3journal/jkab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.
Collapse
Affiliation(s)
- Felipe Muñoz-Guzmán
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Valeria Caballero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis F Larrondo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
21
|
Cai M, Liang X, Liu Y, Hu H, Xie Y, Chen S, Gao X, Li X, Xiao C, Chen D, Wu Q. Transcriptional Dynamics of Genes Purportedly Involved in the Control of Meiosis, Carbohydrate, and Secondary Metabolism during Sporulation in Ganoderma lucidum. Genes (Basel) 2021; 12:genes12040504. [PMID: 33805512 PMCID: PMC8066989 DOI: 10.3390/genes12040504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum spores (GLS), the mature germ cells ejected from the abaxial side of the pileus, have diverse pharmacological effects. However, the genetic regulation of sporulation in this fungus remains unknown. Here, samples corresponding to the abaxial side of the pileus were collected from strain YW-1 at three sequential developmental stages and were then subjected to a transcriptome assay. We identified 1598 differentially expressed genes (DEGs) and found that the genes related to carbohydrate metabolism were strongly expressed during spore morphogenesis. In particular, genes involved in trehalose and malate synthesis were upregulated, implying the accumulation of specific carbohydrates in mature G. lucidum spores. Furthermore, the expression of genes involved in triterpenoid and ergosterol biosynthesis was high in the young fruiting body but gradually decreased with sporulation. Finally, spore development-related regulatory pathways were explored by analyzing the DNA binding motifs of 24 transcription factors that are considered to participate in the control of sporulation. Our results provide a dataset of dynamic gene expression during sporulation in G. lucidum. They also shed light on genes potentially involved in transcriptional regulation of the meiotic process, metabolism pathways in energy provision, and ganoderic acids and ergosterol biosynthesis.
Collapse
Affiliation(s)
- Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Correspondence:
| |
Collapse
|
22
|
Zhang J, Hao H, Liu H, Wang Q, Chen M, Feng Z, Chen H. Genetic and functional analysis of the Zn(II) 2Cys 6 transcription factor HADA-1 in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2021; 105:2815-2829. [PMID: 33675375 DOI: 10.1007/s00253-021-11175-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Zn(II)2Cys6 transcription factors are critical for the reproductive growth and sexual development of fungi, but their roles in Basidiomycota remain unclear. In this study, the Hypsizygus marmoreus gene hada-1 was shown to encode a Zn(II)2Cys6 transcription factor, the growth rate of mycelia was decreased, hyphae were angulated, and fruiting body development was hindered in the hada-1-silenced strains. In addition, mitochondrial stability was lost, and the mitochondria morphologies changed from oval shaped to dumbbell or linear shaped in the silenced strains. Regarding mitochondrial instability, the mitochondrial complex II, III, and V activities and adenosine triphosphate content were significantly decreased. At the same time, the activities of the carbohydrate metabolism-related enzymes glucose-6-plosphatase, glucose dehydrogenase, and laccase were significantly decreased, which might have resulted in the reduction of carbon metabolism. Furthermore, hada-1 was shown to regulate the reactive oxygen species (ROS) level; compared with the wild-type (WT) strain, the silenced mycelia exhibited higher ROS contents and were more sensitive to oxidative stress. Taken together, these results indicate that, as a global regulator, hada-1 plays crucial roles in mycelial growth, fruiting body development, carbon metabolism, mitochondrial stability, and oxidative stress in the basidiomycete H. marmoreus. KEY POINTS: • Zn(II)2Cys6 transcription factor, mitochondrial stability, fruiting body development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Hong Liu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang Road, Xuanwu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
23
|
Fungal Zn(II) 2Cys 6 Transcription Factor ADS-1 Regulates Drug Efflux and Ergosterol Metabolism under Antifungal Azole Stress. Antimicrob Agents Chemother 2021; 65:AAC.01316-20. [PMID: 33199382 DOI: 10.1128/aac.01316-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Antifungal azoles are the most widely used antifungal drugs in clinical and agricultural practice. Fungi can mount adaptive responses to azole stress by modifying the transcript levels of many genes, and the responsive mechanisms to azoles are the basis for fungi to develop azole resistance. In this study, we identified a new Zn(II)2Cys6 transcription factor, ADS-1, with a positive regulatory function in transcriptional responses to azole stress in the model filamentous fungal species Neurospora crassa Under ketoconazole (KTC) stress, the ads-1 transcript level was significantly increased in N. crassa Deletion of ads-1 increased susceptibility to different azoles, while its overexpression increased resistance to these azoles. The cdr4 gene, which encodes the key azole efflux pump, was positively regulated by ADS-1. Deletion of ads-1 reduced the transcriptional response by cdr4 to KTC stress and increased cellular KTC accumulation under KTC stress, while ads-1 overexpression had the opposite effect. ADS-1 also positively regulated the transcriptional response by erg11, which encodes the azole target lanosterol 14α-demethylase for ergosterol biosynthesis, to KTC stress. After KTC treatment, the ads-1 deletion mutant had less ergosterol but accumulated more lanosterol than the wild type, while ads-1 overexpression had the opposite effect. Homologs of ADS-1 are widely present in filamentous fungal species of Ascomycota but not in yeasts. Deletion of the gene encoding an ADS-1 homolog in Aspergillus flavus also increased susceptibility to KTC and itraconazole (ITZ). Besides, deletion of A. flavus ads-1 (Afads-1) significantly reduced the transcriptional responses by genes encoding homologs of CDR4 and ERG11 in A. flavus to KTC stress, and the deletion mutant accumulated more KTC but less ergosterol. Taken together, these findings demonstrate that the function and regulatory mechanism of ADS-1 homologs among different fungal species in azole responses and the basal resistance of azoles are highly conserved.
