1
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Zhan L, Tian X, Lin J, Zhang Y, Zheng H, Peng X, Zhao G. Honokiol reduces fungal burden and ameliorate inflammation lesions of Aspergillus fumigatus keratitis via Dectin-2 down-regulation. Int Immunopharmacol 2023; 118:109849. [PMID: 36933490 DOI: 10.1016/j.intimp.2023.109849] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To screen and identify the mechanism of honokiol on anti-fungi and anti-inflammation in fungal keratitis (FK) through bioinformatic analysis and biological experiments. METHODS Transcriptome profile demonstrated differential expression genes (DEGs) of Aspergillus fumigatus keratitis between PBS-treated and honokiol-treated groups via bioinformatics analyses. Inflammatory substances were quantified by qRT-PCR, Western blot and ELISA, and macrophage polarization was examined by flow cytometry. Periodic acid Schiff staining and morphological interference assay were used to detect hyphal distribution in vivo and fungal germination in vitro, respectively. Electron microscopy was to illustrate hyphal microstructure. RESULTS Illumina sequencing demonstrated that compared with the honokiol group, 1175 up-regulated and 383 down-regulated genes were induced in C57BL/6 mice Aspergillus fumigatus keratitis with PBS treatment. Through GO analysis, some differential expression proteins (DEPs) played major roles in biological processes, especially fungal defense and immune activation. KEGG analysis provided fungus-related signaling pathways. PPI analysis demonstrated that DEPs from multiple pathways form a close-knit network, providing a broader context for FK treatment. In biological experiments, Dectin-2, NLRP3 and IL-1β were upregulated by Aspergillus fumigatus to evaluate immune response. Honokiol could reverse the trend, comparable to Dectin-2 siRNA interference. Meanwhile, honokiol could also play an anti-inflammatory role via promoting M2 phenotype polarization. Moreover, honokiol reduced hyphal distribution in the stroma, delayed germination, and destroyed the hyphal cell membrane in-vitro. CONCLUSIONS Honokiol possesses anti-fungal and anti-inflammatory effects in Aspergillus fumigatus keratitis and may develop a potential and safe therapeutic modality for FK.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine 540 E. Canfield Avenue Detroit, MI 48201, USA
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, University of Washington, Seattle WA98104, USA.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Hassan EA, Hifney AF, Ali EF, Sayed AM. Fungicidal activities and molecular docking of the marine alga Ulva lactuca and Punica granatum peel extracts on Alternaria tomato spot disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21872-21887. [PMID: 36279063 DOI: 10.1007/s11356-022-23733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, we utilized pomegranate peel and marine algae Ulva lactuca (U. lactuca) as rich and sustained sources of bioactive compounds to combat tomato-black spot disease. n-Hexane extracts from the peel of pomegranate (Punica granatum) (PPE) and the marine algal biomass U. lactuca (ULE) were used alone and in combinations to verify their impact against Alternaria alternata (A. alternata). The applied extracts exhibited severe destructive effects on both fungal growth and structure such as mycelia malformation, underdeveloped conidia, cell wall deformation, and shrinkage. Moreover, increased deformations and protrusions, and notch-like structures, were noticed in A. alternata mycelia treated with mixed extracts (PPE and ULE) compared to all other treatments. The protein and reduced sugar contents in tomato fruits were significantly increased in the infected fruits with A. alternata. The highest enzyme activities of pectinase, cellulase, catalase (CAT), and ascorbate peroxidase (APX) were recorded in infected tomatoes in comparison with the healthy ones. Molecular docking studies showed that each extract is rich with bioactive compounds that have a promising inhibition effect on A. alternata cellulases. Pomegranate and Ulva extract showed promising antifungal activity against A. alternata which revealed their feasibility and applicability as biocontrol agents in postharvest disease management and food preservation against fungal pathogens.
