1
|
Sarikaya B, Bück H, Pohen G, Rodrigues F, Günster K, Wefelmeier K, Miebach K, Blank LM, Büchs J. Adaptive laboratory evolution in a novel parallel shaken pH-auxostat. Biotechnol Bioeng 2024; 121:3099-3113. [PMID: 38932440 DOI: 10.1002/bit.28789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Adaptive laboratory evolution (ALE) is a widely used microbial strain development and optimization method. ALE experiments, to select for faster-growing strains, are commonly performed as serial batch cultivations in shake flasks, serum bottles, or microtiter plates or as continuous cultivations in bioreactors on a laboratory scale. To combine the advantages of higher throughput in parallel shaken cultures with continuous fermentations for conducting ALE experiments, a new Continuous parallel shaken pH-auxostat (CPA) was developed. The CPA consists of six autonomous parallel shaken cylindrical reactors, equipped with real-time pH control of the culture medium. The noninvasive pH measurement and control are realized by biocompatible pH sensor spots and a programmable pump module, to adjust the dilution rate of fresh medium for each reactor separately. Two different strains of the methylotrophic yeast Ogataea polymorpha were used as microbial model systems for parallel chemostat and pH-auxostat cultivations. During cultivation, the medium is acidified by the microbial activity of the yeast. For pH-auxostat cultivations, the growth-dependent acidification triggers the addition of fresh feed medium into the reactors, leading to a pH increase and thereby to the control of the pH to a predetermined set value. By controlling the pH to a predetermined set value, the dilution rate of the continuous cultivation is adjusted to values close to the washout point, in the range of the maximum specific growth rate of the yeast. The pH control was optimized by conducting a step-response experiment and obtaining tuned PI controller parameters by the Chien-Hrones-Reswick (CHR) PID tuning method. Two pH-auxostat cultivations were performed with two different O. polymorpha strains at high dilution rates for up to 18 days. As a result, up to 4.8-fold faster-growing strains were selected. The increased specific maximum growth rates of the selected strains were confirmed in subsequent batch cultivations.
Collapse
Affiliation(s)
- Burak Sarikaya
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Hendrik Bück
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Gino Pohen
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Filipe Rodrigues
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Karsten Günster
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Katrin Wefelmeier
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Katharina Miebach
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Matamouros S, Gensch T, Cerff M, Sachs CC, Abdollahzadeh I, Hendriks J, Horst L, Tenhaef N, Tenhaef J, Noack S, Graf M, Takors R, Nöh K, Bott M. Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli. Nat Commun 2023; 14:5611. [PMID: 37699882 PMCID: PMC10497606 DOI: 10.1038/s41467-023-41176-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacterial growth rate (µ) depends on the protein synthesis capacity of the cell and thus on the number of active ribosomes and their translation elongation rate. The relationship between these fundamental growth parameters have only been described for few bacterial species, in particular Escherichia coli. Here, we analyse the growth-rate dependency of ribosome abundance and translation elongation rate for Corynebacterium glutamicum, a gram-positive model species differing from E. coli by a lower growth temperature optimum and a lower maximal growth rate. We show that, unlike in E. coli, there is little change in ribosome abundance for µ <0.4 h-1 in C. glutamicum and the fraction of active ribosomes is kept above 70% while the translation elongation rate declines 5-fold. Mathematical modelling indicates that the decrease in the translation elongation rate can be explained by a depletion of translation precursors.
Collapse
Affiliation(s)
- Susana Matamouros
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Cerff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Christian C Sachs
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Johnny Hendriks
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Lucas Horst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
3
|
Halle L, Hollmann N, Tenhaef N, Mbengi L, Glitz C, Wiechert W, Polen T, Baumgart M, Bott M, Noack S. Robotic workflows for automated long-term adaptive laboratory evolution: improving ethanol utilization by Corynebacterium glutamicum. Microb Cell Fact 2023; 22:175. [PMID: 37679814 PMCID: PMC10483779 DOI: 10.1186/s12934-023-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. RESULTS Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW-1 h-1 and a growth rate of 0.15 ± 0.01 h-1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. CONCLUSIONS The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.
