1
|
Pokluda R, Ragasová LN, Jurica M, Kalisz A, Komorowska M, Niemiec M, Caruso G, Gąstoł M, Sekara A. The shaping of onion seedlings performance through substrate formulation and co-inoculation with beneficial microorganism consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1222557. [PMID: 37521928 PMCID: PMC10382143 DOI: 10.3389/fpls.2023.1222557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Introduction Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.
Collapse
Affiliation(s)
- Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Lucia Nedorost Ragasová
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Miloš Jurica
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Andrzej Kalisz
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Monika Komorowska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| |
Collapse
|
2
|
Jarecki W. Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2431. [PMID: 37446991 DOI: 10.3390/plants12132431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Soybean is one of the most important legumes in the world, and its advantages and disadvantages are well known. As a result of symbiosis with the bacterium Bradyrhizobium japonicum, soybean can assimilate nitrogen from the air and is therefore not fertilized with this element, or if it is, only at small doses. In soybean agriculture practice, an important treatment is the inoculation of seeds with symbiotic bacteria and optimal fertilization with selected nutrients. Therefore, a three-year (2019-2021) field experiment was carried out to investigate the effects of soybean in the field to a seed Rhizobium inoculation or coating and molybdenum foliar fertilization. There were no significant interactions between the tested treatments over the years. It was demonstrated that the best variant was seed inoculation before sowing in combination with foliar molybdenum application. As a result of this treatment, a significant increase in nodulation, soil plant analysis development (SPAD) index, leaf area index (LAI) and seed yield (by 0.61 t·ha-1) was obtained compared to the control. In addition, the content of total protein in the seeds increased, while the content of crude fat decreased, which significantly modified the yield of both components. Sowing coated seeds in the Fix Fertig technology was less effective compared to inoculation, but it was significantly better than that in the control. Coating seeds with B. japonicum, in combination with foliar fertilization with molybdenum, could be recommended for agricultural practice, which was confirmed by economic calculations. Future experiments will assess the soybean's response to seed inoculation or coating and fertilization with other micronutrients.
Collapse
Affiliation(s)
- Wacław Jarecki
- Department of Crop Production, University of Rzeszów, Zelwerowicza 4 St., 35-601 Rzeszów, Poland
| |
Collapse
|
3
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Preliminary symbiotic performance of indigenous soybean (Glycine max)-nodulating rhizobia from agricultural soils of Tanzania. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1085843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Globally, the increase in human population continues to threaten the sustainability of agricultural systems. Despite the fast-growing population in Sub-Saharan Africa (SSA) and the efforts in improving the productivity of crops, the increase in the yield of crops per unit area is still not promising. The productivity of crops is primarily constrained by inadequate levels of soil nutrients to support optimum crop growth and development. However, smallholder farmers occasionally use fertilizers, and the amount applied is usually small and does not meet plant requirements. This is due to the unaffordability of the cost of fertilizers, which is enough to suffice the crop requirement. Therefore, there is a need for alternative affordable and effective fertilization methods for sustainable intensification and improvement of the smallholder farming system's productivity. This study was designed to evaluate the symbiotic performance of indigenous soybean nodulating rhizobia in selected agricultural soils of Tanzania. In total, 217 rhizobia isolates were obtained from three agroecological zones, i.e., eastern, northern, and southern highlands. The isolates collected were screened for N2 fixing abilities under in vitro (nitrogen-free medium) and screen house conditions. The results showed varying capabilities of isolates in nitrogen-fixing both under in vitro and screen house conditions. Under in vitro experiment, 22% of soybean rhizobia isolates were identified to have a nitrogen-fixing capability on an N-free medium, with the highest N2-fixing diameter of 1.87 cm. In the screen house pot experiment, results showed that soybean rhizobia isolate significantly (P < 0.001) influenced different plant growth and yield components, where the average shoot dry weight ranged from 2.49 to 10.98 g, shoot length from 41 to 125.27 cm whilst the number of leaves per plant ranged from 20 to 66. Furthermore, rhizobia isolates significantly (P = 0.038) increased root dry weight from 0.574 to 2.17 g. In the case of symbiotic parameters per plant, the number of nodules was in the range of 0.33–22, nodules dry weight (0.001–0.137 g), shoot nitrogen (2.37–4.97%), total nitrogen (53.59–6.72 g), and fixed nitrogen (46.878–0.15 g) per plant. In addition, the results indicated that 51.39% of the tested bacterial isolates in this study were ranked as highly effective in symbiosis, suggesting that they are promising as potential alternative biofertilizers for soybean production in agricultural soils of Tanzania to increase productivity per unit area while reducing production cost.
