1
|
Moon J, Hu G, Hayashi T. Application of Machine Learning in the Quantitative Analysis of the Surface Characteristics of Highly Abundant Cytoplasmic Proteins: Toward AI-Based Biomimetics. Biomimetics (Basel) 2024; 9:162. [PMID: 38534847 DOI: 10.3390/biomimetics9030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Proteins in the crowded environment of human cells have often been studied regarding nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and disease. Specifically, proteins with high abundance are more susceptible to these issues due to the law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins directly exposed to the environment can exhibit specific physicochemical, structural, and geometrical characteristics that reduce nonspecific interactions and adapt to the environment. However, the quantitative relationships between the overall surface descriptors still need clarification. Here, we used machine learning to identify HAC proteins using hydrophobicity, charge, roughness, secondary structures, and B-factor from the protein surfaces and quantified the contribution of each descriptor. First, several supervised learning algorithms were compared to solve binary classification problems for the surfaces of HAC and extracellular proteins. Then, logistic regression was used for the feature importance analysis of descriptors considering model performance (80.2% accuracy and 87.6% AUC) and interpretability. The HAC proteins showed positive correlations with negatively and positively charged areas but negative correlations with hydrophobicity, the B-factor, the proportion of beta structures, roughness, and the proportion of disordered regions. Finally, the details of each descriptor could be explained concerning adaptative surface strategies of HAC proteins to regulate nonspecific interactions, protein folding, flexibility, stability, and adsorption. This study presented a novel approach using various surface descriptors to identify HAC proteins and provided quantitative design rules for the surfaces well-suited to human cellular crowded environments.
Collapse
Affiliation(s)
- Jooa Moon
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Guanghao Hu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-0882, Japan
| |
Collapse
|
2
|
Sanaboyana VR, Elcock AH. Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures. J Mol Biol 2024; 436:168393. [PMID: 38065275 PMCID: PMC10843742 DOI: 10.1016/j.jmb.2023.168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Many proteins contain cleavable signal or transit peptides that direct them to their final subcellular locations. Such peptides are usually predicted from sequence alone using methods such as TargetP 2.0 and SignalP 6.0. While these methods are usually very accurate, we show here that an analysis of a protein's AlphaFold2-predicted structure can often be used to identify false positive predictions. We start by showing that when given a protein's full-length sequence, AlphaFold2 builds experimentally annotated signal and transit peptides in orientations that point away from the main body of the protein. This indicates that AlphaFold2 correctly identifies that a signal is not destined to be part of the mature protein's structure and suggests, as a corollary, that predicted signals that AlphaFold2 folds with high confidence into the main body of the protein are likely to be false positives. To explore this idea, we analyzed predicted signal peptides in 48 proteomes made available in DeepMind's AlphaFold2 database (https://alphafold.ebi.ac.uk). Applying TargetP 2.0 and SignalP 6.0 to the 561,562 proteins in the database results in 95,236 being predicted to contain a cleavable signal or transit peptide. In 95.1% of these cases, the AlphaFold2 structure of the full-length protein is fully consistent with the prediction of TargetP 2.0 or SignalP 6.0. In the remaining 4.9% of cases where the AlphaFold2 structure does not appear consistent with the prediction, the signal is often only predicted with low confidence. The potential false positives identified here may be useful for training even more accurate signal prediction methods.
Collapse
Affiliation(s)
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, USA.