Collapse
Affiliation(s)
- Lars Halle
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Niels Hollmann
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Lea Mbengi
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Christiane Glitz
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
4
|
Jia YL, Li J, Nong FT, Yan CX, Ma W, Zhu XF, Zhang LH, Sun XM. Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synth Biol 2023; 12:1396-1407. [PMID: 37084707 DOI: 10.1021/acssynbio.3c00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mukherjee S, Kuang Z, Ghosh S, Detroja R, Carmi G, Tripathy S, Barash D, Frenkel-Morgenstern M, Nevo E, Li K. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. BIOLOGY 2022; 11:biology11081110. [PMID: 35892966 PMCID: PMC9331176 DOI: 10.3390/biology11081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The microevolutionary dynamics of soil bacteria under microclimatic differences are largely unexplored in contrast to our improving knowledge of their vast diversity. In this study, we performed a comparative metagenomic analysis of two sharply divergent rocks and soil types at the Evolution Plateau (EP) in eastern Upper Galilee, Israel. We have identified the significant differences in bacterial taxonomic diversity, functions, and patterns of RNA-based gene regulation between the bacteria from two different soil types. Furthermore, we have identified several species with a significant genetic divergence of the same species between the two soil types, highlighting the soil bacteria’s incipient sympatric speciation. Abstract Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.
Collapse
Affiliation(s)
- Sumit Mukherjee
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
- Correspondence: (S.M.); (K.L.)
| | - Zhuoran Kuang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
| | - Samrat Ghosh
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Correspondence: (S.M.); (K.L.)
| |
Collapse
|
8
|
Wang J, Wang Y, Wu Y, Fan Y, Zhu C, Fu X, Chu Y, Chen F, Sun H, Mou H. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Mar Drugs 2021; 20:30. [PMID: 35049885 PMCID: PMC8779474 DOI: 10.3390/md20010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Yijian Wu
- School of Foreign Languages, Lianyungang Technical College, Lianyungang 222000, China;
| | - Yuwei Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Yawen Chu
- Heze Zonghoo Jianyuan Biotech Co., Ltd, Heze 274000, China;
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| |
Collapse
|
9
|
Chai M, Deng C, Chen Q, Lu W, Liu Y, Li J, Du G, Lv X, Liu L. Synthetic Biology Toolkits and Metabolic Engineering Applied in Corynebacterium glutamicum for Biomanufacturing. ACS Synth Biol 2021; 10:3237-3250. [PMID: 34855356 DOI: 10.1021/acssynbio.1c00355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is an important workhorse in industrial white biotechnology. It has been widely applied in the producing processes of amino acids, fuels, and diverse value-added chemicals. With the continuous disclosure of genetic regulation mechanisms, various strategies and technologies of synthetic biology were used to design and construct C. glutamicum cells for biomanufacturing and bioremediation. This study mainly aimed to summarize the design and construction strategies of C. glutamicum-engineered strains, which were based on genomic modification, synthetic biological device-assisted metabolic flux optimization, and directed evolution-based engineering. Then, taking two important bioproducts (N-acetylglucosamine and hyaluronic acid) as examples, the applications of C. glutamicum cell factories were introduced. Finally, we discussed the current challenges and future development trends of C. glutamicum-engineered strain construction.
