1
|
Sandberg AL, Bond ACS, Bennett LJ, Craig SE, Winski DP, Kirkby LC, Kraemer AR, Kelly KG, Hess ST, Maginnis MS. GPCR Inhibitors Have Antiviral Properties against JC Polyomavirus Infection. Viruses 2024; 16:1559. [PMID: 39459893 PMCID: PMC11512265 DOI: 10.3390/v16101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
JC polyomavirus (JCPyV) infects the majority of the population and initially establishes a persistent but asymptomatic infection of the kidneys. In healthy individuals, the infection remains controlled by the host immune system, but for individuals experiencing prolonged immunosuppression, the infection can reactivate and spread to the brain, where it causes progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease. Currently, there are no approved therapies to treat PML, and affected individuals suffer rapid motor weakness and cognitive deterioration. To identify novel therapeutic treatments for JCPyV infection, receptor agonists/antagonists identified in a previously published drug screen were evaluated for their antiviral properties. Seven drugs were selected and validated using infectivity assays, and the mechanism of inhibition was further explored for G protein coupled receptor (GPCR)-associated inhibitors due to the role of the GPCR 5-hydroxytryptamine 2 receptors (5-HT2Rs) in JCPyV entry. The inhibitors cetirizine and paroxetine both reduced infection early in the JCPyV infectious cycle. Paroxetine specifically reduced viral internalization through altering the receptor density of 5-HT2CR, inhibiting β-arrestin recruitment to the receptor, and reducing MAPK signaling through ERK. These findings highlight the potential of receptor signaling and viral entry mechanisms as possible targets for antiviral drug development. Further, this research suggests that FDA-approved receptor agonists/antagonists currently used to treat other medical conditions could be repurposed into antivirals for the possible treatment of JCPyV infection and the fatal disease PML.
Collapse
Affiliation(s)
- Amanda L. Sandberg
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Avery C. S. Bond
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Lucas J. Bennett
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Sophie E. Craig
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA;
| | - David P. Winski
- Department of Physics & Astronomy, University of Maine, Orono, ME 04469, USA;
| | - Lara C. Kirkby
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Abby R. Kraemer
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Kristina G. Kelly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
| | - Samuel T. Hess
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA;
- Department of Physics & Astronomy, University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (A.L.S.); (A.C.S.B.); (L.J.B.); (S.E.C.); (L.C.K.); (A.R.K.); (K.G.K.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA;
| |
Collapse
|
2
|
Obeng B, Bennett LJ, West BE, Wagner DJ, Fleming PJ, Tasker MN, Lorenger MK, Smith DR, Systuk T, Plummer SM, Eom J, Paine MD, Frangos CT, Wilczek MP, Shim JK, Maginnis MS, Gosse JA. Antimicrobial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602096. [PMID: 39026716 PMCID: PMC11257455 DOI: 10.1101/2024.07.04.602096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, we showed that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca 2+ mobilization, microtubule polymerization, and degranulation. In this study, we extend the findings to human mast cells (LAD2) and present data indicating that CPC's mechanism of action centers on its positively-charged quaternary nitrogen in its pyridinium headgroup. CPC's inhibitory effect is independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca 2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC does not affect Lyn kinase phosphorylation. Thus, CPC's root mechanism is electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work outlines the biochemical mechanisms underlying the effects of CPC on immune signaling and allows the prediction of CPC effects on cell types, like T cells, that share similar signaling elements.
