1
|
Arenas YM, Pérez-Martinez G, Montoliu C, Llansola M, Felipo V. Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats. Brain Behav Immun 2025; 123:556-570. [PMID: 39384052 DOI: 10.1016/j.bbi.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including L. casei, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from Lacticaseibacillus paracasei (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathways and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain; Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain; Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Gaspar Pérez-Martinez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Bingöl FG, Ağagündüz D, Budán F. Probiotic Bacterium-Derived p40, p75, and HM0539 Proteins as Novel Postbiotics and Gut-Associated Immune System (GAIS) Modulation: Postbiotic-Gut-Health Axis. Microorganisms 2024; 13:23. [PMID: 39858791 PMCID: PMC11767761 DOI: 10.3390/microorganisms13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
It is known that probiotics have direct and indirect effects on many systems in the body, especially the gastrointestinal system. Interest in using probiotic strain-derived cell components and metabolites has also increased as a result of the significant benefits of probiotics. Although many terminologies and definitions are used for these components and metabolites, the International Scientific Association of Probiotics and Prebiotics (ISAPP) recommended the use of the term postbiotic in 2021, which is defined as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics are bioactive metabolites such as organic acids, peptides/proteins, cell wall components, functional enzymes, short-chain fatty acids, vitamins, and phenols. These molecules mediate many positive effects such as immunomodulatory, antimicrobial, and antioxidant effects. These positive effects on maintaining health have enabled the identification of many new postbiotic proteins such as p40, p75, and HM0539. In this review, the postbiotic proteins p40, p75, and HM0539 derived from lactobacilli and their functional effects are systematically summarized. The p40 protein, in particular, has been shown to support gut barrier activity and reduce inflammation, potentially through mechanisms involving epidermal growth factor receptor-dependent signaling. Additionally, p40 and p75 proteins exhibit protective effects on intestinal epithelial tight junctions, suggesting their therapeutic potential in preventing intestinal damage and diseases such as colitis. HM0539 enhances intestinal barrier integrity, exhibits antiinflammatory properties, and protects against bacterial infection, suggesting its possible as a therapeutic for inflammatory bowel disease. This review may contribute to future studies on the therapeutic use of p40, p75, and HM0539 postbiotic proteins in inflammatory gastrointestinal system diseases.
Collapse
Affiliation(s)
- Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Faculty of Health Science, Burdur Mehmet Akif Ersoy University, 15200 Burdur, Türkiye;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, 06490 Ankara, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
4
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
6
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
7
|
Dorosky RJ, Schreier JE, Lola SL, Sava RL, Coryell MP, Akue A, KuKuruga M, Carlson PE, Dreher-Lesnick SM, Stibitz S. Nanobodies as potential tools for microbiological testing of live biotherapeutic products. AMB Express 2024; 14:9. [PMID: 38245586 PMCID: PMC10799837 DOI: 10.1186/s13568-023-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/22/2024] Open
Abstract
Nanobodies are highly specific binding domains derived from naturally occurring single chain camelid antibodies. Live biotherapeutic products (LBPs) are biological products containing preparations of live organisms, such as Lactobacillus, that are intended for use as drugs, i.e. to address a specific disease or condition. Demonstrating potency of multi-strain LBPs can be challenging. The approach investigated here is to use strain-specific nanobody reagents in LBP potency assays. Llamas were immunized with radiation-killed Lactobacillus jensenii or L. crispatus whole cell preparations. A nanobody phage-display library was constructed and panned against bacterial preparations to identify nanobodies specific for each species. Nanobody-encoding DNA sequences were subcloned and the nanobodies were expressed, purified, and characterized. Colony immunoblots and flow cytometry showed that binding by Lj75 and Lj94 nanobodies were limited to a subset of L. jensenii strains while binding by Lc38 and Lc58 nanobodies were limited to L. crispatus strains. Mass spectrometry was used to demonstrate that Lj75 specifically bound a peptidase of L. jensenii, and that Lc58 bound an S-layer protein of L. crispatus. The utility of fluorescent nanobodies in evaluating multi-strain LBP potency assays was assessed by evaluating a L. crispatus and L. jensenii mixture by fluorescence microscopy, flow cytometry, and colony immunoblots. Our results showed that the fluorescent nanobody labelling enabled differentiation and quantitation of the strains in mixture by these methods. Development of these nanobody reagents represents a potential advance in LBP testing, informing the advancement of future LBP potency assays and, thereby, facilitation of clinical investigation of LBPs.