Collapse
Affiliation(s)
- Meng Chai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Qi Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai’an 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Banerjee D, Eng T, Sasaki Y, Srinivasan A, Oka A, Herbert RA, Trinh J, Singan VR, Sun N, Putnam D, Scown CD, Simmons B, Mukhopadhyay A. Genomics Characterization of an Engineered Corynebacterium glutamicum in Bioreactor Cultivation Under Ionic Liquid Stress. Front Bioeng Biotechnol 2021; 9:766674. [PMID: 34869279 PMCID: PMC8637627 DOI: 10.3389/fbioe.2021.766674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Corynebacterium glutamicum is an ideal microbial chassis for production of valuable bioproducts including amino acids and next generation biofuels. Here we resequence engineered isopentenol (IP) producing C. glutamicum BRC-JBEI 1.1.2 strain and assess differential transcriptional profiles using RNA sequencing under industrially relevant conditions including scale transition and compare the presence vs absence of an ionic liquid, cholinium lysinate ([Ch][Lys]). Analysis of the scale transition from shake flask to bioreactor with transcriptomics identified a distinct pattern of metabolic and regulatory responses needed for growth in this industrial format. These differential changes in gene expression corroborate altered accumulation of organic acids and bioproducts, including succinate, acetate, and acetoin that occur when cells are grown in the presence of 50 mM [Ch][Lys] in the stirred-tank reactor. This new genome assembly and differential expression analysis of cells grown in a stirred tank bioreactor clarify the cell response of an C. glutamicum strain engineered to produce IP.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aparajitha Srinivasan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Asun Oka
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jessica Trinh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Vasanth R Singan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ning Sun
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Dan Putnam
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Corinne D Scown
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Blake Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Szepe KJ, Dyer PS, Johnson RI, Salter AM, Avery SV. Influence of environmental and genetic factors on food protein quality: current knowledge and future directions. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Krahn I, Bonder D, Torregrosa-Barragán L, Stoppel D, Krause JP, Rosenfeldt N, Meiswinkel TM, Seibold GM, Wendisch VF, Lindner SN. Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:669093. [PMID: 34124022 PMCID: PMC8193941 DOI: 10.3389/fbioe.2021.669093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.
Collapse
Affiliation(s)
- Irene Krahn
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Bonder
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lucía Torregrosa-Barragán
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dominik Stoppel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jens P Krause
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Tobias M Meiswinkel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Gerd M Seibold
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Steffen N Lindner
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.,Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Wu Y, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol 2021; 40:38-59. [PMID: 33958227 DOI: 10.1016/j.tibtech.2021.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Adaptive laboratory evolution (ALE) has served as a historic microbial engineering method that mimics natural selection to obtain desired microbes. The past decade has witnessed improvements in all aspects of ALE workflow, in terms of growth coupling, genotypic diversification, phenotypic selection, and genotype-phenotype mapping. The developing growth-coupling strategies facilitate ALE to a wider range of appealing traits. In vivo mutagenesis methods and multiplexed automated culture platforms open new gates to streamline its execution. Meanwhile, the application of multi-omics analyses and multiplexed genetic engineering promote efficient knowledge mining. This article provides a comprehensive and updated review of these advances, highlights newest significant applications, and discusses future improvements, aiming to provide a practical guide for implementation of novel, effective, and efficient ALE experiments.
Collapse
Affiliation(s)
- Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Haupka C, Brito LF, Busche T, Wibberg D, Wendisch VF. Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Front Microbiol 2021; 12:664598. [PMID: 33995329 PMCID: PMC8119775 DOI: 10.3389/fmicb.2021.664598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The methylotrophic thermophile Bacillus methanolicus can utilize the non-food substrate methanol as its sole carbon and energy source. Metabolism of L-lysine, in particular its biosynthesis, has been studied to some detail, and methanol-based L-lysine production has been achieved. However, little is known about L-lysine degradation, which may proceed via 5-aminovalerate (5AVA), a non-proteinogenic ω-amino acid with applications in bioplastics. The physiological role of 5AVA and related compounds in the native methylotroph was unknown. Here, we showed that B. methanolicus exhibits low tolerance to 5AVA, but not to related short-chain (C4–C6) amino acids, diamines, and dicarboxylic acids. In order to gain insight into the physiological response of B. methanolicus to 5AVA, transcriptomic analyses by differential RNA-Seq in the presence and absence of 5AVA were performed. Besides genes of the general stress response, RNA levels of genes of histidine biosynthesis, and iron acquisition were increased in the presence of 5AVA, while an Rrf2 family transcriptional regulator gene showed reduced RNA levels. In order to test if mutations can overcome growth inhibition by 5AVA, adaptive laboratory evolution (ALE) was performed and two mutants—AVA6 and AVA10—with higher tolerance to 5AVA were selected. Genome sequencing revealed mutations in genes related to iron homeostasis, including the gene for an iron siderophore-binding protein. Overexpression of this mutant gene in the wild-type (WT) strain MGA3 improved 5AVA tolerance significantly at high Fe2+ supplementation. The combined ALE, omics, and genetics approach helped elucidate the physiological response of thermophilic B. methanolicus to 5AVA and will guide future strain development for 5AVA production from methanol.
