1
|
Hendrycks W, Mullens N, Bakengesa J, Kabota S, Tairo J, Backeljau T, Majubwa R, Mwatawala M, De Meyer M, Virgilio M. Deterministic and stochastic effects drive the gut microbial diversity in cucurbit-feeding fruit flies (Diptera, Tephritidae). PLoS One 2025; 20:e0313447. [PMID: 39854335 PMCID: PMC11759365 DOI: 10.1371/journal.pone.0313447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 01/26/2025] Open
Abstract
Insect diversity is closely linked to the evolution of phytophagy, with most phytophagous insects showing a strong degree of specialisation for specific host plants. Recent studies suggest that the insect gut microbiome might be crucial in facilitating the dietary (host plant) range. This requires the formation of stable insect-microbiome associations, but it remains largely unclear which processes govern the assembly of insect microbiomes. In this study, we investigated the role of deterministic and stochastic processes in shaping the assembly of the larval microbiome of three tephritid fruit fly species (Dacus bivittatus, D. ciliatus, Zeugodacus cucurbitae). We found that deterministic and stochastic processes play a considerable role in shaping the larval gut microbiome. We also identified 65 microbial ASVs (Amplicon sequence variants) that were associated with these flies, most belonging to the families Enterobacterales, Sphingobacterales, Pseudomonadales and Betaproteobacterales, and speculate about their relationship with cucurbit specialisation. Our data suggest that the larval gut microbiome assembly fits the "microbiome on a leash" model.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Nele Mullens
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Jackline Bakengesa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Biology, University of Dodoma, Dodoma, Tanzania
| | - Sija Kabota
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jenipher Tairo
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Thierry Backeljau
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Ramadhani Majubwa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Maulid Mwatawala
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marc De Meyer
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | | |
Collapse
|
2
|
Ge D, Yin C, Jing J, Li Z, Liu L. Relationship Between the Host Plant Range of Insects and Symbiont Bacteria. Microorganisms 2025; 13:189. [PMID: 39858957 PMCID: PMC11767274 DOI: 10.3390/microorganisms13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The evolution of phytophagous insects has resulted in the development of feeding specializations that are unique to this group. The majority of current research on insect palatability has concentrated on aspects of ecology and biology, with relatively little attention paid to the role of insect gut symbiotic bacteria. Symbiont bacteria have a close relationship with their insect hosts and perform a range of functions. This research aimed to investigate the relationship between insect host plant range and gut symbiotic bacteria. A synthesis of the extant literature on the intestinal commensal bacteria of monophagous, oligophagous, and polyphagous tephritids revealed no evidence of a positive correlation between the plant host range and the diversity of larval intestinal microbial species. The gut symbionts of same species were observed to exhibit discrepancies between different literature sources, which were attributed to variations in multiple environmental factors. However, following beta diversity analysis, monophagy demonstrated the lowest level of variation in intestinal commensal bacteria, while polyphagous tephritids exhibited the greatest variation in intestinal commensal bacteria community variation. In light of these findings, this study proposes the hypothesis that exclusive or closely related plant hosts provide monophagy and oligophagy with a stable core colony over long evolutionary periods. The core flora is closely associated with host adaptations in monophagous and oligophagous tephritids, including nutritional and detoxification functions. This is in contrast to polyphagy, whose dominant colony varies in different environments. Our hypothesis requires further refinement of the data on the gut commensal bacteria of monophagy and oligophagy as the number of species and samples is currently limited.