Collapse
|
24
|
Pirayre A, Duval L, Blugeon C, Firmo C, Perrin S, Jourdier E, Margeot A, Bidard F. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30. BMC Genomics 2020; 21:885. [PMID: 33302864 PMCID: PMC7731781 DOI: 10.1186/s12864-020-07281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. RESULTS Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. CONCLUSIONS This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.
Collapse
Affiliation(s)
- Aurélie Pirayre
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France.
| | - Laurent Duval
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
- Laboratoire d'Informatique Gaspard-Monge (LIGM), ESIEE Paris, Université-Gustave Eiffel, Marne-la-Vallée, F-77454, France
| | - Corinne Blugeon
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Cyril Firmo
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Sandrine Perrin
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Etienne Jourdier
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Frédérique Bidard
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| |
Collapse
|
25
|
Yoneyama S, Shirai N, Ando N, Azuma T, Tsuda M, Matsumoto T. Identification of a SNP and development of a PCR-based allele-specific marker of the sporulation-deficient (sporeless) trait of the Tamogitake 108Y2D mutant using next-generation sequencing. BREEDING SCIENCE 2020; 70:530-539. [PMID: 33603548 PMCID: PMC7878937 DOI: 10.1270/jsbbs.20039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 06/12/2023]
Abstract
The mass scattering of basidiospores during the cultivation of edible mushrooms causes serious problems, such as allergic reactions in workers. Sporulation-deficient (sporeless) cultivars would be very useful for preventing these issues. We aimed to identify the single-nucleotide polymorphism (SNP) that is responsible for the single dominant sporeless mutation of the Tamogitake 108Y2D mutant using next-generation sequencing (NGS) and TILLING technology and to develop an allele-specific PCR marker for sporeless breeding. By comparing the sequences of the wild-type and its mutant genomes, we identified 685 mutation loci in gene regions and pinpointed one SNP only consistent with sporeless phenotype for 105 segregants, i.e., a C to T located at position 1,950 of the exonic region of a putative fungal transcription factor that generated a stop codon. We developed an allele-specific marker based on the identified SNP, and its high practicality was validated using tests against progenies from several hybrids and wild isolates from different geographical origins. Thus, the allele-specific PCR marker developed here will be useful for marker-assisted selection in the breeding of the sporeless trait of this mushroom. Furthermore, the technical success of SNP identification and marker development based on NGS genome data can help achieve efficient mutation breeding in mushrooms.
Collapse
Affiliation(s)
- Shozo Yoneyama
- Forest Products Research Institute, Hokkaido Research Organization, 1-10 Nishikagura, Asahikawa, Hokkaido 071-0198, Japan
| | - Nobuki Shirai
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Natsumi Ando
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Tomonori Azuma
- Forest Products Research Institute, Hokkaido Research Organization, 1-10 Nishikagura, Asahikawa, Hokkaido 071-0198, Japan
| | - Mayumi Tsuda
- Forest Products Research Institute, Hokkaido Research Organization, 1-10 Nishikagura, Asahikawa, Hokkaido 071-0198, Japan
| | - Teruyuki Matsumoto
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| |
Collapse
|
26
|
Wu T, Zhang Z, Hu C, Zhang L, Wei S, Li S. A WD40 Protein Encoding Gene Fvcpc2 Positively Regulates Mushroom Development and Yield in Flammulina velutipes. Front Microbiol 2020; 11:498. [PMID: 32273873 PMCID: PMC7113406 DOI: 10.3389/fmicb.2020.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Ascomycota and Basidiomycota are two closely related phyla and fungi in two phyla share some common morphological developmental process during fruiting body formation. In Neurospora crassa, the Gβ-like protein CPC-2 with a seven-WD40 repeat domain was previously reported. By transforming CPC-2 ortholog encoding genes, from 7 different fungal species across Ascomycota and Basidiomycota, into the cpc-2 deletion mutant of N. crassa, we demonstrate that all tested CPC-2 ortholog genes were able to complement the defects of the cpc-2 deletion mutant in sexual development, indicating that CPC-2 proteins from Ascomycota and Basidiomycota have the similar cellular function. Using Flammulina velutipes as a model system for mushroom species, the CPC-2 ortholog FvCPC2 was characterized. Fvcpc2 increased transcription during fruiting body development. Knockdown of Fvcpc2 by RNAi completely impaired fruiting body formation. In three Fvcpc2 knockdown mutants, transcriptional levels of genes encoding adenylate cyclase and protein kinase A catalytic subunit were significantly lower and colony growth became slower than wild type. The addition of cAMP or the PKA-activator 8-Bromo-cAMP into the medium restored the Fvcpc2 knockdown mutants to the wild-type colony growth phenotype, suggesting that the involvement of cAMP production in the regulatory mechanisms of FvCPC2. Knockdown of Fvcpc2 also weakened transcriptional responses to sexual development induction by some genes related to fruiting body development, including 4 jacalin-related lectin encoding genes, 4 hydrophobin encoding genes, and 3 functionally-unknown genes, suggesting the participation of these genes in the mechanisms by which FvCPC2 regulates fruiting body development. All three Fvcpc2 overexpression strains displayed increased mushroom yield and shortened cultivation time compared to wild type, suggesting that Fvcpc2 can be a promising reference gene for Winter Mushroom breeding. Since the orthologs of FvCPC2 were highly conserved and specifically expressed during fruiting body development in different edible mushrooms, genes encoding FvCPC2 orthologs in other mushroom species also have potential application in breeding.
Collapse
Affiliation(s)
- Taju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Biotech Company Limited, Jinan, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|