Collapse
Affiliation(s)
- Robert J Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Stephanie L Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rosa L Sava
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael P Coryell
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Adovi Akue
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Paul E Carlson
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sheila M Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
8
|
Domínguez-Díaz C, Avila-Arrezola KE, Rodríguez JA, del-Toro-Arreola S, Delgado-Rizo V, Fafutis-Morris M. Recombinant p40 Protein Promotes Expression of Occludin in HaCaT Keratinocytes: A Brief Communication. Microorganisms 2023; 11:2913. [PMID: 38138057 PMCID: PMC10745755 DOI: 10.3390/microorganisms11122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The ability of epithelial barriers to perform as the first defense line against external damage derives from tight junctions, protein complexes that block microorganisms through the paracellular space. Indeed, disturbances of barrier permeability caused by bacterial metabolites and other inflammatory stimuli are the consequence of changes in protein expression in these complexes. Postbiotics, molecules derived from bacteria with beneficial effects on the host, improve barrier function through the activation of survival pathways in epithelial cells. Lacticaseibacillus rhamnosus GG secretes the muramidase p40, which protects intestinal barriers through an EGFR-dependent pathway. In this work, we cloned, expressed, and purified the recombinant p40 protein from L. rhamnosus GR-1 to evaluate its effect on cell viability, cell cytotoxicity, TEER, and protein levels of tight junctions, as well as EGFR activation via Western blot on HaCaT keratinocytes subjected to LPS. We found a novel mutation at residue 368 that does not change the structure of p40. Our protein also reduces the LPS-induced increase in cell cytotoxicity when it is added prior to this stimulus. Furthermore, although LPS did not cause changes in barrier function, p40 increased TEER and occludin expression in HaCaT, but unlike previous work with p40 from LGG, we found that recombinant p40 did not activate EGFR. This suggests that recombinant p40 enhances epithelial barrier function through distinct signaling pathways.
Collapse
Affiliation(s)
- Carolina Domínguez-Díaz
- Doctoral Program in Biomedical Sciences, Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Immunology and Dermatology Research Center (CIINDE), Zapopan 45190, Mexico;
| | | | - Jorge A. Rodríguez
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico;
| | - Susana del-Toro-Arreola
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| | - Vidal Delgado-Rizo
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| | - Mary Fafutis-Morris
- Immunology and Dermatology Research Center (CIINDE), Zapopan 45190, Mexico;
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| |
Collapse
|
9
|
Kaur H, Ali SA, Short SP, Williams CS, Goettel JA, Washington MK, Peek RM, Acra SA, Yan F. Identification of a functional peptide of a probiotic bacterium-derived protein for the sustained effect on preventing colitis. Gut Microbes 2023; 15:2264456. [PMID: 37815528 PMCID: PMC10566403 DOI: 10.1080/19490976.2023.2264456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Several probiotic-derived factors have been identified as effectors of probiotics for exerting beneficial effects on the host. However, there is a paucity of studies to elucidate mechanisms of their functions. p40, a secretory protein, is originally isolated from a probiotic bacterium, Lactobacillus rhamnosus GG. Thus, this study aimed to apply structure-functional analysis to define the functional peptide of p40 that modulates the epigenetic program in intestinal epithelial cells for sustained prevention of colitis. In silico analysis revealed that p40 is composed of a signal peptide (1-28 residues) followed by a coiled-coil domain with uncharacterized function on the N-terminus, a linker region, and a β-sheet domain with high homology to CHAP on the C-terminus. Based on the p40 three-dimensional structure model, two recombinant p40 peptides were generated, p40N120 (28-120 residues) and p40N180 (28-180 residues) that contain first two and first three coiled coils, respectively. Compared to full-length p40 (p40F) and p40N180, p40N120 showed similar or higher effects on up-regulating expression of Setd1b (encoding a methyltransferase), promoting mono- and trimethylation of histone 3 on lysine 4 (H3K4me1/3), and enhancing Tgfb gene expression and protein production that leads to SMAD2 phosphorylation in human colonoids and a mouse colonic epithelial cell line. Furthermore, supplementation with p40F and p40N120 in early life increased H3K4me1, Tgfb expression and differentiation of regulatory T cells (Tregs) in the colon, and mitigated disruption of epithelial barrier and inflammation induced by DSS in adult mice. This study reveals the structural feature of p40 and identifies a functional peptide of p40 that could maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Syed Azmal Ali