Collapse
Affiliation(s)
- Doudou Ge
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongwen Yin
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jiayu Jing
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
4
|
Sanaei E, Chavez J, Harris EV, Alcaide TY, Baffour-Addo K, Bugay MJ, Adams KL, Zelaya A, de Roode JC, Gerardo NM. Microbiome analysis of monarch butterflies reveals effects of development and diet. FEMS Microbiol Ecol 2024; 100:fiae143. [PMID: 39557647 DOI: 10.1093/femsec/fiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Diet profoundly influences the composition of an animal's microbiome, especially in holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus), specialist herbivores that feed as larvae on many species of chemically well-defined milkweed plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of the gut microbial community. While a few microbial taxa are conserved across life stages of monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point during the pupal stage and then recovering again in the adult stage. The microbial composition then undergoes a substantial shift upon the transition from pupa to adult, with female adults having significantly different microbial communities than the eggs that they lay, indicating limited evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall microbial composition, our results suggest that fourth instar larvae exhibit higher microbial diversity when consuming milkweed with high concentrations of toxic cardenolide phytochemicals. This study underscores how diet and developmental stage collectively shape the monarch's gut microbiota.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Joselyne Chavez
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States
| | - Erica V Harris
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Agnes Scott College, Department of Medical Sciences, Decatur, GA 30030, United States
| | - Tiffanie Y Alcaide
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Keisha Baffour-Addo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- University of Michigan School of Medicine, Ann Arbor, MI 48109, United States
| | - Mahal J Bugay
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Earlham College, Richmond, IN 47374, United States
| | - Anna Zelaya
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, California State University, San Bernardino, CA 92407, United States
| | - Jacobus C de Roode
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
5
|
Khara A, Chakraborty A, Modlinger R, Synek J, Roy A. Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 2024; 15:1400894. [PMID: 39444680 PMCID: PMC11496174 DOI: 10.3389/fmicb.2024.1400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. Results Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. Conclusion Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
Collapse
Affiliation(s)
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
6
|
Gwokyalya R, Herren JK, Weldon CW, Ndlela S, Gichuhi J, Ongeso N, Wairimu AW, Ekesi S, Mohamed SA. Shaping the Microbial Landscape: Parasitoid-Driven Modifications of Bactrocera dorsalis Microbiota. MICROBIAL ECOLOGY 2024; 87:81. [PMID: 38829379 PMCID: PMC11147917 DOI: 10.1007/s00248-024-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa.
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph Gichuhi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Anne W Wairimu
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
7
|
Bertoldo G, Broccanello C, Tondello A, Cappellozza S, Saviane A, Kovitvadhi A, Concheri G, Cullere M, Stevanato P, Zotte AD, Squartini A. Determining the hierarchical order by which intestinal tract, administered diet, and individual relay can shape the gut microbiome of fattening quails. PLoS One 2024; 19:e0298321. [PMID: 38512802 PMCID: PMC10956773 DOI: 10.1371/journal.pone.0298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024] Open
Abstract
A bacterial metabarcoding approach was used to compare the microbiome composition of caecal and faecal samples from fattening Japanese quails (Coturnix coturnix japonica) fed three different diet regimes. The tested feedstuffs included (1) a commercial diet for fattening quails, (2) a commercial diet containing 12% full-fat silkworm (Bombyx mori) pupae meal, and (3) a commercial diet containing 12% defatted silkworm pupae meal. The aim of the experiment was to verify the relative effect of three variables (diet type, gut tract comparing caecum to rectum, and individual animal) in determining the level of bacterial community dissimilarity to rank the relevance of each of the three factors in affecting and shaping community composition. To infer such ranking, the communities resulting from the high-throughput sequencing from each sample were used to calculate the Bray-Curtis distances in all the pairwise combinations, whereby identical communities would score 0 and totally different ones would yield the maximum distance, equal to 1. The results indicated that the main driver of divergence was the gut tract, as distances between caecal and faecal samples were higher on average, irrespective of diet composition, which scored second in rank, and of whether they had been sampled from the same individual, which was the least effective factor. Simpson's species diversity indexes was not significantly different when comparing tracts or diets, while community evenness was reduced in full-fat silkworm diet-fed animals. The identities of the differentially displayed taxa that were statistically significant as a function of gut tract and diet regimen are discussed in light of their known physiological and functional traits.
