1
|
Oke MT, Martz K, Mocăniță M, Knezevic S, D'Costa VM. Analysis of Acinetobacter P-type type IV secretion system-encoding plasmid diversity uncovers extensive secretion system conservation and diverse antibiotic resistance determinants. Antimicrob Agents Chemother 2024; 68:e0103824. [PMID: 39494882 PMCID: PMC11619351 DOI: 10.1128/aac.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii is globally recognized as a multi-drug-resistant pathogen of critical concern due to its capacity for horizontal gene transfer and resistance to antibiotics. Phylogenetically diverse Acinetobacter species mediate human infection, including many considered as important emerging pathogens. While globally recognized as a pathogen of concern, pathogenesis mechanisms are poorly understood. P-type type IV secretion systems (T4SSs) represent important drivers of pathogen evolution, responsible for horizontal gene transfer and secretion of proteins that mediate host-pathogen interactions, contributing to pathogen survival, antibiotic resistance, virulence, and biofilm formation. Genes encoding a P-type T4SS were previously identified on plasmids harboring the carbapenemase gene blaNDM-1 in several clinically problematic Acinetobacter; however, their prevalence among the genus, geographical distribution, the conservation of T4SS proteins, and full capacity for resistance genes remain unclear. Using systematic analyses, we show that these plasmids belong to a group of 53 P-type T4SS-encoding plasmids in 20 established Acinetobacter species, the majority of clinical relevance, including diverse A. baumannii sequence types and one strain of Providencia rettgeri. The strains were globally distributed in 14 countries spanning five continents, and the conjugative operon's T4SS proteins were highly conserved in most plasmids. A high proportion of plasmids harbored resistance genes, with 17 different genes spanning seven drug classes. Collectively, this demonstrates that P-type T4SS-encoding plasmids are more widespread among the Acinetobacter genus than previously anticipated, including strains of both clinical and environmental importance. This research provides insight into the spread of resistance genes among Acinetobacter and highlights a group of plasmids of importance for future surveillance.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa M. D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Nasser F, Gaudreau A, Lubega S, Zaker A, Xia X, Mer AS, D'Costa VM. Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter. Emerg Microbes Infect 2024; 13:2320929. [PMID: 38530969 DOI: 10.1080/22221751.2024.2320929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Avery Gaudreau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Shareefah Lubega
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Xuhua Xia
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Arvind S Mer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Barth PO, Pereira DC, de Oliveira GS, Konkewicz LR, Lutz L, Matos WL, Mott MP, Constante CC, Wilhelm CM, Antochevis LC, Paiva RM, Tragnago KF, Barth AL, Martins AF. Nosocomial outbreak due to a novel sequence type of carbapenem-resistant Acinetobacter seifertii. Am J Infect Control 2024:S0196-6553(24)00859-9. [PMID: 39617323 DOI: 10.1016/j.ajic.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Acinetobacter seifertii, a member of A baumannii-calcoaceticus complex, can be considered a pathogen of concern due to the presence of resistance genes. The aim of the study was to describe an outbreak of carbapenem-resistant A seifertii among neonates admitted to the neonatal intensive care unit (NICU) at a tertiary care hospital. METHODS All patients with carbapenem-resistant A seifertii diagnosed and admitted to the NICU from June 2023 to October 2023 were included. The presence of carbapenemase genes (blaIMP, blaVIM, blaNDM, blaKPC, blaGES, blaOXA-48-like, and blaOXA-23) was investigated by qPCR. Whole-genome sequencing (WGS) was performed by MiSeq (Illumina) and MinION (Nanopore) platforms. Fourier-transform infrared spectroscopy (IR Biotyper) was applied for microbial strain typing. RESULTS Eleven patients were affected and a set of measures were implemented at NICU to reduce the risk of transmission. The isolates exhibited identical resistance patterns; additionally, all isolates presented the blaNDM-1 gene and were grouped in the same cluster by IR Biotyper. The WGS revealed that the isolates belonged to a novel ST assigned as ST2712, and the blaNDM-1 was carried by the same plasmid type. DISCUSSION Our study has identified a novel strain of A seifertii carrying blaNDM-1 responsible for the outbreak, indicating its emergence in the institution. CONCLUSIONS This is the first report of carbapenem-resistant A seifertii ST2712. The use of WGS for genomic surveillance allowed understanding the dissemination of Carbapenem-resistant A baumannii, which is crucial in outbreak scenarios.