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Sarah P. Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jeremy A. Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sari A. Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Suissa R, Olender T, Malitsky S, Golani O, Turjeman S, Koren O, Meijler MM, Kolodkin-Gal I. Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness. NPJ Biofilms Microbiomes 2023; 9:71. [PMID: 37752249 PMCID: PMC10522624 DOI: 10.1038/s41522-023-00431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is a Gram-positive beneficial bacterium that resides in the human intestinal tract and belongs to the family of lactic acid bacteria (LAB). This bacterium is a widely used probiotic and was suggested to provide numerous benefits for human health. However, as in most LAB strains, the molecular mechanisms that mediate the competitiveness of probiotics under different diets remain unknown. Fermentation is a fundamental process in LAB, allowing the oxidation of simple carbohydrates (e.g., glucose, mannose) for energy production under oxygen limitation, as in the human gut. Our results indicate that fermentation reshapes the metabolome, volatilome, and proteome architecture of LGG. Furthermore, fermentation alters cell envelope remodeling and peptidoglycan biosynthesis, which leads to altered cell wall thickness, aggregation properties, and cell wall composition. In addition, fermentable sugars induced the secretion of known and novel metabolites and proteins targeting the enteric pathogens Enterococcus faecalis and Salmonella enterica Serovar Typhimurium. Overall, our results link simple carbohydrates with cell wall remodeling, aggregation to host tissues, and biofilm formation in probiotic strains and connect them with the production of broad-spectrum antimicrobial effectors.
Collapse
Affiliation(s)
- Ronit Suissa
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- The Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| |
Collapse
|
11
|
Gao J, Wang L, Jiang J, Xu Q, Zeng N, Lu B, Yuan P, Sun K, Zhou H, He X. A probiotic bi-functional peptidoglycan hydrolase sheds NOD2 ligands to regulate gut homeostasis in female mice. Nat Commun 2023; 14:3338. [PMID: 37286542 PMCID: PMC10247697 DOI: 10.1038/s41467-023-38950-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-β-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.
Collapse
Affiliation(s)
- Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Jing Jiang
- Department Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China
| | - Qian Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, 518101, Shenzhen, Guangdong, China
| | - Peibo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Kai Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
da Silva Barreira D, Laurent J, Lourenço J, Novion Ducassou J, Couté Y, Guzzo J, Rieu A. Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Sci Rep 2023; 13:1163. [PMID: 36670157 PMCID: PMC9859808 DOI: 10.1038/s41598-023-27959-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with. However, the antimicrobial activity of probiotic MVs remains to be studied. In this work, we showed that membrane vesicles produced by Lacticaseibacillus casei BL23 (LC-MVs) exhibited strong antibiofilm activity against Salmonella enterica serovar Enteritidis (S. Enteritidis) without affecting bacterial growth. Furthermore, we found that LC-MVs affected the early stages of S. Enteritidis biofilm development and prevented attachment of bacteria to polystyrene surfaces. Importantly, LC-MVs did not impact the biomass of already established biofilms. We also demonstrated that the antibiofilm activity depended on the proteins associated with the LC-MV fraction. Finally, two peptidoglycan hydrolases (PGHs) were found to be associated with the antibiofilm activity of LC-MVs. Overall, this work allowed to identify the antibiofilm properties of LC-MVs and paved the way for the use of probiotic MVs against the development of negative biofilms.