Collapse
Affiliation(s)
- Elhagag A Hassan
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. Box 71526, Assiut, Egypt
| | - Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. Box 71526, Assiut, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
5
|
Chtioui W, Balmas V, Delogu G, Migheli Q, Oufensou S. Bioprospecting Phenols as Inhibitors of Trichothecene-Producing Fusarium: Sustainable Approaches to the Management of Wheat Pathogens. Toxins (Basel) 2022; 14:72. [PMID: 35202101 PMCID: PMC8875213 DOI: 10.3390/toxins14020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Fusarium spp. are ubiquitous fungi able to cause Fusarium head blight and Fusarium foot and root rot on wheat. Among relevant pathogenic species, Fusarium graminearum and Fusarium culmorum cause significant yield and quality loss and result in contamination of the grain with mycotoxins, mainly type B trichothecenes, which are a major health concern for humans and animals. Phenolic compounds of natural origin are being increasingly explored as fungicides on those pathogens. This review summarizes recent research activities related to the antifungal and anti-mycotoxigenic activity of natural phenolic compounds against Fusarium, including studies into the mechanisms of action of major exogenous phenolic inhibitors, their structure-activity interaction, and the combined effect of these compounds with other natural products or with conventional fungicides in mycotoxin modulation. The role of high-throughput analysis tools to decipher key signaling molecules able to modulate the production of mycotoxins and the development of sustainable formulations enhancing potential inhibitors' efficacy are also discussed.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy;
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
6
|
Sadhasivam S, Marshi R, Barda O, Zakin V, Britzi M, Gamliel A, Sionov E. Ensiling process and pomegranate peel extract as a natural additive in potential prevention of fungal and mycotoxin contamination in silage. Toxicol Rep 2022; 9:1557-1565. [PMID: 35936058 PMCID: PMC9347003 DOI: 10.1016/j.toxrep.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
A study was conducted on six animal feed centers in Israel where fungal and mycotoxin presence was examined in maize and wheat silages. Fumonisin mycotoxins FB1 and FB2 were present in every maize silage sample analyzed. Interestingly, no correlation was found between the occurrence of specific mycotoxins and the presence of the fungal species that might produce them in maize and wheat silages. We further investigated the effect of pomegranate peel extract (PPE) on Fusarium infection and fumonisin biosynthesis in laboratory-prepared maize silage. PPE had an inhibitory effect on FB1 and FB2 biosynthesis by Fusarium proliferatum, which resulted in up to 90 % reduction of fumonisin production in silage samples compared to untreated controls. This finding was supported by qRT-PCR analysis, showing downregulation of key genes involved in the fumonisin-biosynthesis pathway under PPE treatment. Our results present promising new options for the use of natural compounds that may help reduce fungal and mycotoxin contamination in agricultural foodstuff, and potentially replace traditionally used synthetic chemicals. The mycotoxins fumonisin B1 and B2 were detected in all analyzed maize silage samples. No correlation was found between mycotoxins and their fungal sources in silages. Treatment with PPE demonstrated strong anti-mycotoxigenic activity in silages samples.
Collapse
|
7
|
Ganesan AR, Mohan K, Karthick Rajan D, Pillay AA, Palanisami T, Sathishkumar P, Conterno L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 2021; 378:131978. [PMID: 35033712 DOI: 10.1016/j.foodchem.2021.131978] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering Science and Technology, Fiji National University, Nabua Campus- 7222, Fiji Islands
| | - Thavamani Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Palanivel Sathishkumar
- Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Lorenza Conterno
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| |
Collapse
|
8
|
Fahmy HA, Farag MA. Ongoing and potential novel trends of pomegranate fruit peel; a comprehensive review of its health benefits and future perspectives as nutraceutical. J Food Biochem 2021; 46:e14024. [PMID: 34923641 DOI: 10.1111/jfbc.14024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Pomegranate is an ancient shrub, globally distributed nowadays. It has been used in the middle east as a medicinal food and traditional medicine for thousands of years. Pomegranate peel (PP) constitutes about 50% of the total fruit, however, it has been previously regarded as a waste. Recent research points to PP as a rich source of phenolics (e.g., ellagitannins, flavonoids, and anthocyanins), polysaccharides, in addition to its biotransformed metabolites viz. urolithins making it a valuable waste with