Collapse
Affiliation(s)
- Patricia Orlandi Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Dariane Castro Pereira
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Simões de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatic Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Loriane Rita Konkewicz
- Serviço de Controle de Infecção Hospitalar, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa Lutz
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - William Latosinski Matos
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Preussler Mott
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Collioni Constante
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Morschbacher Wilhelm
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Czekster Antochevis
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rodrigo Minuto Paiva
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kellen Figueira Tragnago
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Afonso Luis Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatic Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Timková I, Maliničová L, Nosáľová L, Kolesárová M, Lorková Z, Petrová N, Pristaš P, Kisková J. Genomic insights into the adaptation of Acinetobacter johnsonii RB2-047 to the heavy metal-contaminated subsurface mine environment. Biometals 2024; 37:371-387. [PMID: 37973678 PMCID: PMC11006771 DOI: 10.1007/s10534-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The subsurface mine environments characterized by high levels of toxic metals and low nutrient availability represent an extreme threat to bacterial persistence. In recent study, the genomic analysis of the Acinetobacter johnsonii strain RB2-047 isolated from the Rozália Gold Mine in Slovakia was performed. As expected, the studied isolate showed a high level of heavy metal tolerance (minimum inhibitory concentrations were 500 mg/L for copper and nickel, 1,500 mg/L for lead, and 250 mg/L for zinc). The RB2-047 strain also showed noticeable resistance to several antibiotics (ampicillin, kanamycin, chloramphenicol, tetracycline and ciprofloxacin). The genomic composition analysis demonstrated a low number of antibiotic and metal resistance coding genes, but a high occurrence of efflux transporter genes located on the bacterial chromosome. The experimental inhibition of efflux pumps resulted in decreased tolerance to Zn and Ni (but not to Cu and Pb) and to all antibiotics tested. In addition, the H33342 dye-accumulation assay confirmed the high efflux activity in the RB2-047 isolate. These findings showed the important role of efflux pumps in the adaptation of Acinetobacter johsonii strain RB2-047 to metal polluted mine environment as well as in development of multi-antibiotic resistance.
Collapse
Affiliation(s)
- Ivana Timková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lenka Maliničová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Zuzana Lorková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Nikola Petrová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| |
Collapse
|
5
|
Tobin LA, Jarocki VM, Kenyon J, Drigo B, Donner E, Djordjevic SP, Hamidian M. Genomic analysis of diverse environmental Acinetobacter isolates identifies plasmids, antibiotic resistance genes, and capsular polysaccharides shared with clinical strains. Appl Environ Microbiol 2024; 90:e0165423. [PMID: 38206028 PMCID: PMC10885009 DOI: 10.1128/aem.01654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.
Collapse
Affiliation(s)
- Liam A. Tobin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Veronica M. Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Johanna Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, SA, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
6
|
Freitas JF, Silva DFL, Silva BS, Castro JNF, Felipe MBMC, Silva-Portela RCB, Minnicelli CF, Agnez-Lima LF. Genomic and phenotypic features of Acinetobacter baumannii isolated from oil reservoirs reveal a novel subspecies specialized in degrading hazardous hydrocarbons. Microbiol Res 2023; 273:127420. [PMID: 37270893 DOI: 10.1016/j.micres.2023.127420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The genus Acinetobacter encompasses biotechnologically relevant species and nosocomial pathogens. In this study, nine isolates recovered from different oil reservoir samples showed the ability to grow with petroleum as the only carbon source and possessed the ability to emulsify kerosene. The whole genomes of the nine strains were sequenced and analyzed. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of all strains were compared to the reference strains, and the results were below the reference values (<97.88 and 82, respectively), suggesting that the isolates belong to a new subspecies of Acinetobacter baumannii. The name Acinetobacter baumannii oleum ficedula is proposed. A comparison of the whole genome repertoire of 290 Acinetobacter species indicated that the strains in this study resemble non-pathogenic Acinetobacter strains. However, the new isolates resemble A. baumannii when comparing virulence factors. The isolates in this study carry many genes involved in hydrocarbon degradation, indicating the potential to degrade most toxic compounds listed by environmental regulatory agencies such as ATSDR, EPA, and CONAMA. In addition, despite the absence of known biosurfactant or bioemulsifier genes, the strains showed emulsifying activity, suggesting the presence of new pathways or genes related to this process. This study investigated the genomic, phenotypic, and biochemical features of the novel environmental subspecies A. baumannii oleum ficedula, revealing their potential to degrade hydrocarbons and to produce biosurfactants or bioemulsifiers. Applying these environmental subspecies in bioaugmentation strategies sheds light on future approaches to bioremediation. The study shows the importance of genomic analysis of environmental strains and their inclusion in metabolic pathways databases, highlighting unique enzymes/alternative pathways for consuming hazardous hydrocarbons.