Collapse
|
3
|
Bond ACS, Crocker MA, Wilczek MP, DuShane JK, Sandberg AL, Bennett LJ, Leclerc NR, Maginnis MS. High-throughput drug screen identifies calcium and calmodulin inhibitors that reduce JCPyV infection. Antiviral Res 2024; 222:105817. [PMID: 38246207 PMCID: PMC10922812 DOI: 10.1016/j.antiviral.2024.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
JC polyomavirus (JCPyV) is a nonenveloped, double-stranded DNA virus that infects the majority of the population. Immunocompetent individuals harbor infection in their kidneys, while severe immunosuppression can result in JCPyV spread to the brain, causing the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Due to a lack of approved therapies to treat JCPyV and PML, the disease results in rapid deterioration, and is often fatal. In order to identify potential antiviral treatments for JCPyV, a high-throughput, large-scale drug screen was performed using the National Institutes of Health Clinical Collection (NCC). Drugs from the NCC were tested for inhibitory effects on JCPyV infection, and drugs from various classes that reduced JCPyV infection were identified, including receptor agonists and antagonists, calcium signaling modulators, and enzyme inhibitors. Given the role of calcium signaling in viral infection including Merkel cell polyomavirus and simian virus 40 polyomavirus (SV40), calcium signaling inhibitors were further explored for the capacity to impact JCPyV infection. Calcium and calmodulin inhibitors trifluoperazine (TFP), W-7, tetrandrine, and nifedipine reduced JCPyV infection, and TFP specifically reduced viral internalization. Additionally, TFP and W-7 reduced infection by BK polyomavirus, SV40, and SARS-CoV-2. These results highlight specific inhibitors, some FDA-approved, for the possible treatment and prevention of JCPyV and several other viruses, and further illuminate the calcium and calmodulin pathway as a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Avery C S Bond
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Mason A Crocker
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Michael P Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Amanda L Sandberg
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Lucas J Bennett
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Nicholas R Leclerc
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA; Graduate School of Biomedical Science and Engineering, Orono, ME, 04469, USA.
| |
Collapse
|
4
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
5
|
Kaiserman J, O’Hara BA, Haley SA, Atwood WJ. An Elusive Target: Inhibitors of JC Polyomavirus Infection and Their Development as Therapeutics for the Treatment of Progressive Multifocal Leukoencephalopathy. Int J Mol Sci 2023; 24:8580. [PMID: 37239927 PMCID: PMC10218015 DOI: 10.3390/ijms24108580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease caused by infection with JC Polyomavirus (JCPyV). Despite the identification of the disease and isolation of the causative pathogen over fifty years ago, no antiviral treatments or prophylactic vaccines exist. Disease onset is usually associated with immunosuppression, and current treatment guidelines are limited to restoring immune function. This review summarizes the drugs and small molecules that have been shown to inhibit JCPyV infection and spread. Paying attention to historical developments in the field, we discuss key steps of the virus lifecycle and antivirals known to inhibit each event. We review current obstacles in PML drug discovery, including the difficulties associated with compound penetrance into the central nervous system. We also summarize recent findings in our laboratory regarding the potent anti-JCPyV activity of a novel compound that antagonizes the virus-induced signaling events necessary to establish a productive infection. Understanding the current panel of antiviral compounds will help center the field for future drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
The Oxindole GW-5074 Inhibits JC Polyomavirus Infection and Spread by Antagonizing the MAPK-ERK Signaling Pathway. mBio 2023; 14:e0358322. [PMID: 36786589 PMCID: PMC10127638 DOI: 10.1128/mbio.03583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
JC polyomavirus (JCPyV) is a ubiquitous, double-stranded DNA virus that causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. Current treatments for PML are limited to immune reconstitution, and no effective antivirals exist. In this report, we show that the oxindole GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) reduces JCPyV infection in primary and immortalized cells. This compound potently inhibits virus spread, which suggests that it could control infection in PML patients. We demonstrate that GW-5074 inhibits endogenous ERK phosphorylation, and that JCPyV infection in GW-5074-treated cells cannot be rescued with ERK agonists, which indicates that the antiviral mechanism may involve its antagonistic effects on MAPK-ERK signaling. Importantly, GW-5074 exceeds thresholds of common pharmacological parameters that identify promising compounds for further development. This MAPK-ERK antagonist warrants further investigation as a potential treatment for PML. IMPORTANCE Human polyomaviruses, such as JCPyV and BKPyV, cause significant morbidity and mortality in immunocompromised or immunomodulated patients. There are no treatments for polyomavirus-induced diseases other than restoration of immune function. We discovered that the oxindole GW-5074 potently inhibits infection by both JCPyV and BKPyV. Further optimization of this compound could result in the development of antiviral therapies for polyomavirus-induced diseases.
