1
|
Jo JH, Park JH, Kim BK, Kim SJ, Park CM, Kang CK, Choi YJ, Kim H, Lee EY, Moon M, Park GW, Lee S, Lee SY, Lee JS, Lee WH, Kim JI, Kim MS. Improvement of succinate production from methane by combining rational engineering and laboratory evolution in Methylomonas sp. DH-1. Microb Cell Fact 2024; 23:297. [PMID: 39497114 DOI: 10.1186/s12934-024-02557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, methane has been considered a next-generation carbon feedstock due to its abundance and it is main component of shale gas and biogas. Methylomonas sp. DH-1 has been evaluated as a promising industrial bio-catalyst candidate. Succinate is considered one of the top building block chemicals in the agricultural, food, and pharmaceutical industries. In this study, succinate production by Methylomonas sp. DH-1 was improved by combining adaptive laboratory evolution (ALE) technology with genetic engineering in the chromosome of Methylomonas sp. DH-1, such as deletion of bypass pathway genes (succinate dehydrogenase and succinate semialdehyde dehydrogenase) or overexpression of genes related with succinate production (citrate synthase, pyruvate carboxylase and phosphoenolpyruvate carboxylase). Through ALE, the maximum consumption rate of substrate gases (methane and oxygen) and the duration maintaining high substrate gas consumption rates was enhanced compared to those of the parental strain. Based on the improved methane consumption, cell growth (OD600) increased more than twice, and the succinate titer increased by ~ 48% from 218 to 323 mg/L. To prevent unwanted succinate consumption, the succinate semialdehyde dehydrogenase gene was deleted from the genome. The first enzyme of TCA cycle (citrate synthase) was overexpressed. Pyruvate carboxylase and phosphoenolpyruvate carboxylase, which produce oxaloacetate, a substrate for citrate synthase, were also overproduced by a newly identified strong promoter. The new strong promoter was screened from RNA sequencing data. When these modifications were combined in one strain, the maximum titer (702 mg/L) was successfully improved by more than three times. This study demonstrates that successful enhancement of succinic acid production can be achieved in methanotrophs through additional genetic engineering following adaptive laboratory evolution.
Collapse
Affiliation(s)
- Jae-Hwan Jo
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Ho Park
- Institute of Biotechnology, CJ CheilJedang Co, Gyeonggi-Do, Suwon-Si, 16495, Republic of Korea
| | - Byung Kwon Kim
- Research Institute, GI Biome Inc., Seongnam, Gyeonggi-Do, 13201, Republic of Korea
| | - Seon Jeong Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Mi Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Chang Keun Kang
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Il Kim
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Min-Sik Kim
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
2
|
MacLean A, Legendre F, Appanna VD. The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress. Crit Rev Biochem Mol Biol 2023; 58:81-97. [PMID: 37125817 DOI: 10.1080/10409238.2023.2201945] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Collapse
Affiliation(s)
- Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Felix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Vasu D Appanna
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| |
Collapse
|
3
|
Legendre F, MacLean A, Tharmalingam S, Appanna VD. Metabolic adaptation and ATP homeostasis in Pseudomonas fluorescens exposed to phosphate stress. World J Microbiol Biotechnol 2022; 38:255. [DOI: 10.1007/s11274-022-03432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
4
|
Chopra M, Kumar V, Singh M, Aggarwal NK. An overview about the approaches used in the production of alpha-ketoglutaric acid with their applications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alpha ketoglutaric acid is a biological compound found naturally in the human body. It plays an important role in the cell metabolism and has a role in various metabolic pathways including Kreb’s cycle, protein metabolism and so on. Keto glutaric acid is chemically prepared from succinic acid and oxalic acid. It is a direct precursor of glutamic acid and triazines. It can be produced by oxidative decarboxylation of isocitrate by isocitrate dehydrogenase. The yeast Yarrowia lipolytica is used as a prospective producer of alpha ketoglutaric acid from ethanol. The capability to synthesize Keto glutaric acid has so far been investigated for many microorganisms such as Pseudomonas fluoroscens
, Bacillus subtilis
etc. P. fluoroscens have the ability to synthesize a huge amount of alpha ketoglutaric acid in a glycerol medium supplemented with manganese (Mn). The Mangnese has a significant impact on glycerol metabolism resulting in the buildup of alpha ketoglutaric acid. The metabolism of succinate may result in the production of alpha ketoglutarate. Despite its importance in TCA cycle, alpha ketoglutaric acid buildup as an intermediate product of bacterial glucose oxidation. Along with chemical synthesis and microbial fermentation, enzymatic transformation can also be used to produce alpha ketoglutaric acid. Biodiesel waste is considered as cheap and renewable carbon source for the development of alpha ketoglutaric acid. Alpha ketoglutarate is used for kidney disease, intestinal and stomach disorders and many other conditions. It also plays an important role in the food industry as food and nutrient enhancers. The review is covering all the aspects related with the Alpha ketoglutaric acid production, utilization and product recovery.
