1
|
Cox A, Krishnankutty N, Shave S, Howick VM, Auer M, La Clair JJ, Philip N. Repositioning Brusatol as a Transmission Blocker of Malaria Parasites. ACS Infect Dis 2024; 10:3586-3596. [PMID: 39352879 PMCID: PMC11474950 DOI: 10.1021/acsinfecdis.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Currently, primaquine is the only malaria transmission-blocking drug recommended by the WHO. Recent efforts have highlighted the importance of discovering new agents that regulate malarial transmission, with particular interest in agents that can be administered in a single low dose, ideally with a discrete and Plasmodium-selective mechanism of action. Here, our team demonstrates an approach to identify malaria transmission-blocking agents through a combination of in vitro screening and in vivo analyses. Using a panel of natural products, our approach identified potent transmission blockers, as illustrated by the discovery of the transmission-blocking efficacy of brusatol. As a member of a large family of biologically active natural products, this discovery provides a critical next step toward developing methods to rapidly identify quassinoids and related agents with valuable pharmacological therapeutic properties.
Collapse
Affiliation(s)
- Amelia Cox
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Neelima Krishnankutty
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Virginia M. Howick
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - James J. La Clair
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - Nisha Philip
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
2
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
3
|
Cao Y, Hayashi CTH, Kumar N. A Novel Ex Vivo Assay to Evaluate Functional Effectiveness of Plasmodium vivax Transmission-Blocking Vaccine Using Pvs25 Transgenic Plasmodium berghei. J Infect Dis 2024; 229:1894-1903. [PMID: 38408353 PMCID: PMC11175679 DOI: 10.1093/infdis/jiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
5
|
Tsebriy O, Khomiak A, Miguel-Blanco C, Sparkes PC, Gioli M, Santelli M, Whitley E, Gamo FJ, Delves MJ. Machine learning-based phenotypic imaging to characterise the targetable biology of Plasmodium falciparum male gametocytes for the development of transmission-blocking antimalarials. PLoS Pathog 2023; 19:e1011711. [PMID: 37801466 PMCID: PMC10584170 DOI: 10.1371/journal.ppat.1011711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/18/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Preventing parasite transmission from humans to mosquitoes is recognised to be critical for achieving elimination and eradication of malaria. Consequently developing new antimalarial drugs with transmission-blocking properties is a priority. Large screening campaigns have identified many new transmission-blocking molecules, however little is known about how they target the mosquito-transmissible Plasmodium falciparum stage V gametocytes, or how they affect their underlying cell biology. To respond to this knowledge gap, we have developed a machine learning image analysis pipeline to characterise and compare the cellular phenotypes generated by transmission-blocking molecules during male gametogenesis. Using this approach, we studied 40 molecules, categorising their activity based upon timing of action and visual effects on the organisation of tubulin and DNA within the cell. Our data both proposes new modes of action and corroborates existing modes of action of identified transmission-blocking molecules. Furthermore, the characterised molecules provide a new armoury of tool compounds to probe gametocyte cell biology and the generated imaging dataset provides a new reference for researchers to correlate molecular target or gene deletion to specific cellular phenotype. Our analysis pipeline is not optimised for a specific organism and could be applied to any fluorescence microscopy dataset containing cells delineated by bounding boxes, and so is potentially extendible to any disease model.
Collapse
Affiliation(s)
| | | | | | - Penny C. Sparkes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | | | - Edgar Whitley
- Department of Management, London School of Economics and Political Science, London, United Kingdom
| | | | - Michael J. Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
6
|
Gao H, Jiang Y, Wang L, Wang G, Hu W, Dong L, Wang S. Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nat Commun 2023; 14:5157. [PMID: 37620328 PMCID: PMC10449815 DOI: 10.1038/s41467-023-40887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Hu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Saini M, Julius Ngwa C, Marothia M, Verma P, Ahmad S, Kumari J, Anand S, Vandana V, Goyal B, Chakraborti S, Pandey KC, Garg S, Pati S, Ranganathan A, Pradel G, Singh S. Characterization of Plasmodium falciparum prohibitins as novel targets to block infection in humans by impairing the growth and transmission of the parasite. Biochem Pharmacol 2023; 212:115567. [PMID: 37088154 DOI: 10.1016/j.bcp.2023.115567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Prohibitins (PHBs) are highly conserved pleiotropic proteins as they have been shown to mediate key cellular functions. Here, we characterize PHBs encoding putative genes of Plasmodium falciparum by exploiting different orthologous models. We demonstrated that PfPHB1 (PF3D7_0829200) and PfPHB2 (PF3D7_1014700) are expressed in asexual and sexual blood stages of the parasite. Immunostaining indicated these proteins as mitochondrial residents as they were found to be localized as branched structures. We further validated PfPHBs as organellar proteins residing in Plasmodium mitochondria, where they interact with each other. Functional characterization was done in Saccharomyces cerevisiae orthologous model by expressing PfPHB1 and PfPHB2 in cells harboring respective mutants. The PfPHBs functionally complemented the yeast PHB1 and PHB2 mutants, where the proteins were found to be involved in stabilizing the mitochondrial DNA, retaining mitochondrial integrity and rescuing yeast cell growth. Further, Rocaglamide (Roc-A), a known inhibitor of PHBs and anti-cancerous agent, was tested against PfPHBs and as an antimalarial. Roc-A treatment retarded the growth of PHB1, PHB2, and ethidium bromide petite yeast mutants. Moreover, Roc-A inhibited growth of yeast PHBs mutants that were functionally complemented with PfPHBs, validating P. falciparum PHBs as one of the molecular targets for Roc-A. Roc-A treatment led to growth inhibition of artemisinin-sensitive (3D7), artemisinin-resistant (R539T) and chloroquine-resistant (RKL-9) parasites in nanomolar ranges. The compound was able to retard gametocyte and oocyst growth with significant morphological aberrations. Based on our findings, we propose the presence of functional mitochondrial PfPHB1 and PfPHB2 in P. falciparum and their druggability to block parasite growth.
