1
|
Askari F, Kaur R. Candida glabrata: A Tale of Stealth and Endurance. ACS Infect Dis 2025; 11:4-20. [PMID: 39668745 DOI: 10.1021/acsinfecdis.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Candida (Nakaseomyces) glabrata, an opportunistic human fungal pathogen, causes mucosal and deep-seated infections in immunocompromised individuals. Recently designated as a high-priority fungal pathogen by the World Health Organization (WHO), C. glabrata exhibits low inherent susceptibility to azole antifungals. In addition, about 10% clinical isolates of C. glabrata display co-resistance to both azole and echinocandin drugs. Molecular mechanisms of antifungal resistance and virulence in C. glabrata are currently being delineated in-depth. This Review provides an overview of the epidemiology, biology, drug resistance, tools and host model systems for C. glabrata. Additionally, we discuss the immune evasion strategies that aid C. glabrata in establishing infections in the host. Overall, this Review aims to contribute to ongoing efforts to raise awareness of human pathogenic fungi, the growing threat of antifungal drug resistance and the unmet need for novel antifungal therapies, with an ultimate goal of improving clinical outcomes of affected individuals.
Collapse
Affiliation(s)
- Fizza Askari
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Rupinder Kaur
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
2
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
4
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
5
|
Chow EWL, Song Y, Wang H, Xu X, Gao J, Wang Y. Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F 1F 0 ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol 2024; 121:781-797. [PMID: 38242855 DOI: 10.1111/mmi.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Yabing Song
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haitao Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Xiaoli Xu
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Salazar SB, Pinheiro MJF, Sotti-Novais D, Soares AR, Lopes MM, Ferreira T, Rodrigues V, Fernandes F, Mira NP. Disclosing azole resistance mechanisms in resistant Candida glabrata strains encoding wild-type or gain-of-function CgPDR1 alleles through comparative genomics and transcriptomics. G3 (BETHESDA, MD.) 2022; 12:jkac110. [PMID: 35532173 PMCID: PMC9258547 DOI: 10.1093/g3journal/jkac110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
The pathogenic yeast Candida glabrata is intrinsically resilient to azoles and rapidly acquires resistance to these antifungals, in vitro and in vivo. In most cases azole-resistant C. glabrata clinical strains encode hyperactive CgPdr1 variants, however, resistant strains encoding wild-type CgPDR1 alleles have also been isolated, although remaining to be disclosed the underlying resistance mechanism. In this study, we scrutinized the mechanisms underlying resistance to azoles of 8 resistant clinical C. glabrata strains, identified along the course of epidemiological surveys undertaken in Portugal. Seven of the strains were found to encode CgPdr1 gain-of-function variants (I392M, E555K, G558C, and I803T) with the substitutions I392M and I803T being herein characterized as hyper-activating mutations for the first time. While cells expressing the wild-type CgPDR1 allele required the mediator subunit Gal11A to enhance tolerance to fluconazole, this was dispensable for cells expressing the I803T variant indicating that the CgPdr1 interactome is shaped by different gain-of-function substitutions. Genomic and transcriptomic profiling of the sole azole-resistant C. glabrata isolate encoding a wild-type CgPDR1 allele (ISTB218) revealed that under fluconazole stress this strain over-expresses various genes described to provide protection against this antifungal, while also showing reduced expression of genes described to increase sensitivity to these drugs. The overall role in driving the azole-resistance phenotype of the ISTB218 C. glabrata isolate played by these changes in the transcriptome and genome of the ISTB218 isolate are discussed shedding light into mechanisms of resistance that go beyond the CgPdr1-signalling pathway and that may alone, or in combination, pave the way for the acquisition of resistance to azoles in vivo.
Collapse
Affiliation(s)
- Sara B Salazar
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico—Department of Bioengineering, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Maria Joana F Pinheiro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico—Department of Bioengineering, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Danielle Sotti-Novais
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico—Department of Bioengineering, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Ana R Soares
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810, Portugal
| | - Maria M Lopes
- Departamento de Microbiologia e Imunologia, Faculdade de Farmácia da Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Teresa Ferreira
- Laboratório de Microbiologia, Hospital Dona Estefânia (Centro Hospitalar Universitário Lisboa Central), Lisboa 1169-045, Portugal
| | - Vitória Rodrigues
- Seção de Microbiologia, Laboratório SYNLAB—Lisboa, Grupo SYNLAB Portugal, Lisboa 1070-061, Portugal
| | - Fábio Fernandes
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico—Department of Bioengineering, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico—Department of Bioengineering, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
7
|
New Insights into the Interaction of Class II Dihydroorotate Dehydrogenases with Ubiquinone in Lipid Bilayers as a Function of Lipid Composition. Int J Mol Sci 2022; 23:ijms23052437. [PMID: 35269583 PMCID: PMC8910288 DOI: 10.3390/ijms23052437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.
Collapse
|
8
|
Tsouris A, Schacherer J, Ishchuk OP. RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata. Methods Mol Biol 2022; 2477:313-330. [PMID: 35524125 DOI: 10.1007/978-1-0716-2257-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
9
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
10
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|