1
|
Rivera-Martínez A, Rodríguez-Alarcón CA, Adame-Gallegos JR, Laredo-Tiscareño SV, de Luna-Santillana EDJ, Hernández-Triana LM, Garza-Hernández JA. Canine Distemper Virus: Origins, Mutations, Diagnosis, and Epidemiology in Mexico. Life (Basel) 2024; 14:1002. [PMID: 39202744 PMCID: PMC11355085 DOI: 10.3390/life14081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides an overview of the canine distemper virus (CDV), a highly infectious pathogen causing severe disease in domestic dogs and wildlife. It shares genetic similarities with the human measles virus (HMV) in humans and the rinderpest virus (RPV) in cattle. The origin of CDV likely involves a mutation from human measles strains, possibly in the New World, with subsequent transmission to dogs. CDV has been globally observed, with an increasing incidence in various animal populations. Genomic mutations, especially in the H protein, contribute to its ability to infect different hosts. Diagnosis by molecular techniques like RT-qPCR offers rapid and sensitive detection when compared with serological tests. Genomic sequencing is vital for understanding CDV evolution and designing effective control strategies. Overall, CDV poses a significant threat, and genomic sequencing enhances our ability to manage and prevent its spread. Here, the epidemiology of CDV principally in Mexico is reviewed.
Collapse
Affiliation(s)
- Alejandra Rivera-Martínez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Carlos A. Rodríguez-Alarcón
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Jaime R. Adame-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Chihuahua, Mexico;
| | - S. Viridiana Laredo-Tiscareño
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Erick de Jesús de Luna-Santillana
- Laboratorio Medicina de la Conservación, Centro de Biotecnología Genómica del Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico;
| | - Luis M. Hernández-Triana
- Animal and Plant Health Agency, Virology Department, Vector Borne Diseases Research Group, Addlestone KT15 3NB, UK;
| | - Javier A. Garza-Hernández
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| |
Collapse
|
2
|
Lanszki Z, Islam MS, Shikder MF, Sarder MJU, Khan SA, Chowdhury S, Islam MN, Tauber Z, Tóth GE, Jakab F, Kemenesi G, Akter S. Snapshot study of canine distemper virus in Bangladesh with on-site PCR detection and nanopore sequencing. Sci Rep 2024; 14:9250. [PMID: 38649415 PMCID: PMC11035628 DOI: 10.1038/s41598-024-59343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Canine distemper virus (CDV) is a highly contagious virus that affects domestic and wild animals, causing severe illness with high mortality rates. Rapid monitoring and sequencing can provide valuable information about circulating CDV strains, which may foster effective vaccination strategies and the successful integration of these into conservation programs. During two site visits in Bangladesh in 2023, we tested a mobile, deployable genomic surveillance setup to explore the genetic diversity and phylogenetic patterns of locally circulating CDV strains. We collected and analysed 355 oral swab samples from stray dogs in Rajshahi and Chattogram cities, Bangladesh. CDV-specific real-time RT-PCR was performed to screen the samples. Out of the 355 samples, 7.4% (10/135) from Rajshahi city and 0.9% (2/220) from Chattogram city tested positive for CDV. We applied a real-time RT-PCR assay and a pan-genotype CDV-specific amplicon-based Nanopore sequencing technology to obtain the near-completes. Five near-complete genome sequences were generated, with phylogenetic relation to the India-1/Asia-5 lineage previously identified in India. This is the first study to provide genomic data on CDV in Bangladesh and the first demonstration of a mobile laboratory setup as a powerful tool in rapid genomic surveillance and risk assessment for CDV in low resource regions.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary.