Collapse
Affiliation(s)
- Monika Saini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pritee Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shakeel Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Vandana
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academic Council of Scientific and Innovative Research, Faridabad, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Kumari G, Jain R, Kumar Sah R, Kalia I, Vashistha M, Singh P, Prasad Singh A, Samby K, Burrows J, Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem Pharmacol 2022; 203:115154. [PMID: 35798201 DOI: 10.1016/j.bcp.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Singh
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Reader J, van der Watt ME, Birkholtz LM. Streamlined and Robust Stage-Specific Profiling of Gametocytocidal Compounds Against Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926460. [PMID: 35846744 PMCID: PMC9282888 DOI: 10.3389/fcimb.2022.926460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria elimination is dependent on the ability to target both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum. These forms of the parasite are differentiated by unique developmental stages, each with their own biological mechanisms and processes. These individual stages therefore also respond differently to inhibitory compounds, and this complicates the discovery of multistage active antimalarial agents. The search for compounds with transmission-blocking activity has focused on screening for activity on mature gametocytes, with only limited descriptions available for the activity of such compounds on immature stage gametocytes. This therefore poses a gap in the profiling of antimalarial agents for pan-reactive, multistage activity to antimalarial leads. Here, we optimized an effective and robust strategy for the simple and cost-effective description of the stage-specific action of gametocytocidal antimalarial compounds.
Collapse
Affiliation(s)
- Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mariette E. van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Lyn-Marié Birkholtz,
| |
Collapse
|
10
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Birkholtz LM, Alano P, Leroy D. Transmission-blocking drugs for malaria elimination. Trends Parasitol 2022; 38:390-403. [DOI: 10.1016/j.pt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
12
|
Niemand J, van Biljon R, van der Watt M, van Heerden A, Reader J, van Wyk R, Orchard L, Chibale K, Llinás M, Birkholtz LM. Chemogenomic Fingerprints Associated with Stage-Specific Gametocytocidal Compound Action against Human Malaria Parasites. ACS Infect Dis 2021; 7:2904-2916. [PMID: 34569223 DOI: 10.1021/acsinfecdis.1c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinase-focused inhibitors previously revealed compounds with differential activity against different stages of Plasmodium falciparum gametocytes. MMV666810, a 2-aminopyrazine, is more active on late-stage gametocytes, while a pyrazolopyridine, MMV674850, preferentially targets early-stage gametocytes. Here, we probe the biological mechanisms underpinning this differential stage-specific killing using in-depth transcriptome fingerprinting. Compound-specific chemogenomic profiles were observed with MMV674850 treatment associated with biological processes shared between asexual blood stage parasites and early-stage gametocytes but not late-stage gametocytes. MMV666810 has a distinct profile with clustered gene sets associated primarily with late-stage gametocyte development, including Ca2+-dependent protein kinases (CDPK1 and 5) and serine/threonine protein kinases (FIKK). Chemogenomic profiling therefore highlights essential processes in late-stage gametocytes, on a transcriptional level. This information is important to prioritize compounds that preferentially compromise late-stage gametocytes for further development as transmission-blocking antimalarials.
