1
|
Higgins SA, Kara Murdoch F, Clifton JM, Brooks JH, Fillinger KL, Middleton JK, Heater BS. CRISPR-Cas9-mediated barcode insertion into Bacillus thuringiensis for surrogate tracking. Microbiol Spectr 2024; 12:e0000324. [PMID: 38949306 PMCID: PMC11302227 DOI: 10.1128/spectrum.00003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
The use of surrogate organisms can enable researchers to safely conduct research on pathogens and in a broader set of conditions. Being able to differentiate between the surrogates used in the experiments and background contamination as well as between different experiments will further improve research efforts. One effective approach is to introduce unique genetic barcodes into the surrogate genome and track their presence using the quantitative polymerase chain reaction (qPCR). In this report, we utilized the CRISPR-Cas9 methodology, which employs a single plasmid and a transformation step to insert five distinct barcodes into Bacillus thuringiensis, a well-established surrogate for Bacillus anthracis when Risk Group 1 organisms are needed. We subsequently developed qPCR assays for barcode detection and successfully demonstrated the stability of the barcodes within the genome through five cycles of sporulation and germination. Additionally, we conducted whole-genome sequencing on these modified strains and analyzed 187 potential Cas9 off-target sites. We found no correlation between the mutations observed in the engineered strains and the predicted off-target sites, suggesting this genome engineering strategy did not directly result in off-target mutations in the genome. This simple approach has the potential to streamline the creation of barcoded B. thuringiensis strains for use in future studies on surrogate genomes. IMPORTANCE The use of Bacillus anthracis as a biothreat agent poses significant challenges for public health and national security. Bacillus anthracis surrogates, like Bacillus thuringiensis, are invaluable tools for safely understanding Bacillus anthracis properties without the safety concerns that would arise from using a virulent strain of Bacillus anthracis. We report a simple method for barcode insertion into Bacillus thuringiensis using the CRISPR-Cas9 methodology and subsequent tracking by quantitative polymerase chain reaction (qPCR). Moreover, whole-genome sequencing data and CRISPR-Cas9 off-target analyses in Bacillus thuringiensis suggest that this gene-editing method did not directly cause unwanted mutations in the genome. This study should assist in the facile development of barcoded Bacillus thuringiensis surrogate strains, among other biotechnological applications in Bacillus species.
Collapse
Affiliation(s)
- Steven A. Higgins
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Fadime Kara Murdoch
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Jonathon M. Clifton
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Jennifer H. Brooks
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Keegan L. Fillinger
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Jason K. Middleton
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Bradley S. Heater
- Applied Science and Technology, Battelle Memorial Institute, Columbus, Ohio, USA
| |
Collapse
|
2
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
3
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
4
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Yuan L, Wang D, Chen J, Lyu Y, Feng E, Zhang Y, Liu X, Wang H. Genome Sequence and Phenotypic Analysis of a Protein Lysis-Negative, Attenuated Anthrax Vaccine Strain. BIOLOGY 2023; 12:biology12050645. [PMID: 37237459 DOI: 10.3390/biology12050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Bacillus anthracis is a Gram-positive bacterium that causes the zoonotic disease anthrax. Here, we studied the characteristic phenotype and virulence attenuation of the putative No. II vaccine strain, PNO2, which was reportedly introduced from the Pasteur Institute in 1934. Characterization of the strain showed that, compared with the control strain, A16Q1, the attenuated PNO2 (PNO2D1) was phospholipase-positive, with impaired protein hydrolysis and significantly reduced sporulation. Additionally, PNO2D1 significantly extended the survival times of anthrax-challenged mice. An evolutionary tree analysis revealed that PNO2D1 was not a Pasteur strain but was more closely related to a Tsiankovskii strain. A database comparison revealed a seven-base insertion mutation in the nprR gene. Although it did not block nprR transcription, the insertion mutation resulted in the premature termination of protein translation. nprR deletion of A16Q1 resulted in a nonproteolytic phenotype that could not sporulate. The database comparison revealed that the abs gene is also prone to mutation, and the abs promoter activity was much lower in PNO2D1 than in A16Q1. Low abs expression may be an important reason for the decreased virulence of PNO2D1.