Collapse
|
7
|
Wang J, Li J. In-Cell Western Assay in Ferroptosis. Methods Mol Biol 2023; 2712:157-163. [PMID: 37578704 DOI: 10.1007/978-1-0716-3433-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a regulated form of cell death caused by the excessive accumulation of iron-dependent lipid peroxidation. It has been implicated in various pathological processes and diseases, and its modulation involves multiple proteins associated with iron and lipid metabolism. To better understand these mechanisms and monitor the ferroptosis process, there is a need for reliable and high-throughput methods to evaluate variations in protein expression levels. In-Cell Western assays provide a simple and rapid assay method for detecting biomarkers and signaling proteins in whole cells using antibodies. This assay involves seeding cells in microtiter plates, followed by fixation/permeabilization and subsequent labeling with primary antibodies and infrared-conjugated secondary antibodies. In this chapter, we introduce the protocol for the In-Cell Western assay for detecting intracellular proteins during ferroptosis.
Collapse
Affiliation(s)
- Jiayi Wang
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingbo Li
- The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
PI3K/AKT/mTOR Signaling Pathway Is Required for JCPyV Infection in Primary Astrocytes. Cells 2021; 10:cells10113218. [PMID: 34831441 PMCID: PMC8624856 DOI: 10.3390/cells10113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are a main target of JC polyomavirus (JCPyV) in the central nervous system (CNS), where the destruction of these cells, along with oligodendrocytes, leads to the fatal disease progressive multifocal leukoencephalopathy (PML). There is no cure currently available for PML, so it is essential to discover antivirals for this aggressive disease. Additionally, the lack of a tractable in vivo models for studying JCPyV infection makes primary cells an accurate alternative for elucidating mechanisms of viral infection in the CNS. This research to better understand the signaling pathways activated in response to JCPyV infection reveals and establishes the importance of the PI3K/AKT/mTOR signaling pathway in JCPyV infection in primary human astrocytes compared to transformed cell lines. Using RNA sequencing and chemical inhibitors to target PI3K, AKT, and mTOR, we have demonstrated the importance of this signaling pathway in JCPyV infection of primary astrocytes not observed in transformed cells. Collectively, these findings illuminate the potential for repurposing drugs that are involved with inhibition of the PI3K/AKT/mTOR signaling pathway and cancer treatment as potential therapeutics for PML, caused by this neuroinvasive virus.
Collapse
|
9
|
Wilczek MP, Armstrong FJ, Geohegan RP, Mayberry CL, DuShane JK, King BL, Maginnis MS. The MAPK/ERK Pathway and the Role of DUSP1 in JCPyV Infection of Primary Astrocytes. Viruses 2021; 13:v13091834. [PMID: 34578413 PMCID: PMC8473072 DOI: 10.3390/v13091834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) is a neuroinvasive pathogen causing a fatal, demyelinating disease of the central nervous system (CNS) known as progressive multifocal leukoencephalopathy (PML). Within the CNS, JCPyV predominately targets two cell types: oligodendrocytes and astrocytes. The underlying mechanisms of astrocytic infection are poorly understood, yet recent findings suggest critical differences in JCPyV infection of primary astrocytes compared to a widely studied immortalized cell model. RNA sequencing was performed in primary normal human astrocytes (NHAs) to analyze the transcriptomic profile that emerges during JCPyV infection. Through a comparative analysis, it was validated that JCPyV requires the mitogen-activated protein kinase, extracellular signal-regulated kinase (MAPK/ERK) pathway, and additionally requires the expression of dual-specificity phosphatases (DUSPs). Specifically, the expression of DUSP1 is needed to establish a successful infection in NHAs, yet this was not observed in an immortalized cell model of JCPyV infection. Additional analyses demonstrated immune activation uniquely observed in NHAs. These results support the hypothesis that DUSPs within the MAPK/ERK pathway impact viral infection and influence potential downstream targets and cellular pathways. Collectively, this research implicates DUSP1 in JCPyV infection of primary human astrocytes, and most importantly, further resolves the signaling events that lead to successful JCPyV infection in the CNS.