Collapse
Affiliation(s)
- Carsten Haupka
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciana F Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Tafur Rangel AE, Ríos W, Mejía D, Ojeda C, Carlson R, Gómez Ramírez JM, González Barrios AF. In silico Design for Systems-Based Metabolic Engineering for the Bioconversion of Valuable Compounds From Industrial By-Products. Front Genet 2021; 12:633073. [PMID: 33868371 PMCID: PMC8044919 DOI: 10.3389/fgene.2021.633073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Selecting appropriate metabolic engineering targets to build efficient cell factories maximizing the bioconversion of industrial by-products to valuable compounds taking into account time restrictions is a significant challenge in industrial biotechnology. Microbial metabolism engineering following a rational design has been widely studied. However, it is a cost-, time-, and laborious-intensive process because of the cell network complexity; thus, it is important to use tools that allow predicting gene deletions. An in silico experiment was performed to model and understand the metabolic engineering effects on the cell factory considering a second complexity level by transcriptomics data integration. In this study, a systems-based metabolic engineering target prediction was used to increase glycerol bioconversion to succinic acid based on Escherichia coli. Transcriptomics analysis suggests insights on how to increase cell glycerol utilization to further design efficient cell factories. Three E. coli models were used: a core model, a second model based on the integration of transcriptomics data obtained from growth in an optimized culture media, and a third one obtained after integration of transcriptomics data from adaptive laboratory evolution (ALE) experiments. A total of 2,402 strains were obtained with fumarase and pyruvate dehydrogenase being frequently predicted for all the models, suggesting these reactions as essential to increase succinic acid production. Finally, based on using flux balance analysis (FBA) results for all the mutants predicted, a machine learning method was developed to predict new mutants as well as to propose optimal metabolic engineering targets and mutants based on the measurement of the importance of each knockout's (feature's) contribution. Glycerol has become an interesting carbon source for industrial processes due to biodiesel business growth since it has shown promising results in terms of biomass/substrate yields. The combination of transcriptome, systems metabolic modeling, and machine learning analyses revealed the versatility of computational models to predict key metabolic engineering targets in a less cost-, time-, and laborious-intensive process. These data provide a platform to improve the prediction of metabolic engineering targets to design efficient cell factories. Our results may also work as a guide and platform for the selection/engineering of microorganisms for the production of interesting chemical compounds.
Collapse
Affiliation(s)
- Albert Enrique Tafur Rangel
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
- Grupo de Investigación CINBIOS, Department of Microbiology, Universidad Popular del Cesar, Valledupar, Colombia
| | - Wendy Ríos
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Daisy Mejía
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Carmen Ojeda
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Ross Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Jorge Mario Gómez Ramírez
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
16
|
Lee MJ, Park J, Park K, Kim JF, Kim P. Reverse Engineering Targets for Recombinant Protein Production in Corynebacterium glutamicum Inspired by a Fast-Growing Evolved Descendant. Front Bioeng Biotechnol 2020; 8:588070. [PMID: 33363126 PMCID: PMC7755716 DOI: 10.3389/fbioe.2020.588070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
We previously reported a Corynebacterium glutamicum JH41 strain with a 58% faster growth rate through application of adaptive laboratory evolution. To verify that the fast-reproducing strain was useful as a host for recombinant protein expression, we introduced a plasmid responsible for the secretory production of a recombinant protein. The JH41 strain harboring the plasmid indeed produced the secretory recombinant protein at a 2.7-fold greater rate than its ancestral strain. To provide the reverse engineering targets responsible for boosting recombinant protein production and cell reproduction, we compared the genome sequence of the JH41 strain with its ancestral strain. Among the 15 genomic variations, a point mutation was confirmed in the 14 bases upstream of NCgl1959 (encoding a presumed siderophore-binding protein). This mutation allowed derepression of NCgl1959, thereby increasing iron consumption and ATP generation. A point mutation in the structural gene ramA (A239G), a LuxR-type global transcription regulator involved in central metabolism, allowed an increase in glucose consumption. Therefore, mutations to increase the iron and carbon consumption were concluded as being responsible for the enhanced production of recombinant protein and cell reproduction in the evolved host.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Kyunghoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| |