Collapse
Affiliation(s)
- Lu Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jie Chen
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
6
|
Kim MS, Jeong DE, Choi SK. Bacillus integrative plasmid system combining a synthetic gene circuit for efficient genetic modifications of undomesticated Bacillus strains. Microb Cell Fact 2022; 21:259. [PMID: 36517844 PMCID: PMC9753358 DOI: 10.1186/s12934-022-01989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Owing to CRISPR-Cas9 and derivative technologies, genetic studies on microorganisms have dramatically increased. However, the CRISPR-Cas9 system is still difficult to utilize in many wild-type Bacillus strains owing to Cas9 toxicity. Moreover, less toxic systems, such as cytosine base editors, generate unwanted off-target mutations that can interfere with the genetic studies of wild-type strains. Therefore, a convenient alternative system is required for genetic studies and genome engineering of wild-type Bacillus strains. Because wild-type Bacillus strains have poor transformation efficiencies, the new system should be based on broad-host-range plasmid-delivery systems. RESULTS Here, we developed a Bacillus integrative plasmid system in which plasmids without the replication initiator protein gene (rep) of Bacillus are replicated in a donor Bacillus strain by Rep proteins provided in trans but not in Bacillus recipients. The plasmids were transferred to recipients through a modified integrative and conjugative element, which is a wide host range plasmid-delivery system. Genetic mutations were generated in recipients through homologous recombination between the transferred plasmid and the genome. The system was improved by adding a synthetic gene circuit for efficient screening of the desired mutations by double crossover recombination in recipient strains. The improved system exhibited a mutation efficiency of the target gene of approximately 100% in the tested wild-type Bacillus strains. CONCLUSION The Bacillus integrative plasmid system developed in this study can generate target mutations with high efficiency when combined with a synthetic gene circuit in wild-type Bacillus strains. The system is free of toxicity and unwanted off-target mutations as it generates the desired mutations by traditional double crossover recombination. Therefore, our system could be a powerful tool for genetic studies and genome editing of Cas9-sensitive wild-type Bacillus strains.
Collapse
Affiliation(s)
- Man Su Kim
- grid.249967.70000 0004 0636 3099Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 South Korea ,grid.412786.e0000 0004 1791 8264Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113 South Korea
| | - Da-Eun Jeong
- grid.249967.70000 0004 0636 3099Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 South Korea
| | - Soo-Keun Choi
- grid.249967.70000 0004 0636 3099Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 South Korea ,grid.412786.e0000 0004 1791 8264Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113 South Korea
| |
Collapse
|
7
|
Zhang Z, He P, Cai D, Chen S. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects. World J Microbiol Biotechnol 2022; 38:208. [DOI: 10.1007/s11274-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
|
8
|
The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiol Res 2022; 266:127218. [DOI: 10.1016/j.micres.2022.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
9
|
Xin Q, Chen Y, Chen Q, Wang B, Pan L. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02. Microb Cell Fact 2022; 21:99. [PMID: 35643496 PMCID: PMC9148480 DOI: 10.1186/s12934-022-01832-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yudan Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Deng Z, Hu H, Tang D, Liang J, Su X, Jiang T, Hu X, Ying W, Zhen D, Xiao X, He J. Ultrasensitive, Specific, and Rapid Detection of Mycoplasma pneumoniae Using the ERA/CRISPR–Cas12a Dual System. Front Microbiol 2022; 13:811768. [PMID: 35633705 PMCID: PMC9136402 DOI: 10.3389/fmicb.2022.811768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae can cause severe respiratory tract infections and extrapulmonary diseases, which pose a significant threat to the health of children. Diagnostic methods for M. pneumoniae include isolation and culture, antibody detection, fluorescence quantitative PCR, and so on, but there are various shortcomings in time, cost, convenience, and sensitivity. In this study, we developed a rapid, sensitive, specific, and economical method for the detection of M. pneumoniae, termed the ERA/CRISPR–Cas12a dual system. The system used the high specificity and collateral cleavage activity of the LbCas12a protein, combined with enzymatic recombination amplification (ERA) technology with strong amplification ability, allowing the results to be observed by a portable fluorometer or visualized by the naked eye with a dipstick, which could be obtained in approximately 30 min. The ERA/CRISPR–Cas12a fluorescence and dipstick system were able to detect M. pneumoniae at titers as low as 1 and 100 copies/μL, respectively. The specificity of the two interpretation methods was 100%, and no cross-reaction with other pathogens was observed. In the evaluation of 92 clinical samples, the positive predictive agreements of the ERA/CRISPR–Cas12a fluorescence and dipstick systems with qPCR detection were 100% and 92.86%, respectively. The negative predictive agreements of both methods were 100%. In conclusion, this study established a portable, rapid, low-cost, ultrasensitive, and specific method for the early and rapid diagnosis of M. pneumoniae to meet the needs of on-site rapid detection in primary health institutions.
