1
|
Shang J, Li Y, Zhang W, Ma X, Niu L, Wang L, Zheng J. Hysteretic and asynchronous regime shifts of bacterial and micro-eukaryotic communities driven by nutrient loading. WATER RESEARCH 2024; 261:122045. [PMID: 38972236 DOI: 10.1016/j.watres.2024.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Nutrient pollution is pervasive in many urban rivers, while restoration measures that reduce nutrient loading but fail to improve biological communities often lack effectiveness due to the indispensable role of biota, especially multi-taxa, in enhancing ecosystem stability and function. The investigation of the response patterns of multi-taxa to the nutrient loading in urban rivers is important for the recovery of biota structure and thus ecosystem function. However, little is known about the response patterns of multi-taxa and their impact on ecosystem structure and function in urban rivers. Here, the study, from the perspective of alternative stable states theory, showed the hysteretic response of both bacterial and micro-eukaryotic communities to nutrient loading based on the field investigation and environmental DNA metabarcoding. Bistability was shown to exist in both bacterial and micro-eukaryotic communities, demonstrating that the response of microbiota to nutrient loading was a regime shifts with hysteresis. Potential analysis then indicated that the increased nutrient loading drove regime shifts in the bacterial community and the micro-eukaryotic community towards a state dominated by anaerobic bacteria and benthic Bacillariophyta, respectively. High nutrient loading was found to reduce the relative abundance of metazoan, but increase that of eukaryotic algae, which made the trophic pyramid top-lighter and bottom-heavier, probably exacerbating the degradation of ecosystem function. It should be noted that, in response to the reduced nutrient loading, the recovery threshold of micro-eukaryotic communities (nutrient loading = ∼0.5) was lower than that of bacterial communities (nutrient loading = ∼1.2), demonstrating longer hysteresis of micro-eukaryotic communities. In addition, the markedly positive correlation between the status of microbial communities and N-related enzyme activities suggested the recovery of microbial communities probably will benefit the improvement of N-cycling functionality. The obtained results provide a deep insight into the collapse and recovery trajectories of multi-trophic microbiota to the nutrient loading gradient and their impact on the N transformation potential, therefore benefiting the restoration and management of urban rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Yue Y, Yang Z, Wang F, Chen X, Huang Y, Ma J, Cai L, Yang M. Effects of Cascade Reservoirs on Spatiotemporal Dynamics of the Sedimentary Bacterial Community: Co-occurrence Patterns, Assembly Mechanisms, and Potential Functions. MICROBIAL ECOLOGY 2023; 87:18. [PMID: 38112791 DOI: 10.1007/s00248-023-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Dam construction as an important anthropogenic activity significantly influences ecological processes in altered freshwater bodies. However, the effects of multiple cascade dams on microbial communities have been largely overlooked. In this study, the spatiotemporal distribution, co-occurrence relationships, assembly mechanisms, and functional profiles of sedimentary bacterial communities were systematically investigated in 12 cascade reservoirs across two typical karst basins in southwest China over four seasons. A significant spatiotemporal heterogeneity was observed in bacterial abundance and diversity. Co-occurrence patterns in the Wujiang Basin exhibited greater edge counts, graph density, average degree, robustness, and reduced modularity, suggesting more intimate and stronger ecological interactions among species than in the Pearl River Basin. Furthermore, Armatimonadota and Desulfobacterota, identified as keystone species, occupied a more prominent niche than the dominant species. A notable distance-decay relationship between geographical distance and community dissimilarities was identified in the Pearl River Basin. Importantly, in the Wujiang Basin, water temperature emerged as the primary seasonal variable steering the deterministic process of bacterial communities, whereas 58.5% of the explained community variance in the neutral community model (NCM) indicated that stochastic processes governed community assembly in the Pearl River Basin. Additionally, principal component analysis (PCA) revealed more pronounced seasonal dynamics in nitrogen functional compositions than spatial variation in the Wujiang Basin. Redundancy analysis (RDA) results indicated that in the Wujiang Basin, environmental factors and in Pearl River Basin, geographical distance, reservoir age, and hydraulic retention time (HRT), respectively, influenced the abundance of nitrogen-related genes. Notably, these findings offer novel insights: building multiple cascade reservoirs could lead to a cascading decrease in biodiversity and resilience in the river-reservoir ecosystem.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
Oliveira CYB, de Cássia S Brandão B, de S Jannuzzi LG, Oliveira DWS, Yogui GT, Müller MN, Gálvez AO. New insights on the role of nitrogen in the resistance to environmental stress in an endosymbiotic dinoflagellate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82142-82151. [PMID: 37322400 DOI: 10.1007/s11356-023-28228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, especially reef-building corals. These dinoflagellates are sensitive to environmental changes, and understanding the factors that can increase the resistance of the symbionts is crucial for the elucidation of the mechanisms involved with coral bleaching. Here, we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by concentration (1760 vs 440 µM) and source (sodium nitrate vs urea) of nitrogen after light and thermal stress exposure. The effectiveness in the use of the two nitrogen forms was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, regardless of source, increased D. glynnii growth, chlorophyll-a, and peridinin levels. During the pre-stress period, the use of urea accelerated the growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, high nitrate conditions increased cell growth, but no changes in pigments composition was observed. On the other hand, during thermal stress, a steep and steady decline in cell densities over time was observed, except for high urea condition, where there is cellular division and peridinin accumulation 72 h after the thermal shock. Our findings suggest peridinin has a protective role during the thermal stress, and the uptake of urea by D. glynnii can alleviate thermal stress responses, eventually mitigating coral bleaching events.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil.
