1
|
Janusz G, Mazur A, Pawlik A, Kołodyńska D, Jaroszewicz B, Marzec-Grządziel A, Koper P. Metagenomic Analysis of the Composition of Microbial Consortia Involved in Spruce Degradation over Time in Białowieża Natural Forest. Biomolecules 2023; 13:1466. [PMID: 37892148 PMCID: PMC10604581 DOI: 10.3390/biom13101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Deadwood plays an important role in forest ecology; its degradation and, therefore, carbon assimilation is carried out by fungi and bacteria. To quantify the abundance and distribution of microbial taxa inhabiting dead spruce logs fallen over a span of 50 years and the soil beneath, we used taxonomic profiling with NGS sequencing of hypervariable DNA fragments of ITS1 and 16S V3-V4, respectively. The analysis of sequencing data revealed a high level of diversity in microbial communities participating in the degradation of spruce logs. Differences in the relative abundance of microbial taxa between the samples of the wood that died in 1974 and 2014, and of the soil in its immediate vicinity, were visible, especially at the genus level. Based on the Lefse analysis significantly higher numbers of classified bacterial taxa were observed in the wood and soil samples from 2014 (wood: 1974-18 and 2014-28 taxa; soil: 1974-8 and 2014-41 taxa) while the number of classified fungal taxa was significantly higher in the wood and soil samples from 1974 (wood: 1974-17 and 2014-9 taxa; soil: 1974-57 and 2014-28 taxa). Most of the bacterial and fungal amplicon sequence variants (ASVs) unique to wood were found in the samples from 1974, while those unique to soil were detected in the samples from 2014. The ATR-FTIR method supported by CHN analysis revealed physicochemical changes in deadwood induced by the activity of fungal and bacterial organisms.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (P.K.)
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Dorota Kołodyńska
- Faculty of Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031 Lublin, Poland;
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa 19, 17-230 Białowieża, Poland;
| | - Anna Marzec-Grządziel
- Department of Agriculture Microbiology, Institute of Soil Science and Plant Cultivation, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.M.); (P.K.)
| |
Collapse
|
2
|
Ferrer A, Heath KD, Mosquera SL, Suaréz Y, Dalling JW. Assembly of wood-inhabiting archaeal, bacterial and fungal communities along a salinity gradient: common taxa are broadly distributed but locally abundant in preferred habitats. FEMS Microbiol Ecol 2022; 98:6566339. [PMID: 35404430 DOI: 10.1093/femsec/fiac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine, and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9, and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that taxa either dispersed to both terrestrial and aquatic habitats, or that microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.
Collapse
Affiliation(s)
- Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sergio L Mosquera
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Yaraví Suaréz
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
3
|
Yang S, Poorter L, Kuramae EE, Sass-Klaassen U, Leite MFA, Costa OYA, Kowalchuk GA, Cornelissen JHC, van Hal J, Goudzwaard L, Hefting MM, van Logtestijn RSP, Sterck FJ. Stem traits, compartments, and tree species affect fungal communities on decaying wood. Environ Microbiol 2022; 24:3625-3639. [PMID: 35229433 PMCID: PMC9544286 DOI: 10.1111/1462-2920.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Dead wood quantity and quality is important for forest biodiversity, by determining wood‐inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer‐ and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long‐term carbon dynamics of dead trees.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700, AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700, AA, Wageningen, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708, PB, Wageningen, the Netherlands.,Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700, AA, Wageningen, The Netherlands
| | - Marcio F A Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708, PB, Wageningen, the Netherlands.,Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Ohana Y A Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708, PB, Wageningen, the Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Jurgen van Hal
- Systems Ecology, Department of Ecological Science, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700, AA, Wageningen, The Netherlands
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Richard S P van Logtestijn
- Systems Ecology, Department of Ecological Science, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700, AA, Wageningen, The Netherlands
| |
Collapse
|