Collapse
Affiliation(s)
- Zhongliang Deng
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Haiyang Hu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Tang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiaxin Liang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Tingqing Jiang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xipan Hu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Wanqin Ying
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Deshuai Zhen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xilin Xiao
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Jun He,
| |
Collapse
|
11
|
Lee EG, Kwak JS, Kim KH. CRISPR/Cas9-mediated generation of auxotrophic Edwardsiella piscicida mutants and immunization in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 122:98-105. [PMID: 35114359 DOI: 10.1016/j.fsi.2022.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella piscicida has been a cause of mass mortality in cultured fish. In this study, to produce auxotrophic E. piscicida mutants, a CRISPR/Cas9 system was used instead of the traditional sacB-based allelic exchange method. Under the optimal CRISPR engineering condition, we could efficiently produce either alr or asd gene knockout E. piscicida auxotrophic mutants, and this genome editing process was much simpler and faster than the allelic exchange method. The simultaneous knockout of double auxotrophic genes (alr and asd) and the insertion of a foreign gene expression cassette in E. piscicida chromosome were also successfully performed using the established CRISPR/Cas9 system. Furthermore, to enhance the possibility to get permission as a commercial vaccine, we produced an auxotrophic E. piscicida mutant having only one nucleotide-deleted alr gene (E. piscicida △alr-1). Olive flounder (Paralichthys olivaceus) fingerlings immunized with 1 × 106 and 1 × 105 CFU/fish of E. piscicida △alr-1 showed the superior ability in the induction of serum agglutination activity and in the protection against E. piscicida compared to killed E. piscicida. However, olive flounder immunized with 1 × 107 CFU/fish of E. piscicida △alr-1 showed high mortality far before the challenge, and the isolated E. piscicida from moribund and dead fish had the wild type alr gene, suggesting the reversion of one base-deleted alr gene to original form by a second mutation in olive flounder. Therefore, investigation on the minimum number of edited nucleotide for stable maintenance of E. piscicida mutants should be further conducted.
Collapse
Affiliation(s)
- Eun Gyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
12
|
Wang Y, Sang S, Zhang X, Tao H, Guan Q, Liu C. Efficient Genome Editing by a Miniature CRISPR-AsCas12f1 Nuclease in Bacillus anthracis. Front Bioeng Biotechnol 2022; 9:825493. [PMID: 35096801 PMCID: PMC8795892 DOI: 10.3389/fbioe.2021.825493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
A miniature CRISPR-Cas12f has been demonstrated to serve as an effective genome editing tool in gram negative bacteria as well as human cells. Here, we developed an alternative method to edit the genome of Bacillus anthracis based on the AsCas12f1 nuclease from Acidibacillus sulfuroxidans. When the htrA gene on the chromosome and the lef gene on the plasmid pXO1 were selected as targets, the CRISPR-AsCas12f1 system showed very high efficiency (100%). At the same time, a high efficiency was observed for large-fragment deletion. Our results also indicated that the length of the homologous arms of the donor DNA had a close relationship with the editing efficiency. Furthermore, a two-plasmid CRISPR-AsCas12f1 system was also constructed and combined with the endonuclease I-SceI for potential multi-gene modification. This represents a novel tool for mutant strain construction and gene function analyses in B. anthracis and other Bacillus cereus group bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunjie Liu
- *Correspondence: Yanchun Wang, ; Chunjie Liu,
| |
Collapse
|
13
|
Cornuault JK, Moineau S. Induction and Elimination of Prophages Using CRISPR Interference. CRISPR J 2021; 4:549-557. [PMID: 34406037 DOI: 10.1089/crispr.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prophages are widely spread among bacterial genomes, and they can have positive or negative effects on their hosts. A key aspect in the study of prophages is the discovery of their induction signals. Prophage induction can occur by inactivating a phage transcriptional repressor, which is responsible for maintaining the lysogenic state. This repressor can be inactivated through the bacterial SOS response. However, the induction signals for numerous prophages do not involve the SOS system, and therefore significant efforts are needed to identify these conditions. Similarly, curing bacterial strains of inducible prophages is a tedious process, requiring the screening of several colonies. Here, we investigated whether transcriptional silencing of a prophage repressor using CRISPR interference (CRISPRi) would lead to prophage induction. Using Escherichia coli phages λ and P2 as models, we demonstrated the efficiency of CRISPRi for prophage induction and for curing lysogenic strains of their prophages.