1
|
Ye L, Zhang L, Li X, Huang Y, Zhang B, Yang X, Tan W, Li X, Zhang X. De novo genome assembly and functional insights of the first commercial pink Auricularia cornea. Genomics 2024; 116:110902. [PMID: 39053612 DOI: 10.1016/j.ygeno.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
A pioneering pink cultivar of Auricularia cornea, first commercially cultivated in 2022, lacks genomic data, hindering research in genetic breeding, gene discovery, and product development. Here, we report the de novo assembly of the pink A. cornea Fen-A1 genome and provide a detailed functional annotation. The genome is 73.17 Mb in size, contains 86 scaffolds (N50 ∼ 5.49 Mb), 59.09% GC content and encodes 19,120 predicted genes with a BUSCO completeness of 92.60%. Comparative genomic analysis reveals the phylogenetic relatedness of Fen-A1 and remarkable gene family dynamics. Putative genes were found mapped to 3 antibiotic-related, 36 light-dependent and 25 terpene metabolites. In addition, 789 CAZymes genes were classified, revealing the dynamics of quality loss due to postharvest refrigeration. Overall, our work is the first report on a pink A. cornea genome and provides a comprehensive insight into its complex functions.
Collapse
Affiliation(s)
- Lei Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Xie J, Liu X, Qin Z, Mei S, Tarafder E, Li C, Zeng X, Tian F. Evolution and related pathogenic genes of Pseudodiploöspora longispora on Morchella based on genomic characterization and comparative genomic analysis. Sci Rep 2024; 14:18588. [PMID: 39127740 PMCID: PMC11316761 DOI: 10.1038/s41598-024-69421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
True morels (Morchella) are globally renowned medicinal and edible mushrooms. White mold disease caused by fungi is the main disease of Morchella, which has the characteristics of wide incidence and strong destructiveness. The disparities observed in the isolation rates of different pathogens indicate their varying degrees of host adaptability and competitive survival abilities. In order to elucidate its potential mechanism, this study, the pathogen of white mold disease from Dafang county, Guizhou Province was isolated and purified, identified as Pseudodiploöspora longispora by morphological, molecular biological and pathogenicity tests. Furthermore, high-quality genome of P. longisporus (40.846 Mb) was assembled N50 of 3.09 Mb, predicts 7381 protein-coding genes. Phylogenetic analysis of single-copy homologous genes showed that P. longispora and Zelopaecilomyces penicillatus have the closest evolutionary relationship, diverging into two branches approximately 50 (44.3-61.4) MYA. Additionally, compared with the other two pathogens causing Morchella disease, Z. penicillatus and Cladobotryum protrusum, it was found that they had similar proportions of carbohydrate enzyme types and encoded abundant cell wall degrading enzymes, such as chitinase and glucanase, indicating their important role in disease development. Moreover, the secondary metabolite gene clusters of P. longispora and Z. penicillatus show a high degree of similarity to leucinostatin A and leucinostatin B (peptaibols). Furthermore, a gene cluster with synthetic toxic substance Ochratoxin A was also identified in P. longispora and C. protrusum, indicating that they may pose a potential threat to food safety. This study provides valuable insights into the genome of P. longispora, contributing to pathogenicity research.
Collapse
Affiliation(s)
- Jiangtao Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xue Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Zaili Qin
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Shihui Mei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Institute of Edible Mushroom, Guizhou University, Guiyang, China
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China.
- Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China.
- Institute of Edible Mushroom, Guizhou University, Guiyang, China.
- Tianiin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
3
|
Ye L, Zhang B, Zhou J, Yang X, Zhang X, Tan W, Li X. LC-MS/MS-based targeted amino acid metabolic profile of Auricularia cornea grown on pinecone substrate. Food Chem 2024; 432:137247. [PMID: 37647707 DOI: 10.1016/j.foodchem.2023.137247] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Pinecone substrate offers an eco-friendly and cost-effective alternative for cultivating edible fungi. This pioneering study explores the 94 amino acids metabolic profiles of Auricularia cornea grown on various pinecone substrates. To our knowledge, this is the first study of quantify A. cornea on an oleaginous substrate (pinecone) using targeted LC-MS /MS-based metabolomics approaches. Five different pinecone substrate percentages (0%, 7%, 14%, 21%, and 28% respectively) were used for A. cornea culture, and the resulting fruiting bodies were analyzed for amino acids metabolic profiles. Detected 79 amino acids metabolites, 15 undetected. High contents of succinic-acid and γ-aminobutyric acid. Thirty-three amino acid metabolites showed significant differences between groups, primarily related to protein synthesis. KEGG analysis revealed that seven major metabolic pathways were significantly enriched. The findings provide valuable insights into the metabolite composition of A. cornea grown on a pinecone substrate, potentially contribute to the understanding of its nutritional and medicinal properties.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jie Zhou
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China.