| |
Collapse
|
3
|
Kunze M, Alder NN, Hwang I, Roussel G, Karamyshev AL. Editorial: Targeting signals in protein trafficking and transport. Front Physiol 2023; 14:1338852. [PMID: 38143916 PMCID: PMC10748493 DOI: 10.3389/fphys.2023.1338852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Guillaume Roussel
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Katholieke Universiteit-Leuven, Leuven, Belgium
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
4
|
Heithoff DM, Mahan SP, Barnes V L, Leyn SA, George CX, Zlamal JE, Limwongyut J, Bazan GC, Fried JC, Fitzgibbons LN, House JK, Samuel CE, Osterman AL, Low DA, Mahan MJ. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine 2023; 89:104461. [PMID: 36801104 PMCID: PMC10025758 DOI: 10.1016/j.ebiom.2023.104461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Semen A Leyn
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Jaime E Zlamal
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jakkarin Limwongyut
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA; Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
5
|
Rettenbacher LA, von der Haar T. A quantitative interpretation of oxidative protein folding activity in Escherichia coli. Microb Cell Fact 2022; 21:268. [PMID: 36550495 PMCID: PMC9773447 DOI: 10.1186/s12934-022-01982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Escherichia coli is of central interest to biotechnological research and a widely used organism for producing proteins at both lab and industrial scales. However, many proteins remain difficult to produce efficiently in E. coli. This is particularly true for proteins that require post translational modifications such as disulfide bonds. RESULTS In this study we develop a novel approach for quantitatively investigating the ability of E. coli to produce disulfide bonds in its own proteome. We summarise the existing knowledge of the E. coli disulfide proteome and use this information to investigate the demand on this organism's quantitative oxidative folding apparatus under different growth conditions. Furthermore, we built an ordinary differential equation-based model describing the cells oxidative folding capabilities. We use the model to infer the kinetic parameters required by the cell to achieve the observed oxidative folding requirements. We find that the cellular requirement for disulfide bonded proteins changes significantly between growth conditions. Fast growing cells require most of their oxidative folding capabilities to keep up their proteome while cells growing in chemostats appear limited by their disulfide bond isomerisation capacities. CONCLUSION This study establishes a novel approach for investigating the oxidative folding capacities of an organism. We show the capabilities and limitations of E. coli for producing disulfide bonds under different growth conditions and predict under what conditions excess capability is available for recombinant protein production.
Collapse
Affiliation(s)
- Lukas A. Rettenbacher
- grid.9759.20000 0001 2232 2818Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, UK
| | - Tobias von der Haar
- grid.9759.20000 0001 2232 2818Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
6
|
McCaul N, Braakman I. Hold the fold: how delayed folding aids protein secretion. EMBO J 2022; 41:e112787. [PMID: 36314692 PMCID: PMC9713708 DOI: 10.15252/embj.2022112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
In bacteria, N-terminal signal peptides mark proteins for transport across the plasma membrane. A recent study by Smets et al (2022) followed the folding of a pair of structural twins to shed light on how evolution has optimised the secretory process.
Collapse
Affiliation(s)
- Nicholas McCaul
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science4Life, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
7
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Cylke KC, Si F, Banerjee S. Effects of antibiotics on bacterial cell morphology and their physiological origins. Biochem Soc Trans 2022; 50:1269-1279. [PMID: 36093840 PMCID: PMC10152891 DOI: 10.1042/bst20210894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Characterizing the physiological response of bacterial cells to antibiotic treatment is crucial for the design of antibacterial therapies and for understanding the mechanisms of antibiotic resistance. While the effects of antibiotics are commonly characterized by their minimum inhibitory concentrations or the minimum bactericidal concentrations, the effects of antibiotics on cell morphology and physiology are less well characterized. Recent technological advances in single-cell studies of bacterial physiology have revealed how different antibiotic drugs affect the physiological state of the cell, including growth rate, cell size and shape, and macromolecular composition. Here, we review recent quantitative studies on bacterial physiology that characterize the effects of antibiotics on bacterial cell morphology and physiological parameters. In particular, we present quantitative data on how different antibiotic targets modulate cellular shape metrics including surface area, volume, surface-to-volume ratio, and the aspect ratio. Using recently developed quantitative models, we relate cell shape changes to alterations in the physiological state of the cell, characterized by changes in the rates of cell growth, protein synthesis and proteome composition. Our analysis suggests that antibiotics induce distinct morphological changes depending on their cellular targets, which may have important implications for the regulation of cellular fitness under stress.