Collapse
Affiliation(s)
- David da Silva Barreira
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julie Laurent
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Jessica Lourenço
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Jean Guzzo
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Aurélie Rieu
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France.
| |
Collapse
|
14
|
Pérez Martínez G, Giner-Pérez L, Castillo-Romero KF. Bacterial extracellular vesicles and associated functional proteins in fermented dairy products with Lacticaseibacillus paracasei. Front Microbiol 2023; 14:1165202. [PMID: 37152726 PMCID: PMC10157241 DOI: 10.3389/fmicb.2023.1165202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Cells of all kingdoms produce extracellular vesicles (EVs); hence, they are present in most environments and body fluids. Lacticaseibacillus paracasei produces EVs that have attached biologically active proteins (P40 and P75). In this study, EV and functional proteins were found in five different commercial dairy-fermented products carrying L. paracasei. Strains present in those products were isolated, and with one exception, all produced small EVs (24-47 d.nm) carrying P40 and P75. In order to winnow bacterial EV from milk EV, products were subjected to centrifugal fractionation at 15,000 × g (15 K), 33,000 × g (33 K), and 100,000 × g (100 K). P75 was present in all supernatants and pellets, but P40 was only found in two products bound to the 15 and 33 K pellets, and 16S rDNA of L. paracasei could be amplified from all 100 K EVs, indicating the presence of L. paracasei EV. To investigate the interactions of bacterial EV and proteins with milk EV, L. paracasei BL23 EV was added to three commercial UHT milk products. Small-size vesicles (50-60 d.nm) similar to L. paracasei BL23 EV were found in samples from 100 K centrifugations, but intriguingly, P40 and P75 were bound to EV in 15 and 33 K pellets, containing bovine milk EV of larger size (200-300 d.nm). Sequencing 16S rDNA bands amplified from EV evidenced the presence of bacterial EVs of diverse origins in milk and fermented products. Furthermore, L. paracasei 16S rDNA could be amplified with species-specific primers from all samples, showing the presence of L. paracasei EV in all EV fractions (15, 33, and 100 K), suggesting that these bacterial EVs possibly aggregate and are co-isolated with EV from milk. P40 and P75 proteins would be interacting with specific populations of milk EV (15 and 33 K) because they were detected bound to them in fermented products and milk, and this possibly forced the sedimentation of part of L. paracasei EV at lower centrifugal forces. This study has solved technically complex problems and essential questions which will facilitate new research focusing on the molecular behavior of probiotics during fermentation and the mechanisms of action mediating the health benefits of fermented products.
Collapse
Affiliation(s)
- Gaspar Pérez Martínez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- *Correspondence: Gaspar Pérez Martínez
| | - Lola Giner-Pérez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Keshia F. Castillo-Romero
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
15
|
Kaur H, Ali SA, Yan F. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells - implication in the microbiota-host mutualism. Front Immunol 2022; 13:1006081. [PMID: 36159834 PMCID: PMC9492984 DOI: 10.3389/fimmu.2022.1006081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Mutual interactions between the gut microbiota and the host play essential roles in maintaining human health and providing a nutrient-rich environment for the gut microbial community. Intestinal epithelial cells (IECs) provide the frontline responses to the gut microbiota for maintaining intestinal homeostasis. Emerging evidence points to commensal bacterium-derived components as functional factors for the action of commensal bacteria, including protecting intestinal integrity and mitigating susceptibility of intestinal inflammation. Furthermore, IECs have been found to communicate with the gut commensal bacteria to shape the composition and function of the microbial community. This review will discuss the current understanding of the beneficial effects of functional factors secreted by commensal bacteria on IECs, with focus on soluble proteins, metabolites, and surface layer components, and highlight the impact of IECs on the commensal microbial profile. This knowledge provides a proof-of-concept model for understanding of mechanisms underlying the microbiota-host mutualism.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Syed Azmal Ali
- German Cancer Research Center, Division of Proteomics of Stem Cell and Cancer, Heidelberg, Germany
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States,*Correspondence: Fang Yan,
| |
Collapse
|
16
|
Effects of Spore-Displayed p75 Protein from Lacticaseibacillus rhamnosus GG on the Transcriptional Response of HT-29 Cells. Microorganisms 2022; 10:microorganisms10071276. [PMID: 35888995 PMCID: PMC9323162 DOI: 10.3390/microorganisms10071276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
A Lacticaseibacillus rhamnosus GG-derived protein, p75, is one of the key molecules exhibiting probiotic activity. However, the molecular mechanism and transcriptional response of p75 in human intestinal epithelial cells are not completely understood. To gain a deeper understanding of its potential probiotic action, this study investigated genome-wide responses of HT-29 cells to stimulation by spore-displayed p75 (CotG-p75) through a transcriptome analysis based on RNA sequencing. Analysis of RNA-seq data showed significant changes of gene expression in HT-29 cells stimulated by CotG-p75 compared to the control. A total of 189 up-regulated and 314 down-regulated genes was found as differentially expressed genes. Gene ontology enrichment analysis revealed that a large number of activated genes was involved in biological processes, such as epithelial cell differentiation, development, and regulation of cell proliferation. A gene–gene interaction network analysis showed that several DEGs, including AREG, EREG, HBEGF, EPGN, FASLG, GLI2, CDKN1A, FOSL1, MYC, SERPINE1, TNFSF10, BCL6, FLG, IVL, SPRR1A, SPRR1B, SPRR3, and MUC5AC, might play a critical role in these biological processes. RNA-seq results for selected genes were verified by reverse transcription-quantitative polymerase chain reaction. Overall, these results provide extensive knowledge about the transcriptional responses of HT-29 cells to stimulation by CotG-p75. This study showed that CotG-p75 can contribute to cell survival and epithelial development in human intestinal epithelial cells.
