1
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Lee CA, Hirsch VM. Mutation in the Disordered Linker Region of Capsid Disrupts Viral Kinetics of a Neuropathogenic SIV in Rhesus Macaques. Microbiol Spectr 2022; 10:e0047822. [PMID: 35297654 PMCID: PMC9045278 DOI: 10.1128/spectrum.00478-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.
Collapse
Affiliation(s)
- Cheri A. Lee
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|