Collapse
Affiliation(s)
- Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Alessandra Tondello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padua, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padua, Padova, Italy
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Marco Cullere
- Department of Animal Medicine, Production and Health, MAPS, University of Padova, Padova, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, MAPS, University of Padova, Padova, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Hafsi A, Delatte H. Enterobactereaceae symbiont as facilitators of biological invasion: review on Tephritidae fruit flies. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hendrycks W, Delatte H, Moquet L, Bourtzis K, Mullens N, De Meyer M, Backeljau T, Virgilio M. Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae). Microbiologyopen 2022; 11:e1307. [PMID: 36031958 PMCID: PMC9380402 DOI: 10.1002/mbo3.1307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
While contemporary changes in feeding preferences have been documented in phytophagous insects, the mechanisms behind these processes remain to be fully clarified. In this context, the insect gut microbiome plays a central role in adaptation to novel host plants. The cucurbit frugivorous fruit fly Zeugodacus cucurbitae (Diptera, Tephritidae) has occasionally been reported on "unconventional" host plants from different families, including Solanaceae. In this study, we focus on wild parental (F0 ) adults and semiwild first filial (F1 ) larvae of Z. cucurbitae from multiple sites in La Réunion and explore how the gut microbiome composition changes when this fly is feeding on a noncucurbit host (Solanum melongena). Our analyses show nonobvious gut microbiome responses following the F0 -F1 host shift and the importance of not just diet but also local effects, which heavily affected the diversity and composition of microbiomes. We identified the main bacterial genera responsible for differences between treatments. These data further stress the importance of a careful approach when drawing general conclusions based on laboratory populations or inadequately replicated field samples.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | | | | | - Kostas Bourtzis
- Insect Pest Control LaboratoryJoint FAO/IAEA Centre of Nuclear Techniques in Food and AgricultureViennaAustria
| | - Nele Mullens
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | - Marc De Meyer
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
| | - Thierry Backeljau
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
- OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural Sciences (RBINS)BrusselsBelgium
| | | |
Collapse
|
10
|
Bel Mokhtar N, Catalá-Oltra M, Stathopoulou P, Asimakis E, Remmal I, Remmas N, Maurady A, Britel MR, García de Oteyza J, Tsiamis G, Dembilio Ó. Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis capitata. Front Microbiol 2022; 13:919760. [PMID: 35847076 PMCID: PMC9283074 DOI: 10.3389/fmicb.2022.919760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory adaptation process used in sterile insect technique (SIT) programs can exert a significant impact on the insect-gut microbiome relationship, which may negatively impact the quality and performance of the fly. In the present study, changes in the gut microbiota that occur through laboratory adaptation of two Ceratitis capitata populations were investigated: Vienna 8 genetic sexing strain (GSS), a long-established control line, and a wild population recently introduced to laboratory conditions. The bacterial profiles were studied for both strains using amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in larvae and in the gastrointestinal tract of teneral (1 day) and adults (5 and 15 days) reared under laboratory conditions for 14 generations (F0-F13). Findings demonstrated the development of distinct bacterial communities across the generations with differences in the bacterial composition, suggesting a strong impact of laboratory adaptation on the fly bacteriome. Moreover, different bacterial profiles were observed between wild and Vienna 8 FD-GSS displaying different patterns between the developmental stages. Proteobacteria, mainly members of the Enterobacteriaceae family, represented the major component of the bacterial community followed by Firmicutes (mainly in Vienna 8 FD-GSS adults) and Chlamydiae. The distribution of these communities is dynamic across the generations and seems to be strain- and age-specific. In the Vienna 8 FD-GSS population, Providencia exhibited high relative abundance in the first three generations and decreased significantly later, while Klebsiella was relatively stable. In the wild population, Klebsiella was dominant across most of the generations, indicating that the wild population was more resistant to artificial rearing conditions compared with the Vienna 8 FD-GSS colony. Analysis of the core bacteriome revealed the presence of nine shared taxa between most of the examined medfly samples including Klebsiella, Providencia, Pantoea, and Pseudomonas. In addition, the operational taxonomic unit co-occurrence and mutual exclusion networks of the wild population indicated that most of the interactions were classified as co-presence, while in the Vienna 8 FD-GSS population, the number of mutual exclusions and co-presence interactions was equally distributed. Obtained results provided a thorough study of the dynamics of gut-associated bacteria during the laboratory adaptation of different Ceratitis capitata populations, serving as guidance for the design of colonization protocols, improving the effectiveness of artificial rearing and the SIT application.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Imane Remmal