| | - Md Shafeul Islam
- Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Foisal Shikder
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Jalal Uddin Sarder
- Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahneaz Ali Khan
- Department of Physiology Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, One Health Institute, Rajshahi, Bangladesh
| | - Md Nurul Islam
- Department of Forest and Wildlife Ecology, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, Madison, USA
| | - Zsófia Tauber
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Sazeda Akter
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
3
|
Stelitano D, La Frazia S, Ambrosino A, Zannella C, Tay D, Iovane V, Montagnaro S, De Filippis A, Santoro MG, Porotto M, Galdiero M. Antiviral activity of nitazoxanide against Morbillivirus infections. J Virus Erad 2023; 9:100353. [PMID: 38028567 PMCID: PMC10679774 DOI: 10.1016/j.jve.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The measles virus (MeV) and canine distemper virus (CDV) belong to the genus Morbillivirus of the Paramyxoviridae family. They are enveloped viruses harboring a non-segmented negative-sense RNA. Morbilliviruses are extremely contagious and transmitted through infectious aerosol droplets. Both MeV and CDV may cause respiratory infections and fatal encephalitis, although a high incidence of brain infections is unique to CDV. Despite the availability of a safe and effective vaccine against these viruses, in recent years we are witnessing a strong resurgence of Morbillivirus infection. Measles still kills more than 100,000 people each year, and CDV causes widespread outbreaks, especially among wild animals, including non-human primates. No drugs are currently approved for MeV and CDV. Therefore, the identification of effective antiviral agents represents an unmet medical need. Here, we have investigated the potential antiviral properties of nitazoxanide (NTZ) against MeV and CDV. Antiviral activity was explored with live virus and cell-based assays. NTZ is a thiazolide that is approved by the FDA as an antiprotozoal agent for the treatment of Giardia intestinalis and Cryptosporidium parvum. Further, nitazoxanide and its metabolite tizoxanide have recently emerged as broad-spectrum antiviral agents. We found that NTZ blocks the MeV and CDV replication, acting at the post-entry level. Moreover, we showed that NTZ affects the function of the viral fusion protein (F), impairing viral spread. Our results indicate that NTZ should be further explored as a therapeutic option in measles and canine distemper virus treatment.
Collapse
Affiliation(s)
- Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Daniel Tay
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Valentina Iovane
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, via Federico Delpino 1, 80137, Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Matteo Porotto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Virology and Microbiology Unit, University Hospital “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
4
|
Li N, Bai Y, Yan X, Guo Z, Xiang K, Yang Z, Shangguan H, Ge J, Zhao L. The prevalence, genetic diversity and evolutionary analysis of cachavirus firstly detected in northeastern China. Front Vet Sci 2023; 10:1233972. [PMID: 37771946 PMCID: PMC10527371 DOI: 10.3389/fvets.2023.1233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Canine cachavirus is a novel parvovirus belonging to the genus Chaphamaparvovirus that was first detected in dogs in the United States. However, our knowledge of the prevalence and genetic characteristics of cachavirus is relatively limited. In this study, 325 canine fecal specimens collected from healthy and diarrheic dogs in northeastern China were screened with PCR. Twenty-two of the 325 (6.8%) samples were positive for cachavirus. The diarrhea samples showed high viral coinfection rates, and we detected coinfections with canine astrovirus (CaAstV) and cachavirus for the first time. A sequence analysis revealed that the Chinese cachavirus strains have point mutations in four consecutive amino acid codons relative to the original American strain. A codon usage analysis of the VP1 gene showed that most preferred codons in cachavirus were A- or T-ending codons, as in traditional canine parvovirus 2. A co-evolutionary analysis showed that cachavirus has undergone cospeciation with its hosts and has been transmitted among different host species. Our findings extend the limited cachavirus sequences available, and provide detailed molecular characterization of the strains in northeastern China. Further epidemiological surveillance is required to determine the significance and evolution of cachavirus.
Collapse
Affiliation(s)
- Nuowa Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| | - Lili Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Chianese A, Iovane V, Zannella C, Capasso C, Nastri BM, Monti A, Doti N, Montagnaro S, Pagnini U, Iovane G, De Filippis A, Galdiero M. Synthetic Frog-Derived-like Peptides: A New Weapon against Emerging and Potential Zoonotic Viruses. Viruses 2023; 15:1804. [PMID: 37766211 PMCID: PMC10537403 DOI: 10.3390/v15091804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they may represent both intermediate hosts and/or vectors for zoonoses diffusion. Today, roughly two-thirds of human infections are derived from animal origins; therefore, the search for new broad-spectrum antiviral molecules is mandatory to prevent, control and eradicate future epidemic outbreaks. Host defense peptides, derived from skin secretions of amphibians, appear as the right alternative to common antimicrobial drugs. They are cationic peptides with an amphipathic nature widely described as antibacterial agents, but less is reported about their antiviral potential. In the present study, we evaluated the activity of five amphibian peptides, namely RV-23, AR-23, Hylin-a1, Deserticolin-1 and Hylaseptin-P1, against a wide panel of enveloped animal viruses. A strong virucidal effect was observed for RV-23, AR-23 and Hylin-a1 against bovine and caprine herpesviruses, canine distemper virus, bovine viral diarrhea virus, and Schmallenberg virus. Our results identified these three peptides as potential antiviral-led candidates with a putative therapeutic effect against several animal viruses.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
| | - Carla Capasso
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
| | - Bianca Maria Nastri
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (S.M.); (U.P.); (G.I.)