Collapse
|
4
|
Mortuza MF, Djedidi S, Ito T, Agake SI, Sekimoto H, Yokoyama T, Okazaki S, Ohkama-Ohtsu N. Genetic and Physiological Characterization of Soybean-Nodule-Derived Isolates from Bangladeshi Soils Revealed Diverse Array of Bacteria with Potential Bradyrhizobia for Biofertilizers. Microorganisms 2022; 10:2282. [PMID: 36422352 PMCID: PMC9698105 DOI: 10.3390/microorganisms10112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Genetic and physiological characterization of bacteria derived from nodules of leguminous plants in the exploration of biofertilizer is of paramount importance from agricultural and environmental perspectives. Phylogenetic analysis of the 16S rRNA gene of 84 isolates derived from Bangladeshi soils revealed an unpredictably diverse array of nodule-forming and endosymbiotic bacteria-mostly belonging to the genus Bradyrhizobium. A sequence analysis of the symbiotic genes (nifH and nodD1) revealed similarities with the 16S rRNA gene tree, with few discrepancies. A phylogenetic analysis of the partial rrn operon (16S-ITS-23S) and multi-locus sequence analysis of atpD, glnII, and gyrB identified that the Bradyrhizobium isolates belonged to Bradyrhizobium diazoefficiens, Bradyrhizobium elkanii, Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense species. In the pot experiment, several isolates showed better activity than B. diazoefficiens USDA110, and the Bho-P2-B2-S1-51 isolate of B. liaoningense showed significantly higher acetylene reduction activity in both Glycine max cv. Enrei and Binasoybean-3 varieties and biomass production increased by 9% in the Binasoybean-3 variety. Tha-P2-B1-S1-68 isolate of B. diazoefficiens significantly enhanced shoot length and induced 10% biomass production in Binasoybean-3. These isolates grew at 1-4% NaCl concentration and pH 4.5-10 and survived at 45 °C, making the isolates potential candidates for eco-friendly soybean biofertilizers in salty and tropical regions.
Collapse
Affiliation(s)
- Md Firoz Mortuza
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka 1207, Bangladesh
| | - Salem Djedidi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shin-ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Harumi-cho 3-8-1, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hitoshi Sekimoto
- Faculty of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima-shi, Fukushima 960-1248, Japan
| | - Shin Okazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Harumi-cho 3-8-1, Fuchu-shi, Tokyo 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
5
|
Denison RF, Muller KE. An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evol Appl 2022; 15:1490-1504. [PMID: 36330301 PMCID: PMC9624085 DOI: 10.1111/eva.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-imposed, fitness-reducing sanctions against less-beneficial symbionts have been documented for rhizobia, mycorrhizal fungi, and fig wasps. Although most of our examples are for rhizobia, we argue that the evolutionary persistence of mutualism in any symbiosis would require such sanctions, if there are multiple symbiont genotypes per host plant. We therefore discuss methods that could be used to develop and assess crops with stricter sanctions. These include methods to screen strains for greater mutualism as resources to identify crop genotypes that impose stronger selection for mutualism. Single-strain experiments that measure costs as well as benefits have shown that diversion of resources by rhizobia can reduce nitrogen-fixation efficiency (N per C) and that some legumes can increase this efficiency by manipulating their symbionts. Plants in the field always host multiple strains with possible synergistic interactions, so benefits from different strains might best be compared by regressing plant growth or yield on each strain's abundance in a mixture. However, results from this approach have not yet been published. To measure legacy effects of stronger sanctions on future crops, single-genotype test crops could be planted in a field that recently had replicated plots with different genotypes of the sanction-imposing crop. Enhancing agricultural benefits from symbiosis may require accepting tradeoffs that constrained past natural selection, including tradeoffs between current and future benefits.