Collapse
Affiliation(s)
- K. Callaghan Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Fangwei Si
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Just Add Data: automated predictive modeling for knowledge discovery and feature selection. NPJ Precis Oncol 2022; 6:38. [PMID: 35710826 PMCID: PMC9203777 DOI: 10.1038/s41698-022-00274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/13/2022] [Indexed: 01/20/2023] Open
Abstract
Fully automated machine learning (AutoML) for predictive modeling is becoming a reality, giving rise to a whole new field. We present the basic ideas and principles of Just Add Data Bio (JADBio), an AutoML platform applicable to the low-sample, high-dimensional omics data that arise in translational medicine and bioinformatics applications. In addition to predictive and diagnostic models ready for clinical use, JADBio focuses on knowledge discovery by performing feature selection and identifying the corresponding biosignatures, i.e., minimal-size subsets of biomarkers that are jointly predictive of the outcome or phenotype of interest. It also returns a palette of useful information for interpretation, clinical use of the models, and decision making. JADBio is qualitatively and quantitatively compared against Hyper-Parameter Optimization Machine Learning libraries. Results show that in typical omics dataset analysis, JADBio manages to identify signatures comprising of just a handful of features while maintaining competitive predictive performance and accurate out-of-sample performance estimation.
Collapse
|
11
|
Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VVL, Deo P, Webb CT, Huang C, Schittenhelm RB, Beeby M, Gumbart JC, Lithgow T, Hay ID. Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. eLife 2022; 11:73516. [PMID: 35084330 PMCID: PMC8824477 DOI: 10.7554/elife.73516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation
Collapse
Affiliation(s)
- Eric Mandela
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Pankaj Deo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Chaille T Webb
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Morgan Beeby
- Department of Life Sciencesa, Imperial College London, London, United Kingdom
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, United States
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Parisi G, Palopoli N, Tosatto SC, Fornasari MS, Tompa P. "Protein" no longer means what it used to. Curr Res Struct Biol 2021; 3:146-152. [PMID: 34308370 PMCID: PMC8283027 DOI: 10.1016/j.crstbi.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.
Collapse
Affiliation(s)
- Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
14
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021; 9:microorganisms9030592. [PMID: 33805695 PMCID: PMC8000395 DOI: 10.3390/microorganisms9030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.
Collapse
|
16
|
Signal Recognition Particle Suppressor Screening Reveals the Regulation of Membrane Protein Targeting by the Translation Rate. mBio 2021; 12:mBio.02373-20. [PMID: 33436432 PMCID: PMC7844537 DOI: 10.1128/mbio.02373-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The signal recognition particle (SRP) is conserved in all living organisms, and it cotranslationally delivers proteins to the inner membrane or endoplasmic reticulum. Recently, SRP loss was found not to be lethal in either the eukaryote Saccharomyces cerevisiae or the prokaryote Streptococcus mutans In Escherichia coli, the role of SRP in mediating inner membrane protein (IMP) targeting has long been studied. However, the essentiality of SRP remains a controversial topic, partly hindered by the lack of strains in which SRP is completely absent. Here we show that the SRP was nonessential in E. coli by suppressor screening. We identified two classes of extragenic suppressors-two translation initiation factors and a ribosomal protein-all of which are involved in translation initiation. The translation rate and inner membrane proteomic analyses were combined to define the mechanism that compensates for the lack of SRP. The primary factor that contributes to the efficiency of IMP targeting is the extension of the time window for targeting by pausing the initiation of translation, which further reduces translation initiation and elongation rates. Furthermore, we found that easily predictable features in the nascent chain determine the specificity of protein targeting. Our results show why the loss of the SRP pathway does not lead to lethality. We report a new paradigm in which the time delay in translation initiation is beneficial during protein targeting in the absence of SRP.IMPORTANCE Inner membrane proteins (IMPs) are cotranslationally inserted into the inner membrane or endoplasmic reticulum by the signal recognition particle (SRP). Generally, the deletion of SRP can result in protein targeting defects in Escherichia coli Suppressor screening for loss of SRP reveals that pausing at the translation start site is likely to be critical in allowing IMP targeting and avoiding aggregation. In this work, we found for the first time that SRP is nonessential in E. coli The time delay in initiation is different from the previous mechanism that only slows down the elongation rate. It not only maximizes the opportunity for untranslated ribosomes to be near the inner membrane but also extends the time window for targeting translating ribosomes by decreasing the speed of translation. We anticipate that our work will be a starting point for a more delicate regulatory mechanism of protein targeting.