Collapse
|
17
|
Factors Affecting Spontaneous Endocytosis and Survival of Probiotic Lactobacilli in Human Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10061142. [PMID: 35744660 PMCID: PMC9230732 DOI: 10.3390/microorganisms10061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains—Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG—in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.
Collapse
|
18
|
Gut health benefit and application of postbiotics in animal production. J Anim Sci Biotechnol 2022; 13:38. [PMID: 35392985 PMCID: PMC8991504 DOI: 10.1186/s40104-022-00688-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Gut homeostasis is of importance to host health and imbalance of the gut usually leads to disorders or diseases for both human and animal. Postbiotics have been applied in manipulating of gut health, and utilization of postbiotics threads new lights into the host health. Compared with the application of probiotics, the characteristics such as stability and safety of postbiotics make it a potential alternative to probiotics. Studies have reported the beneficial effects of components derived from postbiotics, mainly through the mechanisms including inhibition of pathogens, strengthen gut barrier, and/or regulation of immunity of the host. In this review, we summarized the characteristics of postbiotics, main compounds of postbiotics, potential mechanisms in gut health, and their application in animal production.
Collapse
|
19
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
20
|
Deng Y, McDonald OG, Means AL, Peek RM, Washington MK, Acra SA, Polk DB, Yan F. Exposure to p40 in Early Life Prevents Intestinal Inflammation in Adulthood Through Inducing a Long-Lasting Epigenetic Imprint on TGFβ. Cell Mol Gastroenterol Hepatol 2021; 11:1327-1345. [PMID: 33482393 PMCID: PMC8020481 DOI: 10.1016/j.jcmgh.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Colonization by gut microbiota in early life confers beneficial effects on immunity throughout the host's lifespan. We sought to elucidate the mechanisms whereby neonatal supplementation with p40, a probiotic functional factor, reprograms intestinal epithelial cells for protection against adult-onset intestinal inflammation. METHODS p40 was used to treat young adult mouse colonic (YAMC) epithelial cells with and without deletion of a methyltransferase, su(var)3-9, enhancer-of-zeste and trithorax domain-containing 1β (Setd1β), and mice in early life or in adulthood. Anti-transforming growth factor β (TGFβ)-neutralizing antibodies were administered to adult mice with and without colitis induced by 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium. We examined Setd1b and Tgfb gene expression, TGFβ production, monomethylation and trimethylation of histone H3 on the lysine 4 residue (H3K4me1/3), H3K4me3 enrichment in Tgfb promoter, differentiation of regulatory T cells (Tregs), and the inflammatory status. RESULTS p40 up-regulated expression of Setd1b in YAMC cells. Accordingly, p40 enhanced H3K4me1/3 in YAMC cells in a Setd1β-dependent manner. p40-regulated Setd1β mediated programming the TGFβ locus into a transcriptionally permissive chromatin state and promoting TGFβ production in YAMC. Furthermore, transient exposure to p40 during the neonatal period and in adulthood resulted in the immediate increase in Tgfb gene expression. However, only neonatal p40 supplementation induced the sustained H3K4me1/3 and Tgfb gene expression that persisted into adulthood. Interfering with TGFβ function by neutralizing antibodies diminished the long-lasting effects of neonatal p40 supplementation on differentiation of Tregs and protection against colitis in adult mice. CONCLUSIONS Exposure to p40 in early life enables an epigenetic imprint on TGFβ, leading to long-lasting production of TGFβ by intestinal epithelial cells to expand Tregs and protect the gut against inflammation.