Collapse
Affiliation(s)
- R. Ford Denison
- Ecology, Evolution, & BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
6
|
Liu H, Cui Y, Zhou J, Penttinen P, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Yu X. Nickel mine soil is a potential source for soybean plant growth promoting and heavy metal tolerant rhizobia. PeerJ 2022; 10:e13215. [PMID: 35474688 PMCID: PMC9035279 DOI: 10.7717/peerj.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2022] [Indexed: 01/12/2023] Open
Abstract
Mine soil is not only barren but also contaminated by some heavy metals. It is unclear whether some rhizobia survived under extreme conditions in the nickel mine soil. Therefore, this study tries to isolate some effective soybean plant growth promoting and heavy metal resistant rhizobia from nickel mine soil, and to analyze their diversity. Soybean plants were used to trap rhizobia from the nickel mine soil. A total of 21 isolates were preliminarily identified as rhizobia, which were clustered into eight groups at 87% similarity level using BOXA1R-PCR fingerprinting technique. Four out of the eight representative isolates formed nodules on soybean roots with effectively symbiotic nitrogen-fixing and plant growth promoting abilities in the soybean pot experiment. Phylogenetic analysis of 16S rRNA, four housekeeping genes (atpD-recA-glnII-rpoB) and nifH genes assigned the symbiotic isolates YN5, YN8 and YN10 into Ensifer xinjiangense and YN11 into Rhizobium radiobacter, respectively. They also showed different tolerance levels to the heavy metals including cadmium, chromium, copper, nickel, and zinc. It was concluded that there were some plant growth promoting and heavy metal resistant rhizobia with the potential to facilitate phytoremediation and alleviate the effects of heavy metals on soybean cultivation in nickel mine soil, indicating a novel evidence for further exploring more functional microbes from the nickel mine soil.
Collapse
Affiliation(s)
- Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, Sichuan, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
8
|
Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14042253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The indiscriminate use of chemical fertilizers and pesticides has caused considerable environmental damage over the years. However, the growing demand for food in the coming years and decades requires the use of increasingly productive and efficient agriculture. Several studies carried out in recent years have shown how the application of plant growth-promoting microbes (PGPMs) can be a valid substitute for chemical industry products and represent a valid eco-friendly alternative. However, because of the complexity of interactions created with the numerous biotic and abiotic factors (i.e., environment, soil, interactions between microorganisms, etc.), the different formulates often show variable effects. In this review, we analyze the main factors that influence the effectiveness of PGPM applications and some of the applications that make them a useful tool for agroecological transition.
Collapse
|
9
|
Buernor AB, Kabiru MR, Bechtaoui N, Jibrin JM, Asante M, Bouraqqadi A, Dahhani S, Ouhdouch Y, Hafidi M, Jemo M. Grain Legume Yield Responses to Rhizobia Inoculants and Phosphorus Supplementation Under Ghana Soils: A Meta-Synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:877433. [PMID: 35812914 PMCID: PMC9261782 DOI: 10.3389/fpls.2022.877433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 05/14/2023]
Abstract