Collapse
Affiliation(s)
- Michael P. Wilczek
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Francesca J. Armstrong
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Remi P. Geohegan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Jeanne K. DuShane
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
- Graduate School in Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (M.P.W.); (F.J.A.); (R.P.G.); (C.L.M.); (J.K.D.); (B.L.K.)
- Graduate School in Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
10
|
GRK2 mediates β-arrestin interactions with 5-HT 2 receptors for JC polyomavirus endocytosis. J Virol 2021; 95:JVI.02139-20. [PMID: 33441347 PMCID: PMC8092707 DOI: 10.1128/jvi.02139-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection.IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.
Collapse
|
11
|
Rasi Bonab F, Baghbanzadeh A, Ghaseminia M, Bolandi N, Mokhtarzadeh A, Amini M, Dadashzadeh K, Hajiasgharzadeh K, Baradaran B, Bannazadeh Baghi H. Molecular pathways in the development of HPV-induced cervical cancer. EXCLI JOURNAL 2021; 20:320-337. [PMID: 33746665 PMCID: PMC7975633 DOI: 10.17179/excli2021-3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Recently, human papillomavirus (HPV) has gained considerable attention in cervical cancer research studies. It is one of the most important sexually transmitted diseases that can affect 160 to 289 out of 10000 persons every year. Due to the infectious nature of this virus, HPV can be considered a serious threat. The knowledge of viral structure, especially for viral oncoproteins like E6, E7, and their role in causing cancer is very important. This virus has different paths (PI3K/Akt, Wnt/β-catenin, ERK/MAPK, and JAK/STAT) that are involved in the transmission of signaling paths through active molecules like MEK (pMEK), ERK (pERK), and Akt (pAkt). It's eventually through these paths that cancer is developed. Precise knowledge of these paths and their signals give us the prognosis to adopt appropriate goals for prevention and control of these series of cancer.
Collapse
Affiliation(s)
- Farnaz Rasi Bonab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Ghaseminia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kianoosh Dadashzadeh
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Wilczek MP, DuShane JK, Armstrong FJ, Maginnis MS. JC Polyomavirus Infection Reveals Delayed Progression of the Infectious Cycle in Normal Human Astrocytes. J Virol 2020; 94:e01331-19. [PMID: 31826993 PMCID: PMC7022360 DOI: 10.1128/jvi.01331-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) infects 50 to 80% of the population and is the causative agent of a fatal demyelinating disease of the central nervous system (CNS). JCPyV presents initially as a persistent infection in the kidneys of healthy people, but during immunosuppression, the virus can reactivate and cause progressive multifocal leukoencephalopathy (PML). Within the CNS, JCPyV predominately targets two cell types, oligodendrocytes and astrocytes. Until recently, the role of astrocytes has been masked by the pathology in the myelin-producing oligodendrocytes, which are lytically destroyed by the virus. To better understand how astrocytes are impacted during JCPyV infection, the temporal regulation and infectious cycle of JCPyV were analyzed in primary normal human astrocytes (NHAs). Previous research to define the molecular mechanisms underlying JCPyV infection has mostly relied on the use of cell culture models, such as SVG-A cells (SVGAs), an immortalized, mixed population of glial cells transformed with simian virus 40 (SV40) T antigen. However, SVGAs present several limitations due to their immortalized characteristics, and NHAs represent an innovative approach to study JCPyV infection in vitro Using infectivity assays, quantitative PCR, and immunofluorescence assay approaches, we have further characterized JCPyV infectivity in NHAs. The JCPyV infectious cycle is significantly delayed in NHAs, and the expression of SV40 T antigen alters the cellular environment, which impacts viral infection in immortalized cells. This research establishes a foundation for the use of primary NHAs in future studies and will help unravel the role of astrocytes in PML pathogenesis.IMPORTANCE Animal models are crucial in advancing biomedical research and defining the pathogenesis of human disease. Unfortunately, not all diseases can be easily modeled in a nonhuman host or such models are cost prohibitive to generate, including models for the human-specific virus JC polyomavirus (JCPyV). JCPyV infects most of the population but can cause a rare, fatal disease, progressive multifocal leukoencephalopathy (PML). There have been considerable advancements in understanding the molecular mechanisms of JCPyV infection, but this has mostly been limited to immortalized cell culture models. In contrast, PML pathogenesis research has been greatly hindered because of the lack of an animal model. We have further characterized JCPyV infection in primary human astrocytes to better define the infectious process in a primary cell type. Albeit a cell culture model, primary astrocytes may better recapitulate human disease, are easier to maintain than other primary cells, and are less expensive than using an animal model.