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amal Maurady
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | | | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| |
Collapse
|
11
|
Goane L, Salgueiro J, Medina Pereyra P, Arce OEA, Ruiz MJ, Nussenbaum AL, Segura DF, Vera MT. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104396. [PMID: 35447135 DOI: 10.1016/j.jinsphys.2022.104396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Insect microbiota, particularly, gut bacteria has recently gained especial attention in Tephritidae fruit flies, being Enterobacteriaceae the predominant bacterial group. This bacterial group has been postulated to contribute to the fitness of fruit flies through several life-history traits. Particularly in Anastrepha fraterculus, removal of Enterobacteria from male gut via antibiotic treatment impaired their mating behavior. Because the impact of gut bacteria on female reproduction was not yet addressed, we here analysed the effect of antibiotic treatment on female fecundity and nutritional status, and further explored the role of bacteria under different dietary regimes. The removal of culturable Enterobacteria from the gut of females was associated to a reduction in fecundity as well as in the protein and lipid reserves. However, fecundity reduction depended on the dietary regime; being more pronounced when females fed a poor diet. Our results suggest that nutrient reserves of females are determined, at least to some extent, by intestinal bacteria (particularly Enterobacteria). The effect of antibiotics on fecundity could be explained, thus, as a consequence of a poorer nutritional status in antibiotic-treated females compared to control females. Our results contribute to understand the interaction between gut bacteria and Tephritidae fruit flies. Considering the relevance of this insect as fruit pest and the widespread use of the sterile insect technique to control them, these findings may lead to practical applications, such as development of efficient mass rearing protocols of A. fraterculus that supplement the adult diet with probiotics.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Julieta Salgueiro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Osvaldo E A Arce
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Josefina Ruiz
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana L Nussenbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M Teresa Vera
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
12
|
Zhou Z, Huang H, Che X. Bacterial Communities in the Feces of Laboratory Reared Gampsocleis gratiosa (Orthoptera: Tettigoniidae) across Different Developmental Stages and Sexes. INSECTS 2022; 13:insects13040361. [PMID: 35447806 PMCID: PMC9024567 DOI: 10.3390/insects13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae) is an economically important singing pet in China. In the present study, the bacterial communities of the laboratory-reared G. gratiosa feces were characterized using Illumina sequencing of the 16S rDNA V3-V4 region. Abstract We used Illumina sequencing of the 16S rDNA V3-V4 region to identify the bacterial community in laboratory-reared G. gratiosa feces across different developmental stages (1st–7th instar nymph day 0, and 0-, 7-, 14-, and 21-day adult) and sexes. In total, 14,480,559 high-quality reads were clustered into 2982 species-level operational taxonomic units (OTUs), with an average of 481.197 (±137.366) OTUs per sample. These OTUs were assigned into 25 phyla, 42 classes, 60 orders, 116 families, 241 genera, and some unclassified groups. Only 21 core OTUs were shared by all samples. The most representative phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes, and Acidobacteria. At the genus level, Kluyvera (387 OTUs), Obesumbacterium (339 OTUs), Buttiauxella (296 OTUs), Lactobacillus (286 OTUs), and Hafnia (152 OTUs) were dominant bacteria. The early-instar nymphs harbored a similar bacterial community with other developmental stages, which contain higher species diversity. Both principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) failed to provide a clear clustering based on the developmental stages and sexes. Overall, we assume that G. gratiosa transmits bacteria vertically by eating contaminated eggshells, and both developmental stages and sexes had no significant effect on the fecal bacterial community.