Collapse
Affiliation(s)
- Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
13
|
Hien DFDS, Paré PSL, Cooper A, Koama BK, Guissou E, Yaméogo KB, Yerbanga RS, Farrell IW, Ouédraogo JB, Gnankiné O, Ignell R, Cohuet A, Dabiré RK, Stevenson PC, Lefèvre T. Contrasting effects of the alkaloid ricinine on the capacity of Anopheles gambiae and Anopheles coluzzii to transmit Plasmodium falciparum. Parasit Vectors 2021; 14:479. [PMID: 34526119 PMCID: PMC8444468 DOI: 10.1186/s13071-021-04992-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Besides feeding on blood, females of the malaria vector Anopheles gambiae sensu lato readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castor bean Ricinus communis, on the ability of mosquitoes to transmit Plasmodium falciparum. Methods Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, level of P. falciparum infection and growth rate of the parasite. Results Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l−1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l−1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. Conclusions Overall, our findings reveal that consumption of certain nectar phytochemicals can have unexpected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact which plants can have on the transmission of vector-borne diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04992-z.
Collapse
Affiliation(s)
- Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso. .,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso. .,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| | - Prisca S L Paré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Université Joseph KI-ZERBO, Ougadougou, Burkina Faso
| | - Amanda Cooper
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK
| | - Benjamin K Koama
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Institut Des Sciences Et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Edwige Guissou
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Koudraogo B Yaméogo
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Iain W Farrell
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK
| | - Jean B Ouédraogo
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | | | - Rickard Ignell
- Department of Plant Protection Biology, Unit of Chemical Ecology, Disease Vector Group, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Cohuet
- Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Centre de Recherche en Écologie Et Évolution de La Santé (CREES), Montpellier, France
| |
Collapse
|
14
|
van Heerden A, van Wyk R, Birkholtz LM. Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action. Front Cell Infect Microbiol 2021; 11:688256. [PMID: 34268139 PMCID: PMC8277430 DOI: 10.3389/fcimb.2021.688256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Abstract
The rapid development of antimalarial resistance motivates the continued search for novel compounds with a mode of action (MoA) different to current antimalarials. Phenotypic screening has delivered thousands of promising hit compounds without prior knowledge of the compounds’ exact target or MoA. Whilst the latter is not initially required to progress a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit prioritization, hit-to-lead optimization and preclinical combination studies in malaria research. The effects of drug treatment on a cell can be observed on systems level in changes in the transcriptome, proteome and metabolome. Machine learning (ML) algorithms are powerful tools able to deconvolute such complex chemically-induced transcriptional signatures to identify pathways on which a compound act and in this manner provide an indication of the MoA of a compound. In this study, we assessed different ML approaches for their ability to stratify antimalarial compounds based on varied chemically-induced transcriptional responses. We developed a rational gene selection approach that could identify predictive features for MoA to train and generate ML models. The best performing model could stratify compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. Moreover, only a limited set of 50 biomarkers was required to stratify compounds with similar MoA and define chemo-transcriptomic fingerprints for each compound. These fingerprints were unique for each compound and compounds with similar targets/MoA clustered together. The ML model was specific and sensitive enough to group new compounds into MoAs associated with their predicted target and was robust enough to be extended to also generate chemo-transcriptomic fingerprints for additional life cycle stages like immature gametocytes. This work therefore contributes a new strategy to rapidly, specifically and sensitively indicate the MoA of compounds based on chemo-transcriptomic fingerprints and holds promise to accelerate antimalarial drug discovery programs.
Collapse
Affiliation(s)
- Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
15
|
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat Commun 2021; 12:269. [PMID: 33431834 PMCID: PMC7801607 DOI: 10.1038/s41467-020-20629-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages. Here, Reader et al. screen the Medicines for Malaria Venture Pandemic Response Box in parallel against Plasmodiumasexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. They identify two potent transmission-blocking drugs: a histone demethylase inhibitor ML324 and the antitubercular SQ109.
Collapse
|
16
|
Patra KP, Kaur H, Kolli SK, Wozniak JM, Prieto JH, Yates JR, Gonzalez DJ, Janse CJ, Vinetz JM. A Hetero-Multimeric Chitinase-Containing Plasmodium falciparum and Plasmodium gallinaceum Ookinete-Secreted Protein Complex Involved in Mosquito Midgut Invasion. Front Cell Infect Microbiol 2021; 10:615343. [PMID: 33489941 PMCID: PMC7821095 DOI: 10.3389/fcimb.2020.615343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.