Collapse
Affiliation(s)
- J F Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - D F L Silva
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - B S Silva
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - J N F Castro
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - M B M C Felipe
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - R C B Silva-Portela
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - C F Minnicelli
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil
| | - L F Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil.
| |
Collapse
|
7
|
Prity FT, Tobin LA, Maharajan R, Paulsen IT, Cain AK, Hamidian M. The evolutionary tale of eight novel plasmids in a colistin-resistant environmental Acinetobacter baumannii isolate. Microb Genom 2023; 9:mgen001010. [PMID: 37171842 PMCID: PMC10272872 DOI: 10.1099/mgen.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 05/13/2023] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen known for its high levels of resistance to many antibiotics, particularly those considered last resorts such as colistin and carbapenems. Plasmids of this organism are increasingly associated with the spread of clinically important antibiotic resistance genes. Although A. baumannii is a ubiquitous organism, to date, most of the focus has been on studying strains recovered from clinical samples ignoring those isolated in the environment (soil, water, food, etc.). Here, we analysed the genetic structures of eight novel plasmids carried by an environmental colistin-resistant A. baumannii (strain E-072658) recovered in a recycled fibre pulp in a paper mill in Finland. It was shown that E-072658 carries a new variant of the mcr-4 colistin resistance gene (mcr-4.7) in a novel Tn3-family transposon (called Tn6926) carried by a novel plasmid p8E072658. E-072658 is also resistant to sulphonamide compounds; consistent with this, the sul2 sulphonamide resistance gene was found in a pdif module. E-072658 also carries six additional plasmids with no antibiotic resistance genes, but they contained several pdif modules shared with plasmids carried by clinical strains. Detailed analysis of the genetic structure of all eight plasmids carried by E-072658 showed a complex evolutionary history revealing genetic exchange events within the genus Acinetobacter beyond the clinical or environmental origin of the strains. This work provides evidence that environmental strains might act as a source for some of the clinically significant antibiotic resistance genes.
Collapse
Affiliation(s)
- Farzana T. Prity
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Liam A. Tobin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ram Maharajan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Pulami D, Schwabe L, Blom J, Schwengers O, Wilharm G, Kämpfer P, Glaeser SP. Genomic plasticity and adaptive capacity of the quaternary alkyl-ammonium compound and copper tolerant Acinetobacter bohemicus strain QAC-21b isolated from pig manure. Antonie Van Leeuwenhoek 2023; 116:327-342. [PMID: 36642771 PMCID: PMC10024671 DOI: 10.1007/s10482-022-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Here, we present the genomic characterization of an Acinetobacter bohemicus strain QAC-21b which was isolated in the presence of a quaternary alky-ammonium compound (QAAC) from manure of a conventional German pig farm. The genetic determinants for QAAC, heavy metal and antibiotic resistances are reported based of the whole genome shotgun sequence and physiological growth tests. A. bohemicus QAC-21b grew in a species typical manner well at environmental temperatures but not at 37 °C. The strain showed tolerance to QAACs and copper but was susceptible to antibiotics relevant for Acinetobacter treatments. The genome of QAC-21b contained several Acinetobacter typical QAAC and heavy metal transporting efflux pumps coding genes, but no key genes for acquired antimicrobial resistances. The high genomic content of transferable genetic elements indicates that this bacterium can be involved in the transmission of antimicrobial resistances, if it is released with manure as organic fertilizer on agricultural fields. The genetic content of the strain was compared to that of two other A. bohemicus strains, the type strain ANC 3994T, isolated from forest soil, and KCTC 42081, originally described as A. pakistanensis, a metal resistant strain isolated from a wastewater treatment pond. In contrast to the forest soil strain, both strains from anthropogenically impacted sources showed genetic features indicating their evolutionary adaptation to the anthropogenically impacted environments. Strain QAC-21b will be used as model strain to study the transmission of antimicrobial resistance to environmentally adapted Acinetobacter in agricultural environments receiving high content of pollutants with organic fertilizers from livestock husbandry.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Lina Schwabe
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Furlan JPR, Dos Santos LDR, Ramos MS, Gallo IFL, Moretto JAS, Stehling EG. Occurrence of clinically relevant antimicrobial resistance genes, including mcr-3 and mcr-7.1, in soil and water from a recreation club. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:819-828. [PMID: 32735122 DOI: 10.1080/09603123.2020.1799953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