A discrete number of studies have been conducted on the effects of rhizobia (Rhz) inoculants, phosphorus (P) management, and combined application of Rhz and P fertilizer on the enhancement of grain legume yield across soils of Ghana and elsewhere. However, the extent to which the various inoculated Rhz strains, P application, and combined application of Rhz + P studies contribute to improving yield, performed on a comprehensive analysis approach, and profit farmers are yet to be understood. This study reviewed different experimental studies conducted on soybean (Glycine max (L.) Merr.), cowpea (Vigna unguiculata [L.] Walp), and groundnut (Arachis hypogaea [L.]) to which Rhz inoculants, P supplements, or Rhz + P combination were applied to improve the yield in Ghana. Multiple-step search combinations of published articles and multivariate analysis computing approaches were used to assess the effects of Rhz inoculation, P application, or both application of Rhz and P on yield variation. The random forest (RF) regression model was further employed to quantify the relative importance of various predictor variables on yield. The meta-analysis results showed that cowpea exhibited the highest (61.7%) and groundnut (19.8%) the lowest average yield change. The RF regression model revealed that the combined application of Rhz and P fertilizer (10.5%) and Rhz inoculation alone (7.8%) were the highest explanatory variables to predict yield variation in soybean. The Rhz + P combination, Rhz inoculation, and genotype wang-Kae explained 11.6, 10.02, and 8.04% of yield variability for cowpea, respectively. The yield in the inoculated plants increased by 1.48-, 1.26-, and 1.16-fold when compared to that in the non-inoculated cowpea plants following inoculation with BR 3299, KNUST 1002, and KNUST 1006 strains, respectively. KNUST 1006 strain exhibited the highest yield increase ratio (1.3-fold) in groundnut plants. Inoculants formulation with a viable concentration of 109 cells g-1 and a minimum inoculum rate of 1.0 × 106 cells seed-1 achieved the highest average yield change for soybean but not for cowpea and groundnut. The meta-analysis calls for prospective studies to investigate the minimum rate of bacterial cells required for optimum inoculation responses in cowpea and groundnut.
Collapse
Affiliation(s)
| | - Muhammad Rabiu Kabiru
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Centre for Dryland Agriculture, Bayero University, Kano, Nigeria
| | - Noura Bechtaoui
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | | | - Michael Asante
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute (SARI), Tamale, Ghana
| | | | | | - Yedir Ouhdouch
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Mohamed Hafidi
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- *Correspondence: Martin Jemo
| |
Collapse
|
10
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
11
|
Halwani M, Reckling M, Egamberdieva D, Omari RA, Bellingrath-Kimura SD, Bachinger J, Bloch R. Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:638452. [PMID: 34149745 PMCID: PMC8211910 DOI: 10.3389/fpls.2021.638452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/06/2021] [Indexed: 05/31/2023]
Abstract
To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1-4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1-4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Müncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe.
Collapse
Affiliation(s)
- Mosab Halwani
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Moritz Reckling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Richard Ansong Omari
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Faculty of Life Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Sonoko D. Bellingrath-Kimura
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Faculty of Life Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Johann Bachinger
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ralf Bloch
- Faculty of Landscape Management and Nature Conservation, Eberswalde University for Sustainable Development, Eberswalde, Germany
| |
Collapse
|
12
|
WONGDEE JENJIRA, YUTTAVANICHAKUL WATCHARIN, LONGTHONGLANG APHAKORN, TEAMTISONG KAMONLUCK, BOONKERD NANTAKORN, TEAUMROONG NEUNG, TITTABUTR PANLADA. Enhancing the Efficiency of Soybean Inoculant for Nodulation under Multi-Environmental Stress Conditions. Pol J Microbiol 2021; 70:257-271. [PMID: 34349815 PMCID: PMC8326982 DOI: 10.33073/pjm-2021-024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/10/2022] Open
Abstract
The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.