promising pharmacological actions. Compared to the pulp and the juice, PP exhibited stronger antioxidant and antimicrobial activities. Besides, it inhibited inflammation in several conditions, including colitis, arthritis, hepatitis, contact dermatitis, and lung inflammation. Moreover, it displayed anti-osteoporosis, anti-hyperglycemic, antidiabetic, antihypertensive, vasculoprotective, hepatoprotective, neuroprotective, and immunomodulatory effects. Additionally, it was effective as a prebiotic and in obesity control, besides it promoted wound healing. Furthermore, PP demonstrated anticancer effects against different cancer types, for example, colon, liver, thyroid, uterine, breast, bladder, prostate, leukemia, and osteosarcoma. Despite PP safety, it may interfere with the metabolism of other drugs because it inhibits cytochromes (CYP) changing their bioavailability, effectiveness, and toxicity. PP biowaste valorization not only avoids against its environmental and economic burden but can also provide a promising platform to produce novel or improved nutraceuticals. This study provides a comprehensive overview of PP biological activities with the reported action mechanisms related to its phytochemicals and further biotransformed metabolites inside the body. Future research prospects to unravel the merits of such waste and optimize its use are discussed. PRACTICAL APPLICATION: Pomegranate is widely distributed throughout the world. Although its peel was previously considered a waste, recent research regards it as a rich source of bioactive compounds with promising biological activities. Its recycling not only overcomes the bio-waste problems, but also provides a source of valuable compounds with several health benefits. In recent years, PP has been demonstrated to exhibit excellent pharmacological bioactivities, for example, antioxidant, anti-inflammatory, antimicrobial, antiosteoporosis, antihyperlipidemic, and anticancer activities. Its health-promoting power is mostly attributed to the phenolic and polysaccharide content, in addition to its amazing biotransformed metabolites. The underlying action mechanisms of such pharmacological activities are discussed and related to its chemical content. This review presents the latest research progress on the role of PP in the prevention and treatment of various chronic diseases, and its protective health effects for future research to be used in nutraceuticals.
Collapse
Affiliation(s)
- Heba A Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
9
|
Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment.
Collapse
|
11
|
Møller CODA, Freire L, Rosim RE, Margalho LP, Balthazar CF, Franco LT, Sant’Ana ADS, Corassin CH, Rattray FP, de Oliveira CAF. Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B 1, Ochratoxin A, and Zearalenone in vitro. Front Microbiol 2021; 12:655386. [PMID: 33967993 PMCID: PMC8100588 DOI: 10.3389/fmicb.2021.655386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The increased consumption of plant-based foods has intensified the concern related to mycotoxin intoxication. This study aimed to investigate the effect of selected lactic acid bacteria (LAB) strains on the growth of Aspergillus parasiticus NRRL 2999 and its production of aflatoxin (AF). The ability of the heat-killed (100°C for 1 h) LAB strains to bind aflatoxin M1 (AFM1) in milk and aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) in potassium phosphate buffer (PPB) was also evaluated in vitro. Ten LAB strains were tested individually, by inoculating them simultaneously with the fungus or after incubation of the fungus for 24 or 48 h at 25°C. Double layer yeast extract sucrose (YES) agar, de Man Rogosa and Sharpe (MRS) agar, and YES broth were incubated for 7 days at 25°C to follow the development of the fungus. Levilactobacillus spp. 3QB398 and Levilactobacillus brevis 2QB422 strains were able to delay the growth of A. parasiticus in YES broth, even when these strains were inoculated 24 h after the fungus. The inhibitory effect of these LAB strains was confirmed by the reduction of fungus colony size, suggesting dominance of LAB by competition (a Lotka-Voltera effect). The production of AFB1 by A. parasiticus was inhibited when the fungus was inoculated simultaneously with Lactiplantibacillus plantarum 3QB361 or L. plantarum 3QB350. No AFB1 was found when Levilactobacillus spp. 2QB383 was present, even when the LAB was inoculated 48 h after the fungus. In binding studies, seven inactivated LAB strains were able to promote a reduction of at least 50% the level of AFB1, OTA, and ZEN. This reduction varied depending on the pH of the PPB. In milk, however, only two inactivated LAB strains were able to reduce AFM1, with a reduction of 33 and 45% for Levilactobacillus spp. 3QB398 (Levilactobacillus spp.) and L. brevis 2QB422, respectively. Nevertheless, these results clearly indicate the potential of using LAB for mycotoxin reduction.