Collapse
Affiliation(s)
- Monika Chopra
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Neeraj K. Aggarwal
- Department of Microbiology , Kurukshetra University , Kurukshetra , 136119 , India
| |
Collapse
|
5
|
Legendre F, MacLean A, Tharmalingam S, Appanna VD. A Metabolic Network Mediating the Cycling of Succinate, a Product of ROS Detoxification into α-Ketoglutarate, an Antioxidant. Antioxidants (Basel) 2022; 11:antiox11030560. [PMID: 35326210 PMCID: PMC8945261 DOI: 10.3390/antiox11030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, a by-product of ROS detoxification. Succinate semialdehyde dehydrogenase (SSADH) and KG decarboxylase (KGDC) work in partnership to synthesize KG. This process is further aided by the increased activity of the enzymes glutamate decarboxylase (GDC) and γ-amino-butyrate transaminase (GABAT). The pool of succinate semialdehyde (SSA) generated is further channeled towards the formation of the antioxidant. Spectrophotometric analyses, HPLC experiments and electrophoretic studies with intact cells and cell-free extracts (CFE) pointed to the metabolites (succinate, SSA, GABA) and enzymes (SSADH, GDC, KGDC) contributing to this KG-forming metabolic machinery. Real-time polymerase chain reaction (RT-qPCR) revealed significant increase in transcripts of such enzymes as SSADH, GDC and KGDC. The findings of this study highlight a novel pathway involving keto-acids in ROS scavenging. The cycling of succinate into KG provides an efficient means of combatting an oxidative environment. Considering the central role of KG in biological processes, this metabolic network may be operative in other living systems.
Collapse
Affiliation(s)
- Félix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
| | - Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
- Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
- Correspondence:
| |
Collapse
|
6
|
Legendre F, MacLean A, Appanna VP, Appanna VD. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J Microbiol Biotechnol 2020; 36:123. [PMID: 32686016 DOI: 10.1007/s11274-020-02900-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
α-Ketoglutarate (AKG) also known as 2-oxoglutarate is an essential metabolite in virtually all organisms as it participates in a variety of biological processes including anti-oxidative defence, energy production, signalling modules, and genetic modification. This keto-acid also possesses immense commercial value as it is utilized as a nutritional supplement, a therapeutic agent, and a precursor to a variety of value-added products such as ethylene and heterocyclic compounds. Hence, the generation of KG in a sustainable and environmentally-neutral manner is a major ongoing research endeavour. In this mini-review, the enzymatic systems and the metabolic networks mediating the synthesis of AKG will be described. The importance of such enzymes as isocitrate dehydrogenase (ICDH), glutamate dehydrogenase (GDH), succinate semialdehyde dehydrogenase (SSADH) and transaminases that directly contribute to the formation of KG will be emphasized. The efficacy of microbial systems in providing an effective platform to generate this moiety and the molecular strategies involving genetic manipulation, abiotic stress and nutrient supplementation that result in the optimal production of AKG will be evaluated. Microbial systems and their components acting via the metabolic networks and the resident enzymes are well poised to provide effective biotechnological tools that can supply renewable AKG globally.
Collapse
Affiliation(s)
- F Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - A MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
7
|
Walsh BJC, Wang J, Edmonds KA, Palmer LD, Zhang Y, Trinidad JC, Skaar EP, Giedroc DP. The Response of Acinetobacter baumannii to Hydrogen Sulfide Reveals Two Independent Persulfide-Sensing Systems and a Connection to Biofilm Regulation. mBio 2020; 11:e01254-20. [PMID: 32576676 PMCID: PMC7315123 DOI: 10.1128/mbio.01254-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the causative agent of several serious infections in humans, including pneumonia, sepsis, and wound and burn infections. A. baumannii is also capable of forming proteinaceous biofilms on both abiotic and epithelial cell surfaces. Here, we investigate the response of A. baumannii toward sodium sulfide (Na2S), known to be associated with some biofilms at oxic/anoxic interfaces. The addition of exogenous inorganic sulfide reveals that A. baumannii encodes two persulfide-sensing transcriptional regulators, a primary σ54-dependent transcriptional activator (FisR), and a secondary system controlled by the persulfide-sensing biofilm growth-associated repressor (BigR), which is only induced by sulfide in a fisR deletion strain. FisR activates an operon encoding a sulfide oxidation/detoxification system similar to that characterized previously in Staphylococcus aureus, while BigR regulates a secondary persulfide dioxygenase (PDO2) as part of yeeE-yedE-pdo2 sulfur detoxification operon, found previously in Serratia spp. Global S-sulfuration (persulfidation) mapping of the soluble proteome reveals 513 persulfidation targets well beyond FisR-regulated genes and includes five transcriptional regulators, most notably the master biofilm regulator BfmR and a poorly characterized catabolite regulatory protein (Crp). Both BfmR and Crp are well known to