Collapse
Affiliation(s)
- JENJIRA WONGDEE
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - WATCHARIN YUTTAVANICHAKUL
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - APHAKORN LONGTHONGLANG
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - KAMONLUCK TEAMTISONG
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - NANTAKORN BOONKERD
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - NEUNG TEAUMROONG
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - PANLADA TITTABUTR
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
13
|
Pérez-Giménez J, Iturralde ET, Torres Tejerizo G, Quelas JI, Krol E, Borassi C, Becker A, Estevez JM, Lodeiro AR. A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4NO 3-Induced Inhibition of Nodulation. Appl Environ Microbiol 2021; 87:e02989-20. [PMID: 33608284 PMCID: PMC8091029 DOI: 10.1128/aem.02989-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
When subjected to nutritional stress, bacteria modify their amino acid metabolism and cell division activities by means of the stringent response, which is controlled by the Rsh protein in alphaproteobacteria. An important group of alphaproteobacteria are the rhizobia, which fix atmospheric N2 in symbiosis with legume plants. Although nutritional stress is common for rhizobia while infecting legume roots, the stringent response has scarcely been studied in this group of soil bacteria. In this report, we obtained a mutant with a kanamycin resistance insertion in the rsh gene of Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean. This mutant was defective for type 3 secretion system induction, plant defense suppression at early root infection, and nodulation competition. Furthermore, the mutant produced smaller nodules, although with normal morphology, which led to lower plant biomass production. Soybean (Glycine max) genes GmRIC1 and GmRIC2, involved in autoregulation of nodulation, were upregulated in plants inoculated with the mutant under the N-free condition. In addition, when plants were inoculated in the presence of 10 mM NH4NO3, the mutant produced nodules containing bacteroids, and GmRIC1 and GmRIC2 were downregulated. The rsh mutant released more auxin to the culture supernatant than the wild type, which might in part explain its symbiotic behavior in the presence of combined N. These results indicate that the B. diazoefficiens stringent response integrates into the plant defense suppression and regulation of nodulation circuits in soybean, perhaps mediated by the type 3 secretion system.IMPORTANCE The symbiotic N2 fixation carried out between prokaryotic rhizobia and legume plants performs a substantial contribution to the N cycle in the biosphere. This symbiotic association is initiated when rhizobia infect and penetrate the root hairs, which is followed by the growth and development of root nodules, within which the infective rhizobia are established and protected. Thus, the nodule environment allows the expression and function of the enzyme complex that catalyzes N2 fixation. However, during early infection, the rhizobia find a harsh environment while penetrating the root hairs. To cope with this nuisance, the rhizobia mount a stress response known as the stringent response. In turn, the plant regulates nodulation in response to the presence of alternative sources of combined N in the surrounding medium. Control of these processes is crucial for a successful symbiosis, and here we show how the rhizobial stringent response may modulate plant defense suppression and the networks of regulation of nodulation.
Collapse
Affiliation(s)
- Julieta Pérez-Giménez
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Esteban T Iturralde
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Quelas
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - José M Estevez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal R Lodeiro
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- Laboratorio de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
14
|
Aroney STN, Poole PS, Sánchez-Cañizares C. Rhizobial Chemotaxis and Motility Systems at Work in the Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:725338. [PMID: 34512702 PMCID: PMC8429497 DOI: 10.3389/fpls.2021.725338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Bacteria navigate their way often as individual cells through their chemical and biological environment in aqueous medium or across solid surfaces. They swim when starved or in response to physical and chemical stimuli. Flagella-driven chemotaxis in bacteria has emerged as a paradigm for both signal transduction and cellular decision-making. By altering motility, bacteria swim toward nutrient-rich environments, movement modulated by their chemotaxis systems with the addition of pili for surface movement. The numbers and types of chemoreceptors reflect the bacterial niche and lifestyle, with those adapted to complex environments having diverse metabolic capabilities, encoding far more chemoreceptors in their genomes. The Alpha-proteobacteria typify the latter case, with soil bacteria such as rhizobia, endosymbionts of legume plants, where motility and chemotaxis are essential for competitive symbiosis initiation, among other processes. This review describes the current knowledge of motility and chemotaxis in six model soil bacteria: Sinorhizobium meliloti, Agrobacterium fabacearum, Rhizobium leguminosarum, Azorhizobium caulinodans, Azospirillum brasilense, and Bradyrhizobium diazoefficiens. Although motility and chemotaxis systems have a conserved core, rhizobia possess several modifications that optimize their movements in soil and root surface environments. The soil provides a unique challenge for microbial mobility, since water pathways through particles are not always continuous, especially in drier conditions. The effectiveness of symbiont inoculants in a field context relies on their mobility and dispersal through the soil, often assisted by water percolation or macroorganism movement or networks. Thus, this review summarizes the factors that make it essential to consider and test rhizobial motility and chemotaxis for any potential inoculant.
Collapse
|
15
|
Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System. J Bacteriol 2020; 202:JB.00708-19. [PMID: 31843800 DOI: 10.1128/jb.00708-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
Collapse
|