Collapse
Affiliation(s)
- Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence:
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| | - Xuting Che
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| |
Collapse
|
13
|
Salgueiro J, Nussenbaum AL, Milla FH, Asimakis E, Goane L, Ruiz MJ, Bachmann GE, Vera MT, Stathopoulou P, Bourtzis K, Deutscher AT, Lanzavecchia SB, Tsiamis G, Segura DF. Analysis of the Gut Bacterial Community of Wild Larvae of Anastrepha fraterculus sp. 1: Effect of Host Fruit, Environment, and Prominent Stable Associations of the Genera Wolbachia, Tatumella, and Enterobacter. Front Microbiol 2022; 13:822990. [PMID: 35359740 PMCID: PMC8960962 DOI: 10.3389/fmicb.2022.822990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Anastrepha (Diptera Tephritidae) includes some of the most important fruit fly pests in the Americas. Here, we studied the gut bacterial community of 3rd instar larvae of Anastrepha fraterculus sp. 1 through Next Generation Sequencing (lllumina) of the V3-V4 hypervariable region within the 16S rRNA gene. Gut bacterial communities were compared between host species (guava and peach), and geographical origins (Concordia and Horco Molle in Argentina) representing distinct ecological scenarios. In addition, we explored the effect of spatial scale by comparing the samples collected from different trees within each geographic origin and host species. We also addressed the effect of fruit size on bacterial diversity. The gut bacterial community was affected both by host species and geographic origin. At smaller spatial scales, the gut bacterial profile differed among trees of the same species and location at least in one host-location combination. There was no effect of fruit size on the larval gut bacteriome. Operational Taxonomic Units (OTUs) assigned to Wolbachia, Tatumella and Enterobacter were identified in all samples examined, which suggest potential, non-transient symbioses. Better knowledge on the larval gut bacteriome contributes valuable information to develop sustainable control strategies against A. fraterculus targeting key symbionts as the Achilles' heel to control this important fruit fly pest.
Collapse
Affiliation(s)
- Julieta Salgueiro
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A. Laura Nussenbaum
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fabián H. Milla
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Lucía Goane
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - M. Josefina Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Guillermo E. Bachmann
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María T. Vera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Ania T. Deutscher
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| | - Silvia B. Lanzavecchia
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Diego F. Segura
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Rashidi M, Lin CY, Britt K, Batuman O, Al Rwahnih M, Achor D, Levy A. Diaphorina citri flavi-like virus localization, transmission, and association with Candidatus Liberibacter asiaticus in its psyllid host. Virology 2021; 567:47-56. [PMID: 34998225 DOI: 10.1016/j.virol.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.
Collapse
Affiliation(s)
- Mahnaz Rashidi
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Kellee Britt
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Ozgur Batuman
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
15
|
Nguyen B, Dinh H, Morimoto J, Ponton F. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104308. [PMID: 34474015 DOI: 10.1016/j.jinsphys.2021.104308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, United Kingdom
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Bigiotti G, Sacchetti P, Pastorelli R, Lauzon CR, Belcari A. Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control. INSECT SCIENCE 2021; 28:874-884. [PMID: 32519794 DOI: 10.1111/1744-7917.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.
Collapse
Affiliation(s)
- Gaia Bigiotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Patrizia Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Roberta Pastorelli
- Research Centre for Agriculture and Environment, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA-AA), Florence, Italy
| | - Carol R Lauzon
- Department of Biological Sciences, California State University, Hayward, USA
| | - Antonio Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| |
Collapse
|
17
|
Nesvorna M, Pekar S, Shcherbachenko E, Molva V, Erban T, Green SJ, Klimov PB, Hubert J. Microbiome variation during culture growth of the European house dust mite, Dermatophagoides pteronyssinus. FEMS Microbiol Ecol 2021; 97:6155062. [PMID: 33674831 DOI: 10.1093/femsec/fiab039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
In culture, the house dust mite, Dermatophagoides pteronyssinus, shows different growth patterns, but the composition and changes in the associated microbial community during mite culture growth are poorly known. In this study, we analyzed temporal changes in microbial communities including 'internal' communities (inside mites, ingested) and 'environmental' communities (from culture environment). Microbial community structure was correlated with guanine content (a nitrogenous waste product of mites) and mite population density. Both internal and environmental microbial communities were remarkably consistent between biological replicates from the same culture age group and were composed of relatively few dominant taxa-11 bacterial and 3 fungal operational taxonomic units (OTUs). Significant changes over time in microbial community structure in the bulk culture environment and in internal mite samples were observed. The yeast, Saccharomyces cerevisiae, a main component of the mite diet, gradually disappeared during mite culture growth and was replaced by fungi from the genera Aspergillus and Candida in both 'internal' and 'environmental' samples. In environmental samples, bacteria from the genus Lactobacillus and S. cerevisiae were negatively correlated, and Aspergillus and Candida positively correlated, with guanine content. The relative abundance of bacteria from the genus Kocuria increased with mite density but declined with increasing guanine content. The relative abundance of bacteria from the genus Virgibacillus was negatively correlated with mite density in 'internal' samples. Gram-positive bacteria dominated bacterial microbiomes at all time points in our experiments, indicating a more limited possibility for vaccine contamination by bacterial endotoxins (heat-stable lipopolysaccharides produced mostly by Gram-negative bacteria) in our experimental cultures.