impact biofilm formation in A. baumannii and other organisms, respectively, suggesting that persulfidation of these regulators may control their activities. The implications of these findings on bacterial sulfide homeostasis, persulfide signaling, and biofilm formation are discussed.IMPORTANCE Although hydrogen sulfide (H2S) has long been known as a respiratory poison, recent reports in numerous bacterial pathogens reveal that H2S and more downstream oxidized forms of sulfur collectedly termed reactive sulfur species (RSS) function as antioxidants to combat host efforts to clear the infection. Here, we present a comprehensive analysis of the transcriptional and proteomic response of A. baumannii to exogenous sulfide as a model for how this important human pathogen manages sulfide/RSS homeostasis. We show that A. baumannii is unique in that it encodes two independent persulfide sensing and detoxification pathways that govern the speciation of bioactive sulfur in cells. The secondary persulfide sensor, BigR, impacts the expression of biofilm-associated genes; in addition, we identify two other transcriptional regulators known or projected to regulate biofilm formation, BfmR and Crp, as highly persulfidated in sulfide-exposed cells. These findings significantly strengthen the connection between sulfide homeostasis and biofilm formation in an important human pathogen.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jiefei Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Lauren D Palmer
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yixiang Zhang
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Jonathan C Trinidad
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
MacLean A, Bley AM, Appanna VP, Appanna VD. Metabolic manipulation by Pseudomonas fluorescens: a powerful stratagem against oxidative and metal stress. J Med Microbiol 2020; 69:339-346. [PMID: 31961786 DOI: 10.1099/jmm.0.001139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolism is the foundation of all living organisms and is at the core of numerous if not all biological processes. The ability of an organism to modulate its metabolism is a central characteristic needed to proliferate, to be dormant and to survive any assault. Pseudomonas fluorescens is bestowed with a uniquely versatile metabolic framework that enables the microbe to adapt to a wide range of conditions including disparate nutrients and toxins. In this mini-review we elaborate on the various metabolic reconfigurations evoked by this microbial system to combat reactive oxygen/nitrogen species and metal stress. The fine-tuning of the NADH/NADPH homeostasis coupled with the production of α-keto-acids and ATP allows for the maintenance of a reductive intracellular milieu. The metabolic networks propelling the synthesis of metabolites like oxalate and aspartate are critical to keep toxic metals at bay. The biochemical processes resulting from these defensive mechanisms provide molecular clues to thwart infectious microbes and reveal elegant pathways to generate value-added products.
Collapse
Affiliation(s)
- Alex MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Anondo Michel Bley
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Varun P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
9
|
Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens. Antonie van Leeuwenhoek 2019; 113:605-616. [PMID: 31828449 DOI: 10.1007/s10482-019-01372-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
Sulfur is essential for all living organisms due to its ability to mediate a variety of enzymatic reactions, signalling networks, and redox processes. The interplay between sulfhydryl group (SH) and disulfide bond (S-S) is central to the maintenance of intracellular oxidative balance. Although most aerobic organisms succumb to sulfur starvation, the nutritionally versatile soil microbe Pseudomonas fluorescens elaborates an intricate metabolic reprogramming in order to adapt to this challenge. When cultured in a sulfur-deficient medium with glutamine as the sole carbon and nitrogen source, the microbe reconfigures its metabolism aimed at the enhanced synthesis of NADPH, an antioxidant and the limited production of NADH, a pro-oxidant. While oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle, metabolic modules known to generate reactive oxygen species are impeded, the activities NADPH-producing enzymes such as malic enzyme, and glutamate dehydrogenase (GDH) NADP-dependent are increased. The α-ketoglutarate (KG) generated from glutamine rapidly enters the TCA cycle via α-ketoglutarate dehydrogenase (KGDH), an enzyme that was prominent in the control cultures. In the S-deficient media, the severely impeded KGDH coupled with the increased activity of the reversible isocitrate dehydrogenase (ICDH) that fixes KG into isocitrate in the presence of NADH and HCO3- ensures a constant supply of this critical tricarboxylic acid. The up-regulation of ICDH-NADP dependent in the soluble fraction of the cells obtained from the S-deficient media results in enhanced NADPH synthesis, a reaction aided by the concomitant increase in NAD kinase activity. The latter converts NAD into NADP in the presence of ATP. Taken together, the data point to a metabolic network involving isocitrate, α-KG, and ICDH that converts NADH into NADPH in P. fluorescens subjected to a S-deprived environment.
Collapse
|