Collapse
|
17
|
Elfageih R, Karyolaimos A, Kemp G, de Gier J, von Heijne G, Kudva R. Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli. Protein Sci 2020; 29:2028-2037. [PMID: 32790204 PMCID: PMC7513700 DOI: 10.1002/pro.3927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.
Collapse
Affiliation(s)
- Rageia Elfageih
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | - Grant Kemp
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Jan‐Willem de Gier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Gunnar von Heijne
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Science for Life Laboratory Stockholm UniversitySolnaSweden
| | - Renuka Kudva
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
18
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
De Geyter J, Portaliou AG, Srinivasu B, Krishnamurthy S, Economou A, Karamanou S. Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase. EMBO Rep 2020; 21:e49054. [PMID: 32307852 DOI: 10.15252/embr.201949054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Bindu Srinivasu
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Sueki A, Stein F, Savitski MM, Selkrig J, Typas A. Systematic Localization of Escherichia coli Membrane Proteins. mSystems 2020; 5:e00808-19. [PMID: 32127419 PMCID: PMC7055658 DOI: 10.1128/msystems.00808-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The molecular architecture and function of the Gram-negative bacterial cell envelope are dictated by protein composition and localization. Proteins that localize to the inner membranes (IM) and outer membranes (OM) of Gram-negative bacteria play critical and distinct roles in cellular physiology; however, approaches to systematically interrogate their distribution across both membranes and the soluble cell fraction are lacking. Here, we employed multiplexed quantitative mass spectrometry using tandem mass tag (TMT) labeling to assess membrane protein localization in a proteome-wide fashion by separating IM and OM vesicles from exponentially growing Escherichia coli K-12 cells on a sucrose density gradient. The migration patterns for >1,600 proteins were classified in an unbiased manner, accurately recapitulating decades of knowledge in membrane protein localization in E. coli For 559 proteins that are currently annotated as peripherally associated with the IM (G. Orfanoudaki and A. Economou, Mol Cell Proteomics 13:3674-3687, 2014, https://doi.org/10.1074/mcp.O114.041137) and that display potential for dual localization to either the IM or cytoplasm, we could allocate 110 proteins to the IM and 206 proteins to the soluble cell fraction based on their fractionation patterns. In addition, we uncovered 63 cases, in which our data disagreed with current localization annotation in protein databases. For 42 of these cases, we were able to find supportive evidence for our localization findings in the literature. We anticipate that our systems-level analysis of the E. coli membrane proteome will serve as a useful reference data set to query membrane protein localization, as well as to provide a novel methodology to rapidly and systematically map membrane protein localization in more poorly characterized Gram-negative species.IMPORTANCE Current knowledge of protein localization, particularly outer membrane proteins, is highly dependent on bioinformatic predictions. To date, no systematic experimental studies have directly compared protein localization spanning the inner and outer membranes of E. coli By combining sucrose density gradient fractionation of inner membrane (IM) and outer membrane (OM) proteins with multiplex quantitative proteomics, we systematically quantified localization patterns for >1,600 proteins, providing high-confidence localization annotations for 1,368 proteins. Of these proteins, we resolve the predominant localization of 316 proteins that currently have dual annotation (cytoplasmic and IM) in protein databases and identify new annotations for 42 additional proteins. Overall, we present a novel quantitative methodology to systematically map membrane proteins in Gram-negative bacteria and use it to unravel the biological complexity of the membrane proteome architecture in E. coli.
Collapse
Affiliation(s)
- Anna Sueki
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|