- Phycology Laboratory, Federal University of Santa Catarina, 88049-900, Florianopolis, Brazil.
| | | | | | - Deyvid Willame S Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Federal University of Pernambuco, 50740-550, Recife, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, 50740-550, Recife, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| |
Collapse
|
4
|
Yang N, Zhang C, Wang L, Li Y, Zhang W, Niu L, Zhang H, Wang L. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems. WATER RESEARCH 2021; 206:117730. [PMID: 34619413 DOI: 10.1016/j.watres.2021.117730] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The nitrogen (N) cycle is one of the most important nutrient cycles in river systems, and it plays an important role in maintaining biogeochemical balance and global climate stability. One of the main ways that humans have altered riverine ecosystems is through the construction of hydropower dams, which have major effects on biogeochemical cycles. Most previous studies examining the effects of damming on N cycling have focused on the whole budget or flux along rivers, and the role of river as N sources or sinks at the global or catchment scale. However, so far there is still lack of comprehensive and systematic summarize on N cycling and the controlling mechanisms in reservoirs affected by dam impoundment. In this review, we firstly summarize N cycling processes along the longitudinal riverine-transition-lacustrine gradient and the vertically stratified epilimnion-thermocline-hypolimnion gradient. Specifically, we highlight the direct and indirect roles of multi-trophic microbiota and their interactions in N cycling and discuss the main factors controlling these biotic processes. In addition, future research directions and challenges in incorporating multi-trophic levels in bioassessment, environmental flow design, as well as reservoir regulation and restoration are summarized. This review will aid future studies of N fluxes along dammed rivers and provide an essential reference for reservoir management to meet ecological needs.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| |
Collapse
|
5
|
Cai Y, Luo X, He X, Tang C. Primary role of increasing urea-N concentration in a novel Microcystis densa bloom: Evidence from ten years of field investigations and laboratory experiments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111713. [PMID: 33396044 DOI: 10.1016/j.ecoenv.2020.111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
A novel Microcystis bloom caused by Microcystis densa has occurred in a typical subtropical reservoir every spring and summer since 2012, and it has caused several ecological and economic losses. To determine the environmental factors that influence the growth and physiological characteristics of M. densa, we investigated the variations in physicochemical factors and M. densa cell density from 2007 to 2017. The results showed that the urea-N concentration increased significantly (from 0.02 ± 0.00-0.20 ± 0.01 mg N l-1), whereas other factors did not vary significantly. NO3--N and urea-N concentrations were higher than the NH4+-N concentration during the M. densa bloom. The nitrogen composition changed, and urea-N and NO3--N became a major nitrogen sources in the reservoir. Water temperature and increased urea-N concentrations were the primary factors that influenced variations in M. densa cell density (45.5%, p < 0.05). Laboratory experiments demonstrated that M. densa cultured with urea-N exhibited a higher maximum cell density (9.8 ± 0.5 × 108 cells l-1), more cellular pigments for photosynthesis (chlorophyll a and phycocyanin) and photoprotection (carotenoid), and more proteins than those cultured with NH4+-N and NO3--N. These results suggested that M. densa cultured with urea-N exhibited preferable growth and physiological conditions. Moreover, M. densa exhibited an increased maximum specific uptake rate (0.93 pg N cell-1 h-1) and reduced half-saturation constant (0.03 mg N l-1) for urea-N compared with NH4+-N and NO3--N, suggesting that M. densa preferred urea-N as its major nitrogen source. These results collectively indicated that the increasing urea-N concentration was beneficial for the growth and physiological conditions of M. densa. This study provided ten years of field data and detailed physiological information supporting the critical effect of urea-N on the growth of a novel bloom species M. densa. These findings helped to reveal the mechanism of M. densa bloom formation from the perspective of dissolved organic nitrogen.
Collapse
Affiliation(s)
- Yangyang Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | | | - Xiaoyuan He
- South China Sea Administration, Ministry of Natural Resources, Guangzhou, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; School of Geography and Planning, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8120959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge of carbon and nitrogen isotopic ratios in organic matter and their changes is important when studying nutrient cycles in aquatic ecosystems. Relationships between δ13C and δ15N values of suspended particulate organic matter (POM), water temperature, salinity, pH, redox potential, chlorophyll a concentration, primary production, and biomasses of different taxonomic groups of phytoplankton in the Neva Estuary were statistically analyzed. We tested the hypothesis that the studied physicochemical and biogeochemical characteristics, as well as the species composition of phytoplankton and its productivity, can be significant predictors of changes in the isotopic ratios of suspended particulate organic matter in estuaries. In the Neva Estuary, δ13CPOM (−16.8–−27.6‰) and δ15NPOM (2.3–7.3‰) changed synchronously. Statistical analysis showed that for both isotopes, the photosynthetic activity and taxonomic composition of phytoplankton are important. For 13CPOM, the second most important factor was water salinity, which was apparently associated with the transition of algae from CO2 to HCO3 consumption during photosynthesis in estuarine waters. For 15NPOM changes, the most important abiotic factor was pH. The study showed that the dependences of POM isotopic ratios on environmental variables obtained for continental and oceanic waters are also valid in transitional zones such as the Neva Estuary.
Collapse
|