Collapse
Affiliation(s)
- Yilin Deng
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oliver G McDonald
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna L Means
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sari A Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Brent Polk
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
21
|
Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Sci Rep 2020; 10:19237. [PMID: 33159116 PMCID: PMC7648624 DOI: 10.1038/s41598-020-75930-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
In the complex interplay of beneficial bacteria with the host, there are few examples of bacterial metabolites and effector molecules that have been consistently identified. Protective effects on the intestinal epithelium have been ascribed to P40 and P75, two well characterized cell wall muramidases, present in the culture supernatant of strains belonging to the taxon Lactobacillus casei/paracasei/rhamnosus. This work reports that Lactobacillus casei BL23 extracellular vesicles (BL23 EVs) have a small size (17–20 nm or 24–32 nm, depending on the method used) and contain lipoteichoic acid (LTA). Interestingly, all detected P40 and most of P75 were associated to EVs and possibly located at their external surface, as shown by proteinase K digestion. Biosensor assays showed that both proteins bind LTA and vesicles, suggesting that they could bind to ligands like LTA present on BL23 EVs. Native BL23 EVs have a moderate proinflammatory effect and they were able to induce phosphorylation of the epidermal growth factor receptor (EGFR), showing an effect similar to purified P40 and P75 and leading to the conclusion that the activity described in the supernatant (postbiotic) of these bacteria would be mainly due to P40 and P75 bound to EVs.
Collapse
|
22
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Kang SJ, Jun JS, Moon JA, Hong KW. Surface display of p75, a Lactobacillus rhamnosus GG derived protein, on Bacillus subtilis spores and its antibacterial activity against Listeria monocytogenes. AMB Express 2020; 10:139. [PMID: 32770428 PMCID: PMC7415045 DOI: 10.1186/s13568-020-01073-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/25/2020] [Indexed: 01/05/2023] Open
Abstract
Lactobacillus rhamnosus p75 protein with peptidoglycan hydrolase (PGH) activity is one of the key molecules exhibiting anti-apoptotic and cell-protective activity for human intestinal epithelial cells. In this study, with the goal of developing new probiotics, the p75 protein was displayed on the surface of Bacillus subtilis spores using spore coat protein CotG as an anchoring motif. The PGH activity, stability, and the antibacterial activity of the spore-displayed p75 (CotG-p75) protein were also investigated. The PGH activity of the CotG-p75 against peptidoglycan extracted from B. subtilis was confirmed by the ninhydrin test. Under various harsh conditions, compared to the control groups, the PGH activities of CotG-p75 were very stable in the range of pH 3–7 and maintained at 70% at 50 °C. In addition, the antibacterial activity of CotG-p75 against Listeria monocytogenes was evaluated by a time-kill assay. After 6 h incubation in phosphate-buffered saline, CotG-p75 reduced the number of viable cells of L. monocytogenes by up to 2.0 log. Scanning electron microscopy analysis showed that the cell wall of L. monocytogenes was partially damaged by the treatment with CotG-p75. Our preliminary results show that CotG-p75 could be a good candidate for further research to develop new genetically engineered probiotics.
Collapse
|
24
|
Fiore W, Arioli S, Guglielmetti S. The Neglected Microbial Components of Commercial Probiotic Formulations. Microorganisms 2020; 8:microorganisms8081177. [PMID: 32756409 PMCID: PMC7464440 DOI: 10.3390/microorganisms8081177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 01/16/2023] Open
Abstract
Producers of probiotic products are legally required to indicate on the label only the minimum numbers of viable microorganisms at the end of shelf life expressed as colony-forming units (CFUs). Label specifications, however, describe only a fraction of the actual microbiological content of a probiotic formulation. This paper describes the microbiological components of a probiotic product that are not mentioned on the label, such as the actual number of CFUs, the presence of viable cells that cannot generate colonies on agar plates, and the abundance of dead cells. These “hidden” microbial fractions in probiotic products, the abundance of which may change during the shelf life, can promote biological responses in the host. Therefore, they should not be ignored because they may influence the efficacy and can be relevant for immunocompromised or fragile consumers. In conclusion, we propose the minimum requirements for microbiological characterization of probiotic products to be adopted for label specifications and clinical studies.