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Département de Biochimie, de Mmicrobiologie, et de Bio-informatique, Faculté des sciences et de Génie, Université Laval, Québec City, Canada; Université Laval, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; and Université Laval, Québec City, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Mmicrobiologie, et de Bio-informatique, Faculté des sciences et de Génie, Université Laval, Québec City, Canada; Université Laval, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; and Université Laval, Québec City, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Canada
| |
Collapse
|
14
|
Mian-Ling Z, Yun-Qi C, Chao-Chun Z. Prader-Willi Syndrome: Molecular Mechanism and Epigenetic Therapy. Curr Gene Ther 2021; 20:36-43. [PMID: 32329685 DOI: 10.2174/1566523220666200424085336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
Abstract
Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease characterized by cognitive impairments, developmental delay, hyperphagia, obesity, and sleep abnormalities. It is caused by a lack of expression of the paternally active genes in the PWS imprinting center on chromosome 15 (15q11.2-q13). Owing to the imprinted gene regulation, the same genes in the maternal chromosome, 15q11-q13, are intact in structure but repressed at the transcriptional level because of the epigenetic mechanism. The specific molecular defect underlying PWS provides an opportunity to explore epigenetic therapy to reactivate the expression of repressed PWS genes inherited from the maternal chromosome. The purpose of this review is to summarize the main advances in the molecular study of PWS and discuss current and future perspectives on the development of CRISPR/Cas9- mediated epigenome editing in the epigenetic therapy of PWS. Twelve studies on the molecular mechanism or epigenetic therapy of PWS were included in the review. Although our understanding of the molecular basis of PWS has changed fundamentally, there has been a little progress in the epigenetic therapy of PWS that targets its underlying genetic defects.
Collapse
Affiliation(s)
- Zhong Mian-Ling
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Chao Yun-Qi
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Zou Chao-Chun
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| |
Collapse
|
15
|
Gao S, Ni C, Huang W, Hao H, Jiang H, Lv Q, Zheng Y, Liu P, Kong D, Jiang Y. The interaction between flagellin and the glycosphingolipid Gb3 on host cells contributes to Bacillus cereus acute infection. Virulence 2021; 11:769-780. [PMID: 32507026 PMCID: PMC7567440 DOI: 10.1080/21505594.2020.1773077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus cereus is an opportunistic pathogen that can cause emetic or diarrheal foodborne illness. Previous studies have identified multiple pathogenic B. cereus strains and characterized a variety of virulence factors. Here, we demonstrate that the virulence and lethality of B. cereus for mammalian cells and host animals involve the interaction of B. cereus flagellin proteins and the host-cell-surface-localized glycosphingolipid Gb3 (CD77, Galα1-4Galβ1-4Glcβ1-Cer). We initially found that B. cereus infection was less lethal for Gb3-deficiencient A4galt−/- mice than for wild-type mice. Subsequent experiments established that some factor other than secreted toxins must account of the observed differential lethality: Gb3-deficiencient A4galt−/- mice were equally susceptible to secreted-virulence-factor-mediated death as WT mice, and we observed no differences in the bacterial loads of spleens or livers of mice treated with B. cereus strain vs. mice infected with a mutant variant of incapable of producing many secreted toxins. A screen for host-interacting B. cereus cell wall components identified the well-known flagellin protein, and both flagellin knockout strain assays and Gb3 inhibitor studies confirmed that flagellin does interact with Gb3 in a manner that affects B. cereus infection of host cells. Finally, we show that treatment with polyclonal antibody against flagellin can protect mice against B. cereus infection. Thus, beyond demonstrating a previously unappreciated interaction between a bacterial motor protein and a mammalian cell wall glycosphingolipid, our study will provide useful information for the development of therapies to treat infection of B. cereus.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Chengpei Ni
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Huaijie Hao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| |
Collapse
|