Collapse
Affiliation(s)
- Michael P Wilczek
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Francesca J Armstrong
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School in Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
13
|
JCPyV-Induced MAPK Signaling Activates Transcription Factors during Infection. Int J Mol Sci 2019; 20:ijms20194779. [PMID: 31561471 PMCID: PMC6801635 DOI: 10.3390/ijms20194779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV), a ubiquitous human pathogen, is the etiological agent of the fatal neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Like most viruses, JCPyV infection requires the activation of host-cell signaling pathways in order to promote viral replication processes. Previous works have established the necessity of the extracellular signal-regulated kinase (ERK), the terminal core kinase of the mitogen-activated protein kinase (MAPK) cascade (MAPK-ERK) for facilitating transcription of the JCPyV genome. However, the underlying mechanisms by which the MAPK-ERK pathway becomes activated and induces viral transcription are poorly understood. Treatment of cells with siRNAs specific for Raf and MAP kinase kinase (MEK) targets proteins in the MAPK-ERK cascade, significantly reducing JCPyV infection. MEK, the dual-specificity kinase responsible for the phosphorylation of ERK, is phosphorylated at times congruent with early events in the virus infectious cycle. Moreover, a MAPK-specific signaling array revealed that transcription factors downstream of the MAPK cascade, including cMyc and SMAD4, are upregulated within infected cells. Confocal microscopy analysis demonstrated that cMyc and SMAD4 shuttle to the nucleus during infection, and nuclear localization is reduced when ERK is inhibited. These findings suggest that JCPyV induction of the MAPK-ERK pathway is mediated by Raf and MEK and leads to the activation of downstream transcription factors during infection. This study further defines the role of the MAPK cascade during JCPyV infection and the downstream signaling consequences, illuminating kinases as potential therapeutic targets for viral infection.
Collapse
|
14
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
15
|
DuShane JK, Maginnis MS. Human DNA Virus Exploitation of the MAPK-ERK Cascade. Int J Mol Sci 2019; 20:ijms20143427. [PMID: 31336840 PMCID: PMC6679023 DOI: 10.3390/ijms20143427] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) comprise a particular branch of the mitogen-activated protein kinase cascades (MAPK) that transmits extracellular signals into the intracellular environment to trigger cellular growth responses. Similar to other MAPK cascades, the MAPK-ERK pathway signals through three core kinases—Raf, MAPK/ERK kinase (MEK), and ERK—which drive the signaling mechanisms responsible for the induction of cellular responses from extracellular stimuli including differentiation, proliferation, and cellular survival. However, pathogens like DNA viruses alter MAPK-ERK signaling in order to access DNA replication machineries, induce a proliferative state in the cell, or even prevent cell death mechanisms in response to pathogen recognition. Differential utilization of this pathway by multiple DNA viruses highlights the dynamic nature of the MAPK-ERK pathway within the cell and the importance of its function in regulating a wide variety of cellular fates that ultimately influence viral infection and, in some cases, result in tumorigenesis.
Collapse
Affiliation(s)
- Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA.
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04401, USA.
| |
Collapse
|