Collapse
Affiliation(s)
- Kailash P Patra
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob M Wozniak
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Judith Helena Prieto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Department of Chemistry, Western Connecticut State University, Danbury, CT, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural Products: A Potential Source of Malaria Transmission Blocking Drugs? Pharmaceuticals (Basel) 2020; 13:E251. [PMID: 32957668 PMCID: PMC7558993 DOI: 10.3390/ph13090251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The ability to block human-to-mosquito and mosquito-to-human transmission of Plasmodium parasites is fundamental to accomplish the ambitious goal of malaria elimination. The WHO currently recommends only primaquine as a transmission-blocking drug but its use is severely restricted by toxicity in some populations. New, safe and clinically effective transmission-blocking drugs therefore need to be discovered. While natural products have been extensively investigated for the development of chemotherapeutic antimalarial agents, their potential use as transmission-blocking drugs is comparatively poorly explored. Here, we provide a comprehensive summary of the activities of natural products (and their derivatives) of plant and microbial origins against sexual stages of Plasmodium parasites and the Anopheles mosquito vector. We identify the prevailing challenges and opportunities and suggest how these can be mitigated and/or exploited in an endeavor to expedite transmission-blocking drug discovery efforts from natural products.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Grace Mugumbate
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Private Bag, 7724 Chinhoyi, Zimbabwe;
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort 0110 Pretoria, South Africa;
| | - Abraham I. Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Vinesh J. Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| |
Collapse
|
18
|
Carolino K, Winzeler EA. The antimalarial resistome - finding new drug targets and their modes of action. Curr Opin Microbiol 2020; 57:49-55. [PMID: 32682267 PMCID: PMC7763834 DOI: 10.1016/j.mib.2020.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
To this day, malaria remains a global burden, affecting millions of people, especially those in sub-Saharan Africa and Asia. The rise of drug resistance to current antimalarial treatments, including artemisinin-based combination therapies, has made discovering new small molecule compounds with novel modes of action an urgent matter. The concerted effort to construct enormous compound libraries and develop high-throughput phenotypic screening assays to find compounds effective at specifically clearing malaria-causing Plasmodium parasites at any stage of the life cycle has provided many antimalarial prospects, but does not indicate their target or mode of action. Here, we review recent advances in antimalarial drug discovery efforts, focusing on the following 'omics' approaches in mode of action studies: IVIEWGA, CETSA, metabolomic profiling.
Collapse
Affiliation(s)
- Krypton Carolino
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
19
|
Malebo HM, D'Alessandro S, Ebstie YA, Sorè H, Tenoh Guedoung AR, Katani SJ, Parapini S, Taramelli D, Habluetzel A. In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds. Drug Des Devel Ther 2020; 14:1593-1607. [PMID: 32425505 PMCID: PMC7196193 DOI: 10.2147/dddt.s242883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose Continuous efforts into the discovery and development of new antimalarials are required to face the emerging resistance of the parasite to available treatments. Thus, new effective drugs, ideally able to inhibit the Plasmodium life-cycle stages that cause the disease as well as those responsible for its transmission, are needed. Eight compounds from the Medicines for Malaria Venture (MMV) Malaria Box, potentially interfering with the parasite polyamine biosynthesis were selected and assessed in vitro for activity against malaria transmissible stages, namely mature gametocytes and early sporogonic stages. Methods Compound activity against asexual blood stages of chloroquine-sensitive 3D7 and chloroquine-resistant W2 strains of Plasmodium falciparum was tested measuring the parasite lactate dehydrogenase activity. The gametocytocidal effect was determined against the P. falciparum 3D7elo1-pfs16-CBG99 strain with a luminescent method. The murine P. berghei CTRP.GFP strain was employed to assess compounds activities against early sporogonic stage development in an in vitro assay simulating mosquito midgut conditions. Results Among the eight tested molecules, MMV000642, MMV000662 and MMV006429, containing a 1,2,3,4-tetrahydroisoquinoline-4-carboxamide chemical skeleton substituted at N-2, C-3 and C-4, displayed multi-stage activity. Activity against asexual blood stages of both strains was confirmed with values of IC50 (50% inhibitory concentration) in the range of 0.07–0.13 µM. They were also active against mature stage V gametocytes with IC50 values below 5 µM (range: 3.43–4.42 µM). These molecules exhibited moderate effects on early sporogonic stage development, displaying IC50 values between 20 and 40 µM. Conclusion Given the multi-stage, transmission-blocking profiles of MMV000642, MMV000662, MMV006429, and their chemical characteristics, these compounds can be considered worthy for further optimisation toward a TCP5 or TCP6 target product profile proposed by MMV for transmission-blocking antimalarials.
Collapse
Affiliation(s)
- Hamisi M Malebo
- Department of Traditional Medicine Research, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche per la Salute , University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| | | | - Harouna Sorè
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | | | - Shaaban J Katani
- Department of Traditional Medicine Research, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute , University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| | - Donatella Taramelli
- Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Annette Habluetzel
- Centro Interuniversitario di Ricerca Sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy.,School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
20
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|