Collapse
|
25
|
Lu R, Shang M, Zhang YG, Jiao Y, Xia Y, Garrett S, Bakke D, Bäuerl C, Martinez GP, Kim CH, Kang SM, Sun J. Lactic Acid Bacteria Isolated From Korean Kimchi Activate the Vitamin D Receptor-autophagy Signaling Pathways. Inflamm Bowel Dis 2020; 26:1199-1211. [PMID: 32170938 PMCID: PMC7365811 DOI: 10.1093/ibd/izaa049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Probiotic lactic acid bacteria (LAB) have been used in the anti-inflammation and anti-infection process of various diseases, including inflammatory bowel disease (IBD). Vitamin D receptor (VDR) plays an essential role in pathogenesis of IBD and infectious diseases. Previous studies have demonstrated that the human VDR gene is a key host factor to shape gut microbiome. Furthermore, intestinal epithelial VDR conditional knockout (VDRΔIEC) leads to dysbiosis. Low expressions of VDR is associated with impaired autophagy, accompanied by a reduction of ATG16L1 and LC3B. The purpose of this study is to investigate probiotic effects and mechanism in modulating the VDR-autophagy pathways. METHODS Five LAB strains were isolated from Korean kimchi. Conditional medium (CM) from these strains was used to treat a human cell line HCT116 or intestinal organoids to measure the expression of VDR and autophagy. Mouse embryonic fibroblast (MEF) cells with or without VDR were used to investigate the dependence on the VDR signaling. To test the role of LAB in anti-inflammation, VDR+/+ organoids were treated with 121-CM before infection with Salmonella enterica serovar Enteritidis. In vivo, the role of LAB in regulating VDR-autophagy signaling was examined using LAB 121-CM orally administrated to VDRLoxp and VDRΔIEC mice. RESULTS The LAB-CM-treated groups showed higher mRNA expression of VDR and its target genes cathelicidin compared with the control group. LAB treatment also enhanced expressions of Beclin-1 and ATG16L1 and changed the ratio of LC3B I and II, indicating the activation of autophagic responses. Furthermore, 121-CM treatment before Salmonella enterica serovar Enteritidis infection dramatically increased VDR and ATG16L1 and inhibited the inflammation. Administration of 121-CM to VDRLoxp and VDRΔIEC mice for 12 and 24 hours resulted in an increase of VDR and LC3B II:I ratio. Furthermore, we identified that probiotic proteins P40 and P75 in the LAB-CM contributed to the anti-inflammatory function by increasing VDR. CONCLUSIONS Probiotic LAB exert anti-inflammation activity and induces autophagy. These effects depend on the VDR expression. Our data highlight the beneficial effects of these 5 LAB strains isolated from food in anti-infection and anti-inflammation.
Collapse
Affiliation(s)
- Rong Lu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mei Shang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yong-Guo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yang Jiao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shari Garrett
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Danika Bakke
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christine Bäuerl
- Lactic Acid Bacteria Laboratory, Department of Biotechnology, Instituto de Agroquimicay Tecnologia de Alimentos, Spanish National Research Council (C.S.I.C.), Valencia, Spain
| | - Gaspar Perez Martinez
- Lactic Acid Bacteria Laboratory, Department of Biotechnology, Instituto de Agroquimicay Tecnologia de Alimentos, Spanish National Research Council (C.S.I.C.), Valencia, Spain
| | - Cheol-Hyun Kim
- Animal Resource Science, Dankook University, Chungnam, Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,UIC Cancer Center, Chicago, Illinois, USA,Address correspondence to: Jun Sun, PhD, AGAF, FAPS, Professor, Division of Gastroenterology and Hepatology Department of Medicine, University of Illinois at Chicago 840 S. Wood Street, Room 704 CSB, MC716 Chicago, IL, 60612, USA. E-mail:
| |
Collapse
|
26
|
Adu KT, Wilson R, Baker AL, Bowman J, Britz ML. Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J Proteome Res 2020; 19:1824-1846. [PMID: 32108472 DOI: 10.1021/acs.jproteome.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.
Collapse
Affiliation(s)
- Kayode T Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anthony L Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret L Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|