Collapse
Affiliation(s)
- Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | | | - Vit Molva
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stefan J Green
- Rush University, Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, 600 S. Paulina St. Chicago, Illinois 60612, USA
| | - Pavel B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48109, USA.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| |
Collapse
|
18
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
19
|
Nanopore-Sequencing Characterization of the Gut Microbiota of Melolontha melolontha Larvae: Contribution to Protection against Entomopathogenic Nematodes? Pathogens 2021; 10:pathogens10040396. [PMID: 33806200 PMCID: PMC8067285 DOI: 10.3390/pathogens10040396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.
Collapse
|
20
|
Choudhary JS, Naaz N, Prabhakar CS, Das B, Singh AK, Bhatt BP. High Taxonomic and Functional Diversity of Bacterial Communities Associated with Melon Fly, Zeugodacus cucurbitae (Diptera: Tephritidae). Curr Microbiol 2021; 78:611-623. [PMID: 33392673 DOI: 10.1007/s00284-020-02327-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
The next generation sequencing (NGS) approach has facilitated the investigations of gut microbiota with high throughput and resolution. The present study was focused on the taxonomic and functional characterization of bacterial community associated with different developmental stages of melon fly, Zeugodacus cucurbitae using 16S ribosomal RNA (rRNA) gene amplicons metagenomics. Z. cucurbitae is considered an invasive and most staid polyphagous pest of cucurbitaceous and other related crops. The taxonomic analysis of highly variable V3-V4 region of bacterial 16S rRNA gene sequencing indicated that the bacterial community associated with Z. cucurbitae consists of a total of 23 bacterial phyla (including unclassified and unassigned bacteria), comprising 32 classes, 69 orders, 99 families and 130 genera. Proteobacteria, Firmicutes, Actinobacteria and Tenericutes were dominant phyla of which family, Enterobacteriaceae was the most abundant in the larval and adult female stages, whereas Mycoplasmataceae was the dominant in the pupal stage. In larval stages of Z. cucurbitae, genus Providencia and Comamonas were the most abundant. However, genus Candidatus-Bacilloplasma and Klebsiella were the most dominant in pupae and adult females of Z. cucurbitae, respectively. PICRUSt analysis conducted for prediction of metabolic activities revealed that associated microbiota were involved in membrane transport, carbohydrate metabolism, amino acid metabolism, energy metabolism, replication and repair processes as well as cellular processes and signalling. The higher number of OTUs was annotated for phosphoglycerate mutase and transketolase in adult females followed by larval stages, which may support the digestive function of the microbiota in larvae and adult females. Our findings provide insights about the high variation in microbiota across developmental stages and basis for microbiota-based management strategies of fruit flies.
Collapse
Affiliation(s)
- Jaipal S Choudhary
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.