We researched clinically relevant antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in environmental samples from a recreation club in Brazil. A total of 172 amplicons (105 from soil and 67 from water) of 26 ARGs (20 among the soil and water samples; four only in soil samples; two only in water samples) were detected. Nine MGEs were detected, including plasmids and class 1 integron. The absolute abundance of the mcr-3 gene ranged from 1.12 × 102 to 1.81 × 103 copies/mL-1 in water samples. The rapid spread of mcr-like genes in several sources has generated a huge concern to public health. Accordingly, understanding of antimicrobial resistance, carry out surveillance studies may contribute to tackle antimicrobial resistance. As the environmental samples were collected from a popular recreation club in Brazil, this study points out to the risk and exposure to clinically relevant ARGs, especially to mcr-3 and mcr-7.1 genes.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Lucas David Rodrigues Dos Santos
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Micaela Santana Ramos
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Jéssica Aparecida Silva Moretto
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Eliana Guedes Stehling
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
10
|
The innate resistome of “recalcitrant” Acinetobacter baumannii and the role of nanoparticles in combating these MDR pathogens. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Almeida OGGD, Furlan JPR, Stehling EG, De Martinis ECP. Comparative phylo-pangenomics reveals generalist lifestyles in representative Acinetobacter species and proposes candidate gene markers for species identification. Gene 2021; 791:145707. [PMID: 33979679 DOI: 10.1016/j.gene.2021.145707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Acinetobacter species have the potential to invade and colonize immunocompromised patients, therefore being well-known as opportunistic pathogens. Among these bacteria, the species of the Acinetobacter calcoaceticus-Acinetobacter baumannii "complex" (Acb members) emerge as the main often isolated bacteria in clinical specimens. The unequivocal taxonomy is crucial to correctly identify these species and associated with comparative genomic analyses aids to understand their life-styles as well. In this study, all publicly available Acinetobacter species at the date of this study preparation were analyzed. The results revealed that the Acb members are in fact a complex when phenotypic methods are confronted, while for comparative and phylogenomics analyses this term is misleading, since they composed a monophyletic group instead. Nine best gene markers (response regulator, recJ, recG, phosphomannomutase, pepSY, monovalent cation/H + antiporter subunit D, mnmE, glnE, and bamA) were selected for identification of Acinetobacter species. Moreover, representative strains of each species were split according their isolation sources in the categories: environmental, human, insect and non-human vertebrate. Neither niche-specific genome signature nor niche-associated functional and pathogenic potential were associated with their isolation source, meaning it is not the main force acting on Acinetobacter adaptation in a given niche and corroborating that their ubiquitous distribution is a reflex of their generalist life-styles.
Collapse
Affiliation(s)
| | | | - Eliana Guedes Stehling
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | |
Collapse
|
12
|
Din G, Farooqi A, Sajjad W, Irfan M, Gul S, Ali Shah A. Cadmium and antibiotic-resistant Acinetobacter calcoaceticus strain STP14 reported from sewage treatment plant. J Basic Microbiol 2021; 61:230-240. [PMID: 33491793 DOI: 10.1002/jobm.202000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 11/07/2022]
Abstract
A bacterium designated as strain STP14 was isolated from a sewage treatment plant and identified as Acinetobacter calcoaceticus based on 16S ribosomal RNA gene sequencing. Strain STP14 exhibited resistance to several metals such as mercury, cobalt, copper, nickel, lead, and cadmium. Among these metals, the bacterium showed maximum resistance to cadmium in concentration up to 1200 mg/L. The antimicrobial susceptibility test of A. calcoaceticus strain STP14 showed coresistance to all tested antibiotics except tigecycline and chloramphenicol for which 16 ± 1- and 15 ± 1-mm zone of inhibition was observed, respectively. The protein pattern of the crude cellular extract revealed substantial differences in protein bands of untreated control and cadmium treated A. calcoaceticus strain STP14 suggesting variable protein expression under cadmium stress. Metals and antibiotic resistance are increasing phenomenon and universal concern of public health. This study improves our understanding regarding the bacterial coresistance against metals and antibiotics and the possible emergence of multidrug resistance due to selective pressure and coselection in the metal polluted sewage sludge.