Collapse
Affiliation(s)
| | - Luisa Freire
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Larissa Pereira Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso Fasura Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Anderson de Souza Sant’Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fergal Patrick Rattray
- Division of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
12
|
Belgacem I, Li Destri Nicosia MG, Pangallo S, Abdelfattah A, Benuzzi M, Agosteo GE, Schena L. Pomegranate Peel Extracts as Safe Natural Treatments to Control Plant Diseases and Increase the Shelf-Life and Safety of Fresh Fruits and Vegetables. PLANTS (BASEL, SWITZERLAND) 2021; 10:453. [PMID: 33673670 PMCID: PMC7997167 DOI: 10.3390/plants10030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Although the Green Revolution was a milestone in agriculture, it was accompanied by intensive use of synthetic pesticides, which has raised serious concerns due to their impact on human and environmental health. This is increasingly stimulating the search for safer and more eco-friendly alternative means to control plant diseases and prevent food spoilage. Among the proposed alternatives, pomegranate peel extracts (PPEs) are very promising because of their high efficacy. In the present review, we discuss the complex mechanisms of action that include direct antimicrobial activity and induction of resistance in treated plant tissues and highlight the importance of PPE composition in determining their activity. The broad spectrum of activity, wide range of application and high efficiency of PPEs against bacterial, fungal and viral plant pathogens suggest a potential market not only restricted to organic production but also integrated farming systems. Considering that PPEs are non-chemical by-products of the pomegranate industry, they are perceived as safe by the public and may be integrated in circular economy strategies. This will likely encourage agro-pharmaceutical industries to develop commercial formulations and speed up the costly process of registration.
Collapse
Affiliation(s)
- Imen Belgacem
- Dipartimento di Agraria, Università Mediterranea, 89122 Reggio Calabria, Italy; (I.B.); (M.G.L.D.N.); (S.P.); (G.E.A.)
| | - Maria G. Li Destri Nicosia
- Dipartimento di Agraria, Università Mediterranea, 89122 Reggio Calabria, Italy; (I.B.); (M.G.L.D.N.); (S.P.); (G.E.A.)
| | - Sonia Pangallo
- Dipartimento di Agraria, Università Mediterranea, 89122 Reggio Calabria, Italy; (I.B.); (M.G.L.D.N.); (S.P.); (G.E.A.)
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, A-8010 Graz, Austria;
| | - Massimo Benuzzi
- BIOGARD, Division of CBC (Europe) srl, 24050 Bergamo, Italy;
| | - Giovanni E. Agosteo
- Dipartimento di Agraria, Università Mediterranea, 89122 Reggio Calabria, Italy; (I.B.); (M.G.L.D.N.); (S.P.); (G.E.A.)
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea, 89122 Reggio Calabria, Italy; (I.B.); (M.G.L.D.N.); (S.P.); (G.E.A.)
| |
Collapse
|
13
|
Labib MM, Amin MK, Alzohairy AM, Elashtokhy MMA, Samir O, Saleh I, Arif IA, Osman GH, Hassanein SE. In silico Targeting, inhibition and analysis of polyketide synthase enzyme in Aspergillus ssp. Saudi J Biol Sci 2020; 27:3187-3198. [PMID: 33304124 PMCID: PMC7715038 DOI: 10.1016/j.sjbs.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Aflatoxins are toxic and carcinogenic components produced by some Aspergillus species such as Aspergillus flavus. Polyketide synthases enzyme (PKS) plays a central role in aflatoxin s biosynthesis of in Aspergillus flavus, especially the product template (PT) domain, which controls the aldol cyclization of the polyketide forerunner during the biosynthesis of the aflatoxin pathway process. Here, we apply the in silico approaches to validate 623 natural components obtained from the South African Natural Compound Database (SANCDB), to distinguish the PT domain s prospected inhibitors. From the 623 compounds, docking results showed that there are 330 different compounds with energy binding lower than the natural substrate (palmitic acid or PLM) of the Product Templet domain (PT). Three factors were selected to determine the best 10 inhibiting components; 1) energy binding, 2) the strengthen chemical interactions, 3) the drug-likeness. The top ten inhibiting components are kraussianone 6, kraussianone 1, neodiospyrin, clionamine D, bromotopsentin, isodiospyrin, spongotine A, kraussianone 3, 14β-Hydroxybufa-3,5,20,22-tetraenolide and kraussianone 7. The chemical interactions between 3HRQ domain and the natural substrate in the active site amino acids are highly similar to the 3HRQ with the top ten components, but the main differences are in the binding energy which is the best in the top ten ligands. Those ten components give successful inhibition with PT domain which will lead to the formula to be used for inhibition and control aflatoxin contamination of agriculture crop yields and lessen the degree of harming and sicknesses that are coming about because of acquiring measures of aflatoxin.