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (S.M.); (U.P.); (G.I.)
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy; (S.M.); (U.P.); (G.I.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (C.C.); (B.M.N.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
7
|
Persistent and Severe Viral Replication in PBMCs with Moderate Immunosuppression Served an Alternative Novel Pathogenic Mechanism for Canine Morbillivirus. Microbiol Spectr 2023; 11:e0406022. [PMID: 36533959 PMCID: PMC9927106 DOI: 10.1128/spectrum.04060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Measles virus and canine distemper virus (CDV) cause lethal infections in their respective hosts characterized by severe immunosuppression. To furtherly acknowledge the attenuated mechanisms of the regionally ongoing epidemic CDV isolates and provide novel perspectives for designing new vaccines and therapeutic drugs, a recombinant CDV rHBF-vacH was employed with a vaccine hemagglutinin (H) gene replacement by reverse genetics based on an infectious cDNA clone for the CDV wild-type HBF-1 strain. Interestingly, unlike previously published reports that a vaccine H protein completely changed a pathogenic wild-type CDV variant to be avirulent, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets with a prolonged period of disease. Further comparisons of pathogenic mechanisms proved that the weaker but necessary invasions into peripheral blood mononuclear cells (PBMCs) of rHBF-vacH, and subsequently persistent viral replications in PBMCs and multiple organs, together contributed to its 66.7% mortality. In addition, despite significantly higher titers than the parent viruses, rHBF-vacH would not be a suitable candidate for a live vaccine, with great invasion and infection potentials of PBMCs from 16 tested kinds of host species. Altogether, sustained and severe viral replication in PBMCs with moderate immunosuppression was first proven to be an alternative novel pathogenic mechanism for CDV, which might help us to understand possible reasons for CDV fatal infections among domestic dogs and the highly susceptible wild species during natural transmission. IMPORTANCE Despite widespread vaccine campaigns for domestic dogs, CDV remained an important infectious disease in vaccinated carnivores and wild species. In recent years, the regionally ongoing epidemic CDV isolates have emphasized conservation threats to, and potentially disastrous epidemics in, endangered species worldwide. However, little is known about how to deal with the CDV variants constantly regional epidemic. In this study, we employed a recombinant CDV rHBF-vacH with a vaccine H gene replacement in a CDV wild-type HBF-1 context to attenuate the epidemic CDV variant to design a new vaccine candidate. Interestingly, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets by weaker but necessary invasions into PBMCs, and subsequently persistent and severe viral replications in PBMCs. Significantly higher virus titers of rHBF-vacH in vitro might indicate the rapid cell-to-cell spreads in vivo that indirectly contribute to fatal infections of rHBF-vacH in ferrets.
Collapse
|
8
|
Dema A, Tallapally MR, Ganji VK, Buddala B, Kodi H, Ramidi A, Yella NR, Putty K. A comprehensive molecular survey of viral pathogens associated with canine gastroenteritis. Arch Virol 2023; 168:36. [PMID: 36609588 PMCID: PMC9825073 DOI: 10.1007/s00705-022-05674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.