Collapse
Affiliation(s)
- Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asifa Farooqi
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Sarah Gul
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
13
|
Regaiolo A, Dominelli N, Andresen K, Heermann R. The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Appl Environ Microbiol 2020; 86:e00891-20. [PMID: 32591378 PMCID: PMC7440798 DOI: 10.1128/aem.00891-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
The number of sustainable agriculture techniques to improve pest management and environmental safety is rising, as biological control agents are used to enhance disease resistance and abiotic stress tolerance in crops. Here, we investigated the capacity of the Photorhabdus luminescens secondary variant to react to plant root exudates and their behavior toward microorganisms in the rhizosphere. P. luminescens is known to live in symbiosis with entomopathogenic nematodes (EPNs) and to be highly pathogenic toward insects. The P. luminescens-EPN relationship has been widely studied, and this combination has been used as a biological control agent; however, not much attention has been paid to the putative lifestyle of P. luminescens in the rhizosphere. We performed transcriptome analysis to show how P. luminescens responds to plant root exudates. The analysis highlighted genes involved in chitin degradation, biofilm regulation, formation of flagella, and type VI secretion system. Furthermore, we provide evidence that P. luminescens can inhibit growth of phytopathogenic fungi. Finally, we demonstrated a specific interaction of P. luminescens with plant roots. Understanding the role and the function of this bacterium in the rhizosphere might accelerate the progress in biocontrol manipulation and elucidate the peculiar mechanisms adopted by plant growth-promoting rhizobacteria in plant root interactions.IMPORTANCE Insect-pathogenic Photorhabdus luminescens bacteria are widely used in biocontrol strategies against pests. Very little is known about the life of these bacteria in the rhizosphere. Here, we show that P. luminescens can specifically react to and interact with plant roots. Understanding the adaptation of P. luminescens in the rhizosphere is highly important for the biotechnological application of entomopathogenic bacteria and could improve future sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Alice Regaiolo
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Nazzareno Dominelli
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Karsten Andresen
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| |
Collapse
|
14
|
Anani H, Zgheib R, Hasni I, Raoult D, Fournier PE. Interest of bacterial pangenome analyses in clinical microbiology. Microb Pathog 2020; 149:104275. [PMID: 32562810 DOI: 10.1016/j.micpath.2020.104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Thanks to the progress and decreasing costs in genome sequencing technologies, more than 250,000 bacterial genomes are currently available in public databases, covering most, if not all, of the major human-associated phylogenetic groups of these microorganisms, pathogenic or not. In addition, for many of them, sequences from several strains of a given species are available, thus enabling to evaluate their genetic diversity and study their evolution. In addition, the significant cost reduction of bacterial whole genome sequencing as well as the rapid increase in the number of available bacterial genomes have prompted the development of pangenomic software tools. The study of bacterial pangenome has many applications in clinical microbiology. It can unveil the pathogenic potential and ability of bacteria to resist antimicrobials as well identify specific sequences and predict antigenic epitopes that allow molecular or serologic assays and vaccines to be designed. Bacterial pangenome constitutes a powerful method for understanding the history of human bacteria and relating these findings to diagnosis in clinical microbiology laboratories in order to optimize patient management.
Collapse
Affiliation(s)
- Hussein Anani
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Issam Hasni
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS One 2020; 15:e0232699. [PMID: 32374760 PMCID: PMC7202617 DOI: 10.1371/journal.pone.0232699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The metal hyperaccumulator Azolla filiculoides is accompanied by a microbiome potentially supporting plant during exposition to heavy metals. We hypothesized that the microbiome exposition to selected heavy metals will reveal metal tolerant strains. We used Next Generation Sequencing technique to identify possible metal tolerant strains isolated from the metal-treated plant (Pb, Cd, Cr(VI), Ni, Au, Ag). The main dominants were Cyanobacteria and Proteobacteria constituting together more than 97% of all reads. Metal treatment led to changes in the composition of the microbiome and showed significantly higher richness in the Pb-, Cd- and Cr-treated plant in comparison with other (95–105 versus 36–44). In these treatments the share of subdominant Actinobacteria (0.4–0.8%), Firmicutes (0.5–0.9%) and Bacteroidetes (0.2–0.9%) were higher than in non-treated plant (respectively: 0.02, 0.2 and 0.001%) and Ni-, Au- and Ag-treatments (respectively: <0.4%, <0.2% and up to 0.2%). The exception was Au-treatment displaying the abundance 1.86% of Bacteroidetes. In addition, possible metal tolerant genera, namely: Acinetobacter, Asticcacaulis, Anabaena, Bacillus, Brevundimonas, Burkholderia, Dyella, Methyloversatilis, Rhizobium and Staphylococcus, which form the core microbiome, were recognized by combining their abundance in all samples with literature data. Additionally, the presence of known metal tolerant genera was confirmed: Mucilaginibacter, Pseudomonas, Mycobacterium, Corynebacterium, Stenotrophomonas, Clostridium, Micrococcus, Achromobacter, Geobacter, Flavobacterium, Arthrobacter and Delftia. We have evidenced that A. filiculoides possess a microbiome whose representatives belong to metal-resistant species which makes the fern the source of biotechnologically useful microorganisms for remediation processes.
Collapse
|