| | - Naiyar Naaz
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.,University Department of Botany, Ranchi University, Morabadi, Ranchi, Jharkhand, 843 008, India
| | - Chandra S Prabhakar
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India.,Department of Entomology, Veer Kunwar Singh College of Agriculture, Dumraon (Bihar Agricultural University, Sabour), Buxar, Bihar, 802 136, India
| | - Bikash Das
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India
| | - Arun K Singh
- Farming Systems Research Centre for Hill and Plateau Region, ICAR-RCER, Plandu, Ranchi, Jharkhand, 834 010, India
| | - B P Bhatt
- ICAR-Research Complex for Eastern Region, ICAR Parisar, P. O. Bihar Veterinary College, Patna, Bihar, 800 014, India
| |
Collapse
|
21
|
Nikolouli K, Augustinos AA, Stathopoulou P, Asimakis E, Mintzas A, Bourtzis K, Tsiamis G. Genetic structure and symbiotic profile of worldwide natural populations of the Mediterranean fruit fly, Ceratitis capitata. BMC Genet 2020; 21:128. [PMID: 33339507 PMCID: PMC7747371 DOI: 10.1186/s12863-020-00946-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mediterranean fruit fly, Ceratitis capitata, is a cosmopolitan agricultural pest of worldwide economic importance and a model for the development of the Sterile Insect Technique (SIT) for fruit flies of the Tephritidae family (Diptera). SIT relies on the effective mating of laboratory-reared strains and natural populations, and therefore requires an efficient mass-rearing system that will allow for the production of high-quality males. Adaptation of wild flies to an artificial laboratory environment can be accompanied by negative effects on several life history traits through changes in their genetic diversity and symbiotic communities. Such changes may lead to reduced biological quality and mating competitiveness in respect to the wild populations. Profiling wild populations can help understand, and maybe reverse, deleterious effects accompanying laboratory domestication thus providing insects that can efficiently and effectively support SIT application. RESULTS In the present study, we analyzed both the genetic structure and gut symbiotic communities of natural medfly populations of worldwide distribution, including Europe, Africa, Australia, and the Americas. The genetic structure of 408 individuals from 15 distinct populations was analyzed with a set of commonly used microsatellite markers. The symbiotic communities of a subset of 265 individuals from 11 populations were analyzed using the 16S rRNA gene-based amplicon sequencing of single individuals (adults). Genetic differentiation was detected among geographically distant populations while adults originated from neighboring areas were genetically closer. Alpha and beta diversity of bacterial communities pointed to an overall reduced symbiotic diversity and the influence of the geographic location on the bacterial profile. CONCLUSIONS Our analysis revealed differences both in the genetic profile and the structure of gut symbiotic communities of medfly natural populations. The genetic analysis expanded our knowledge to populations not analyzed before and our results were in accordance with the existing scenarios regarding this species expansion and colonization pathways. At the same time, the bacterial communities from different natural medfly populations have been characterized, thus broadening our knowledge on the microbiota of the species across its range. Genetic and symbiotic differences between natural and laboratory populations must be considered when designing AW-IPM approaches with a SIT component, since they may impact mating compatibility and mating competitiveness of the laboratory-reared males. In parallel, enrichment from wild populations and/or symbiotic supplementation could increase rearing productivity, biological quality, and mating competitiveness of SIT-important laboratory strains.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.
- Department of Biology, University of Patras, 26504, Patras, Greece.
- Present address: Department of Plant Protection, Hellenic Agricultural Organization-Demeter, Institute of Industrial and Forage Crops, 26442, Patras, Greece.
| | | | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, 30100, Agrinio, Greece.
| |
Collapse
|
22
|
Salgueiro J, Pimper LE, Segura DF, Milla FH, Russo RM, Asimakis E, Stathopoulou P, Bourtzis K, Cladera JL, Tsiamis G, Lanzavecchia SB. Gut Bacteriome Analysis of Anastrepha fraterculus sp. 1 During the Early Steps of Laboratory Colonization. Front Microbiol 2020; 11:570960. [PMID: 33193166 PMCID: PMC7606190 DOI: 10.3389/fmicb.2020.570960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated to insect species are involved in essential biological functions such as host nutrition, reproduction and survivability. Main factors have been described as modulators of gut bacterial community, such as diet, habit, developmental stage and taxonomy of the host. The present work focuses on the complex changes that gut microbial communities go through when wild insects are introduced to artificial rearing conditions. Specifically, we analyzed the effect of the laboratory colonization on the richness and diversity of the gut bacteriome hosted by the fruit fly pest Anastrepha fraterculus sp. 1. Bacterial profiles were studied by amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in gut samples of males and females, in teneral (1-day-old, unfed) and post-teneral (15-day-old, fed) flies. A total of 3,147,665 sequence reads were obtained and 32 bacterial operational taxonomic units (OTUs) were identified. Proteobacteria was the most abundant phylum (93.3% of the total reads) and, Wolbachia and Enterobacter were the most represented taxa at the genus level (29.9% and 27.7%, respectively, of the total read counts). Wild and laboratory flies showed highly significant differences in the relative abundances of bacteria. The analysis of the core bacteriome showed the presence of five OTUs in all samples grouped by origin, while nine and five OTUs were exclusively detected in laboratory and wild flies, respectively. Irrespective of fly origin or sex, a dominant presence of Wolbachia was observed in teneral flies, whereas Enterobacter was highly abundant in post-teneral individuals. We evidenced significant differences in bacterial richness and diversity among generations under laboratory colonization (F0, F1, F3 and F6) and compared to laboratory and wild flies, displaying also differential patterns between teneral and post-teneral flies. Laboratory and wild A. fraterculus sp. 1 harbor different gut bacterial communities. Laboratory colonization has an important effect on the microbiota, most likely associated to the combined effects of insect physiology and environmental conditions (e.g., diet and colony management).