Collapse
Affiliation(s)
- Mai M Labib
- Agriculture Genetic Engineering Research Institute (AGERI), Egypt
| | - M K Amin
- Faculty of Agriculture, Zagazig University, Department of Genetics
| | - A M Alzohairy
- Faculty of Agriculture, Zagazig University, Department of Genetics
| | - M M A Elashtokhy
- Faculty of Agriculture, Zagazig University, Department of Genetics
| | - O Samir
- Misr University for Science and Technology (MUST), October 6, Al Jizah, Egypt
| | - I Saleh
- Botany and Microbiology Department, Faculty of Sciences, King Saud University, Saudi Arabia
| | - I A Arif
- Botany and Microbiology Department, Faculty of Sciences, King Saud University, Saudi Arabia
| | - G H Osman
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Mecca, Saudi Arabia.,Microbial Genetics Department, Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - S E Hassanein
- Agriculture Genetic Engineering Research Institute (AGERI), Egypt.,Misr University for Science and Technology (MUST), October 6, Al Jizah, Egypt
| |
Collapse
|
14
|
Makhuvele R, Naidu K, Gbashi S, Thipe VC, Adebo OA, Njobeh PB. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020; 6:e05291. [PMID: 33134582 PMCID: PMC7586119 DOI: 10.1016/j.heliyon.2020.e05291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Mycotoxins present a great concern to food safety and security due to their adverse health and socio-economic impacts. The necessity to formulate novel strategies that can mitigate the economic and health effects associated with mycotoxin contamination of food and feed commodities without any impact on public health, quality and nutritional value of food and feed, economy and trade industry become imperative. Various strategies have been adopted to mitigate mycotoxin contamination but often fall short of the required efficacy. One of the promising approaches is the use of bioactive plant components/metabolites synergistically with mycotoxin-absorbing components in order to limit exposure to these toxins and associated negative health effects. In particular, is the fabrication of β-cyclodextrin-based nanosponges encapsulated with bioactive compounds of plant origin to inhibit toxigenic fungi and decontaminate mycotoxins in food and feed without leaving any health and environmental hazard to the consumers. The present paper reviews the use of botanicals extracts and their phytochemicals coupled with β-cyclodextrin-based nanosponge technology to inhibit toxigenic fungal invasion and detoxify mycotoxins.
Collapse
Affiliation(s)
- Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Kayleen Naidu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Velaphi C Thipe
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa.,Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticas e Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, Av. Lineu Prestes, 2242 - Butantã, 05508-000, São Paulo, Brazil
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| |
Collapse
|
15
|
Evaluation of the antifungal activity of Rumex vesicarius L. and Ziziphus spina-christi (L) Desf. Aqueous extracts and assessment of the morphological changes induced to certain myco-phytopathogens. Saudi J Biol Sci 2020; 27:2818-2828. [PMID: 32994742 PMCID: PMC7499382 DOI: 10.1016/j.sjbs.2020.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Many Plant extracts had proved a potential antifungal activity against a wide range of phytopathogenic fungi. The aim of this study was to evaluate the antifungal activity of the aqueous extracts of Rumex vesicarius L. and Ziziphus spina-christi (L) Desf. against some fungal species. The effect on growth inhibition, conidia germination, sporogenesis, morphological, and ultrastructural characterizations of fungal growth by scanning and transmission electron microscopes, have been investigated. Both plant extracts exhibited an antifungal activity against Fusarium, Helminthosporium, Alternaria, and Rhizoctonia species, besides, the sporogenesis of Alternaria and Fusarium species was suppressed. Both plants induced severe morphological changes in the hyphal shape and surface. We concluded that the aqueous extracts of these plants had strong antifungal activities. More investigations should be performed to evaluate the possible applications in agriculture and in vivo.