16
|
Hartz P, Gehl M, König L, Bernhardt R, Hannemann F. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J Biotechnol 2021; 329:170-179. [PMID: 33600891 DOI: 10.1016/j.jbiotec.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Bacillus megaterium has become increasingly important for the biotechnological production of valuable compounds of industrial and pharmaceutical importance. Despite recent advances in rational strain design of B. megaterium, these studies have been largely impaired by the lack of molecular tools that are not state-of-the-art for comprehensive genome engineering approaches. In the current work, we describe the adaptation of the CRISPR-Cas9 vector pJOE8999 to enable efficient genome editing in B. megaterium. Crucial modifications comprise the exchange of promoter elements and associated ribosomal binding sites as well as the implementation of a 5-fluorouracil based counterselection system to facilitate proper plasmid curing. In addition, the functionality and performance of the new CRISPR-Cas9 vector pMOE was successfully evaluated by chromosomal disruption studies of the endogenous β-galactosidase gene (BMD_2126) and demonstrated an outstanding efficiency of 100 % based on combinatorial pheno- and genotype analyses. Furthermore, pMOE was applied for the genomic deletion of a steroid esterase gene (BMD_2256) that was identified among several other candidates as the gene encoding the esterase, which prevented accumulation of pharmaceutically important glucocorticoid esters. Recombinant expression of the bacterial chloramphenicol acetyltransferase 1 gene (cat1) in the resulting esterase deficient B. megaterium strain ultimately yielded C21-acetylated as well as novel C21-esterified derivates of cortisone.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Manuel Gehl
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany; Present address: Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Lisa König
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
17
|
Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. Appl Environ Microbiol 2020; 87:AEM.02090-20. [PMID: 33097498 PMCID: PMC7755240 DOI: 10.1128/aem.02090-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host. Since its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in Bacillus subtilis have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in Escherichia coli and Bacillus was previously developed. This vector catalogue was through this work supplemented with editing plasmids for genome engineering in Bacillus by adapting two CRISPR/Cas plasmids to the cloning technology. The customized tools allow versatile editing at any chosen genomic position (single-plasmid strategy) or at a fixed genomic locus (double-plasmid strategy). The single-plasmid strategy was validated by deleting the spoIIAC gene, which has an essential role in sporulation. Using the double-plasmid strategy, we demonstrate the quick transition from plasmid-based subtilisin expression to the stable integration of the gene into the amyE locus of a seven-protease-deficient KO7 strain. The newly engineered B. subtilis strain allowed the successful production of a functional enzyme. The customized tools provide improvements to the cloning procedure, should be useful for versatile genomic engineering, and contribute to a cloning platform for a quick transition from HTP enzyme expression to production through the fermentation of industrially relevant B. subtilis and related strains. IMPORTANCE We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host.
Collapse
|
18
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Jeong SW, Choi YJ. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment. Molecules 2020; 25:E4916. [PMID: 33114255 PMCID: PMC7660605 DOI: 10.3390/molecules25214916] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
As concerns about the substantial effect of various hazardous toxic pollutants on the environment and public health are increasing, the development of effective and sustainable treatment methods is urgently needed. In particular, the remediation of toxic components such as radioactive waste, toxic heavy metals, and other harmful substances under extreme conditions is quite difficult due to their restricted accessibility. Thus, novel treatment methods for the removal of toxic pollutants using extremophilic microorganisms that can thrive under extreme conditions have been investigated during the past several decades. In this review, recent trends in bioremediation using extremophilic microorganisms and related approaches to develop them are reviewed, with relevant examples and perspectives.
Collapse
Affiliation(s)
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| |
Collapse
|
20
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020; 753:144813. [DOI: 10.1016/j.gene.2020.144813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|