Collapse
Affiliation(s)
- Julieta Salgueiro
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lida E Pimper
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Romina M Russo
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge L Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Naaz N, Choudhary JS, Choudhary A, Dutta A, Das B. Developmental stage-associated microbiota profile of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing. 3 Biotech 2020; 10:390. [PMID: 32832340 DOI: 10.1007/s13205-020-02381-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
The different developmental stage-associated microbiota of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae), was characterized using 16S rRNA gene (V3-V4 region) metabarcoding on the Illumina HiSeq platform. Taxonomically, at 97% similarity, there were total 16 bacterial phyla, comprising of 24 classes, 55 orders, 90 families and 134 genera. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the most abundant phyla with Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia and Bacilli being the most abundant classes. The bacterial genus Enterobacter was dominant in the larval and adult stages and Pseudomonas in the pupal stage. A total of 2645 operational taxonomic units (OTUs) were identified, out of which 151 OTUs (core microbiota) were common among all the developmental stages of B. zonata. The genus Enterobacter, Klebsiella and Pantoea were dominant among the core microbiota. PICURSt analysis predicted that microbiota associated with B. zonata may be involved in membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair processes as well as in cellular processes and signalling. The microbiota that was shared by all the developmental stages of B. zonata in the present study could be targeted and the foundation for research on microbiota-based management of fruit flies.
Collapse
|
24
|
De Cock M, Virgilio M, Vandamme P, Bourtzis K, De Meyer M, Willems A. Comparative Microbiomics of Tephritid Frugivorous Pests (Diptera: Tephritidae) From the Field: A Tale of High Variability Across and Within Species. Front Microbiol 2020; 11:1890. [PMID: 32849469 PMCID: PMC7431611 DOI: 10.3389/fmicb.2020.01890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
The family Tephritidae includes some of the most notorious insect pests of agricultural and horticultural crops in tropical and sub-tropical regions. Despite the interest in the study of their gut microbiome, our present knowledge is largely based on the analysis of laboratory strains. In this study, we present a first comparative analysis of the gut microbiome profiles of field populations of ten African and Mediterranean tephritid pests. For each species, third instar larvae were sampled from different locations and host fruits and compared using 16S rRNA amplicon sequencing and a multi-factorial sampling design. We observed considerable variation in gut microbiome diversity and composition both between and within fruit fly species. A “core” microbiome, shared across all targeted species, could only be identified at most at family level (Enterobacteriaceae). At genus level only a few bacterial genera (Klebsiella, Enterobacter, and Bacillus) were present in most, but not all, samples, with high variability in their relative abundance. Higher relative abundances were found for seven bacterial genera in five of the fruit fly species considered. These were Erwinia in Bactrocera oleae, Lactococcus in B. zonata, Providencia in Ceratitis flexuosa, Klebsiella, and Rahnella in C. podocarpi and Acetobacter and Serratia in C. rosa. With the possible exception of C. capitata and B. dorsalis (the two most polyphagous species considered) we could not detect obvious relationships between fruit fly dietary breadth and microbiome diversity or abundance patterns. Similarly, our results did not suggest straightforward differences between the microbiome profiles of species belonging to Ceratitis and the closely related Bactrocera/Zeugodacus. These results provide a first comparative analysis of the gut microbiomes of field populations of multiple economically relevant tephritids and provide base line information for future studies that will further investigate the possible functional role of the observed associations.
Collapse
Affiliation(s)
- Maarten De Cock
- Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the UnitedNations/International Atomic Energy Agency (FAO/IAEA) Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|