Collapse
|
16
|
Masiello M, Somma S, Haidukowski M, Logrieco AF, Moretti A. Genetic polymorphisms associated to SDHI fungicides resistance in selected Aspergillus flavus strains and relation with aflatoxin production. Int J Food Microbiol 2020; 334:108799. [PMID: 32799117 DOI: 10.1016/j.ijfoodmicro.2020.108799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Aspergillus flavus is a common and ubiquitous fungal species able to colonize several agricultural commodities, in both pre- and post-harvest conditions. This species represents a very harmful plant pathogen for its ability to synthesize aflatoxin B1, responsible for human primary hepatocellular carcinoma and classified as a group I (human carcinogenic) by the International Agency for Research on Cancer. Several approaches have been proposed to control A. flavus development and related aflatoxin production in field and storage conditions. The Succinate Dehydrogenase Inhibitor (SDHI) fungicide boscalid has been shown to control A. flavus growth and aflatoxin contamination both in vitro and in field experiments. However, this compound is classified as medium-high risk fungicide for triggering fungal resistance and, indeed, resistant strains can occur on crops treated with boscalid. In this paper, we selected laboratory A. flavus strains resistant to boscalid grown on agar medium containing 50 mg/L of boscalid. In order to investigate the molecular mechanism responsible for the resistant phenotype, specific primer pairs were designed to amplify the whole SdhB, SdhC and SdhD genes. By amino acid sequence analysis, two point mutations, Tyrosine replacing Histidine at codon 249 of SdhB (H249Y) and Arginine replacing Glycine at codon 91 of SdhC (G91R), were identified. The effect of SDHI boscalid and isopyrazam on mycelial growth and conidial germination was evaluated. Both resistant genotypes showed high resistance (MIC and EC50 > 1000 mg/L) to boscalid. A positive cross-resistance was found between boscalid and isopyrazam. Specific sub-lethal doses of both fungicides (0.5 mg/L of boscalid and 0.01 mg/L of isopyrazam) interfered with the mechanisms associated to pigmentation of colonies. In particular, fungal colonies appeared depigmented lacking the typical A. flavus green colour shown on un-amended fungicide medium. A strict correlation between lack of pigmentation and increasing aflatoxin production was also observed.
Collapse
Affiliation(s)
- M Masiello
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - S Somma
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - M Haidukowski
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A F Logrieco
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A Moretti
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
17
|
Loi M, Paciolla C, Logrieco AF, Mulè G. Plant Bioactive Compounds in Pre- and Postharvest Management for Aflatoxins Reduction. Front Microbiol 2020; 11:243. [PMID: 32226415 PMCID: PMC7080658 DOI: 10.3389/fmicb.2020.00243] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by Aspergillus spp., known for their hepatotoxic, carcinogenic, and mutagenic activity in humans and animals. AF contamination of staple food commodities is a global concern due to their toxicity and the economic losses they cause. Different strategies have been applied to reduce fungal contamination and AF production. Among them, the use of natural, plant-derived compounds is emerging as a promising strategy to be applied to control both Aspergillus spoilage and AF contamination in food and feed commodities in an integrated pre- and postharvest management. In particular, phenols, aldehydes, and terpenes extracted from medicinal plants, spices, or fruits have been studied in depth. They can be easily extracted, they are generally recognized as safe (GRAS), and they are food-grade and act through a wide variety of mechanisms. This review investigated the main compounds with antifungal and anti-aflatoxigenic activity, also elucidating their physiological role and the different modes of action and synergies. Plant bioactive compounds are shown to be effective in modulating Aspergillus spp. contamination and AF production both in vitro and in vivo. Therefore, their application in pre- and postharvest management could represent an important tool to control aflatoxigenic fungi and to reduce AF contamination.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Antonio F. Logrieco
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| |
Collapse
|