Collapse
Affiliation(s)
- Anusha Dema
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Mounika Reddy Tallapally
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Vishweshwar Kumar Ganji
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Bhagyalakshmi Buddala
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Haritha Kodi
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Ashwini Ramidi
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Narasimha Reddy Yella
- grid.506065.0Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030 India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
9
|
Karki M, Rajak KK, Singh RP. Canine morbillivirus (CDV): a review on current status, emergence and the diagnostics. Virusdisease 2022; 33:309-321. [PMID: 36039286 PMCID: PMC9403230 DOI: 10.1007/s13337-022-00779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
The increasing host range of canine morbillivirus (CDV) affecting important wildlife species such as Lions, Leopard, and Red Pandas has raised the concern. Canine distemper is a pathogen of dogs affecting the respiratory, gastrointestinal, and nervous systems. Seventeen lineages of CDV are reported, and the eighteenth lineage was proposed in 2019 from India. Marked genomic differences in the genome of wild-type virus and vaccine strain are also reported.The variations at the epitope level can be differentiated using specific monoclonal antibodies in neutralization tests. Keeping in mind the current status of the emergence of CDV, genetic and molecular study of circulating strains of the specific geographical region are the essential components of the disease control strategy. New target-based diagnostics and vaccines are in need to counter the effects of the emerging virus population. Control of CDV is necessary to save the endangered, vulnerable, and many other wildlife species to maintain balance in the ecological system. This review provides an overview on emergence reported in CDV, diagnostics developed till today, and a perspective on the disease control strategy, keeping wildlife in consideration.
Collapse
|
10
|
Kličková E, Černíková L, Dumondin A, Bártová E, Budíková M, Sedlák K. Canine Distemper Virus in Wild Carnivore Populations from the Czech Republic (2012–2020): Occurrence, Geographical Distribution, and Phylogenetic Analysis. Life (Basel) 2022; 12:life12020289. [PMID: 35207575 PMCID: PMC8874654 DOI: 10.3390/life12020289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Canine distemper is a highly contagious viral disease in carnivores and represents a serious threat for both wild and domestic animals. The aim of our study was to monitor the occurrence of the canine distemper virus in wildlife from the Czech Republic, reveal the H gene heterogeneity in positive samples and perform subsequent phylogenetic analysis. In total, 412 wild animals of 10 species were included in the study: 219 red foxes (Vulpes vulpes), 79 European badgers (Meles meles), 47 European otters (Lutra lutra), 40 stone martens (Martes foina), 10 pine martens (M. martes), 7 raccoons (Procyon lotor), 5 undetermined martens (Martes sp.), 2 wolves (Canis lupus), 1 European polecat (Mustela putorius), 1 free-ranging ferret (Mustela putorius furo), and 1 free-ranging American mink (Neovison vison). Most animals were found dead or were killed by hunters during hunting seasons in the years 2012–2020 and came from all 14 regions of the Czech Republic. In the animals that were hunted, symptoms such as apathy, loss of shyness or disorientation were reported. Canine distemper virus (CDV) was detected by real-time RT-PCR in the tissues of 74 (18%) of the animals, including 62 (28%) red foxes, 4 (10%) stone martens, 3 (43%) raccoons, 2 (20%) pine martens, 2 (2.5%) European badgers and 1 (20%) undetermined marten. There was a statistical difference in positivity among animal species (p < 0.0001), regions (p = 0.0057), and the years of sampling (p = 0.0005). To determine the genetic characteristics of circulating variants of CDV in wildlife, 23 of 74 CDV variants were partially sequenced. Phylogenetic analysis showed that 21 variants belonged to the European lineage and two strains belonged to the European-Wildlife lineage. This study provides the first comprehensive overview of the prevalence and spatial distribution of CDV in wildlife in the Czech Republic, including molecular phylogenetic analysis of currently circulating CDV lineages.
Collapse
Affiliation(s)
- Eliška Kličková
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6, 165 03 Lysolaje, Czech Republic; (E.K.); (L.Č.)
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 42 Brno, Czech Republic
| | - Lenka Černíková
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6, 165 03 Lysolaje, Czech Republic; (E.K.); (L.Č.)
| | - Aurélie Dumondin
- Lycée Agro-Viticole, 84 Avenue du Général de Gaulle, CS 90113, CEDEX, 33295 Blanquefort, France;
| | - Eva Bártová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 42 Brno, Czech Republic
- Correspondence:
| | - Marie Budíková
- Department of Mathematics and Statistics, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic;
| | - Kamil Sedlák
- State Veterinary Institute Prague, Sídlištní 136/24, Praha 6, 165 03 Lysolaje, Czech Republic;
| |
Collapse
|
11
|
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Pathogens 2021; 10:pathogens10091199. [PMID: 34578231 PMCID: PMC8471232 DOI: 10.3390/pathogens10091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein-protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.
Collapse
|