Collapse
|
17
|
Graf M, Haas T, Teleki A, Feith A, Cerff M, Wiechert W, Nöh K, Busche T, Kalinowski J, Takors R. Revisiting the Growth Modulon of Corynebacterium glutamicum Under Glucose Limited Chemostat Conditions. Front Bioeng Biotechnol 2020; 8:584614. [PMID: 33178676 PMCID: PMC7594717 DOI: 10.3389/fbioe.2020.584614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the growth rate of the industrial host Corynebacterium glutamicum is a promising target to rise productivities of growth coupled product formation. As a prerequisite, detailed knowledge about the tight regulation network is necessary for identifying promising metabolic engineering goals. Here, we present comprehensive metabolic and transcriptional analysis of C. glutamicum ATCC 13032 growing under glucose limited chemostat conditions with μ = 0.2, 0.3, and 0.4 h–1. Intermediates of central metabolism mostly showed rising pool sizes with increasing growth. 13C-metabolic flux analysis (13C-MFA) underlined the fundamental role of central metabolism for the supply of precursors, redox, and energy equivalents. Global, growth-associated, concerted transcriptional patterns were not detected giving rise to the conclusion that glycolysis, pentose-phosphate pathway, and citric acid cycle are predominately metabolically controlled under glucose-limiting chemostat conditions. However, evidence is found that transcriptional regulation takes control over glycolysis once glucose-rich growth conditions are installed.
Collapse
Affiliation(s)
- Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Thorsten Haas
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Martin Cerff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Park J, Lee S, Lee MJ, Park K, Lee S, Kim JF, Kim P. Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress- Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain. J Microbiol Biotechnol 2020; 30:1420-1429. [PMID: 32699195 PMCID: PMC9728273 DOI: 10.4014/jmb.2006.06035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.
Collapse
Affiliation(s)
- Jihoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - SuRin Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Min Ju Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Kyunghoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea,Corresponding author Phone/Fax: +82-2-2164-4922 E-mail:
| |
Collapse
|
19
|
Lee S, Kim P. Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms. J Microbiol Biotechnol 2020; 30:793-803. [PMID: 32423186 PMCID: PMC9728180 DOI: 10.4014/jmb.2003.03072] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Adaptive laboratory evolution (ALE) is an evolutionary engineering approach in artificial conditions that improves organisms through the imitation of natural evolution. Due to the development of multi-level omics technologies in recent decades, ALE can be performed for various purposes at the laboratory level. This review delineates the basics of the experimental design of ALE based on several ALE studies of industrial microbial strains and updates current strategies combined with progressed metabolic engineering, in silico modeling and automation to maximize the evolution efficiency. Moreover, the review sheds light on the applicability of ALE as a strain development approach that complies with non-recombinant preferences in various food industries. Overall, recent progress in the utilization of ALE for strain development leading to successful industrialization is discussed.
Collapse
Affiliation(s)
- SuRin Lee
- Department of Biotechnology, the Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, the Catholic University of Korea, Gyeonggi 14662, Republic of Korea,Corresponding author Phone : +82-2164-4922 Fax : +82-2-2164-4865 E-mail:
| |
Collapse
|
20
|
Zeng W, Guo L, Xu S, Chen J, Zhou J. High-Throughput Screening Technology in Industrial Biotechnology. Trends Biotechnol 2020; 38:888-906. [PMID: 32005372 DOI: 10.1016/j.tibtech.2020.01.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Based on the development of automatic devices and rapid assay methods, various high-throughput screening (HTS) strategies have been established for improving the performance of industrial microorganisms. We discuss the most significant factors that can improve HTS efficiency, including the construction of screening libraries with high diversity and the use of new detection methods to expand the search range and highlight target compounds. We also summarize applications of HTS for enhancing the performance of industrial microorganisms. Current challenges and potential improvements to HTS in industrial biotechnology are discussed in the context of rapid developments in synthetic biology, nanotechnology, and artificial intelligence. Rational integration will be an important driving force for constructing more efficient industrial microorganisms with wider applications in biotechnology.
Collapse
Affiliation(s)
- Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Likun Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|