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China.
| |
Collapse
|
4
|
Ma X, Lu L, Yao F, Fang M, Wang P, Meng J, Shao K, Sun X, Zhang Y. High-quality genome assembly and multi-omics analysis of pigment synthesis pathway in Auricularia cornea. Front Microbiol 2023; 14:1211795. [PMID: 37396365 PMCID: PMC10308021 DOI: 10.3389/fmicb.2023.1211795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Owing to its great market potential for food and health care, white Auricularia cornea, a rare edible fungus, has received increased attention in recent years. This study presents a high-quality genome assembly of A. cornea and multi-omics analysis of its pigment synthesis pathway. Continuous Long Reads libraries, combined with Hi-C-assisted assembly were used to assemble of white A. cornea. Based on this data, we analyzed the transcriptome and metabolome of purple and white strains during the mycelium, primordium, and fruiting body stages. Finally, we obtained the genome of A.cornea assembled from 13 clusters. Comparative and evolutionary analysis suggests that A.cornea is more closely related to Auricularia subglabra than to Auricularia heimuer. The divergence of white/purple A.cornea occurred approximately 40,000 years ago, and there were numerous inversions and translocations between homologous regions of the two genomes. Purple strain synthesized pigment via the shikimate pathway. The pigment in the fruiting body of A. cornea was γ-glutaminyl-3,4-dihydroxy-benzoate. During pigment synthesis, α-D-glucose-1P, citrate, 2-Oxoglutarate, and glutamate were four important intermediate metabolites, whereas polyphenol oxidase and other 20 enzyme genes were the key enzymes. This study sheds light on the genetic blueprint and evolutionary history of the white A.cornea genome, revealing the mechanism of pigment synthesis in A.cornea. It has important theoretical and practical implications for understanding the evolution of basidiomycetes, molecular breeding of white A.cornea, and deciphering the genetic regulations of edible fungi. Additionally, it provides valuable insights for the study of phenotypic traits in other edible fungi.
Collapse
Affiliation(s)
- Xiaoxu Ma
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China
| | - Lixin Lu
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Fangjie Yao
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
- Country Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Ming Fang
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Peng Wang
- Economic Plants Research Insitute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingjing Meng
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Kaisheng Shao
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China
| | - Xu Sun
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang, China
| | - Youmin Zhang
- Lab of Genetic Breeding of Edible Fungi, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Sun X, Yang C, Ma Y, Zhang J, Wang L. Research progress of Auricularia heimuer on cultivation physiology and molecular biology. Front Microbiol 2022; 13:1048249. [DOI: 10.3389/fmicb.2022.1048249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Auricularia heimuer (A. heimuer F. Wu, B. K. Cui, Y. C. Dai), a well-known gelatinous fungus used for both food and medicine, is a major edible fungus with a more than 1000-year history of cultivation in China. The nutrients of A. heimuer are abundant, including polysaccharides, melanin, mineral elements, etc. The A. heimuer polysaccharides exhibit antioxidant, immunomodulatory, and anticancer properties. A. heimuer is a completely different species grown in China, unlike Auricularia auricula-judae (Bull.) Quel, which was used to characterize it. The cultivated strain varies based on the local climatic factors and cultivation practices. Hardwood chips are the primary material utilized in the cultivation of substitute materials, which is the principal cultivation technique. However, in actual production, straw is frequently replaced for some wood chips to address the issue of a lack of wood. There are three different types of growing techniques: open-air ground cultivation, arch cultivation, and shed-type hanging substitute cultivation of these three, the quality of A. heimuer grown in a shed is superior to that grown in an open-air environment. The A. heimuer genome sequencing project started later than expected, and the entire genome sequencing was not finished until 2019. A. heimuer’s molecular biology studies have mostly concentrated on analyzing genetic diversity and identifying cultivars using molecular markers including RAPD, ISSR, and ITS. There have only been a small number of studies on the function of A. heimuer genes, which have only focused on the preliminary cloning and expression study of a few genes, including the laccase gene and the triterpene compound production gene, among others. However, there is still a lack of comprehensive information concerning A. heimuer, necessitating a synopsis. To our knowledge, this is the first published review of A. heimuer, and it summarizes the most recent studies on its molecular biology and cultivation. This review can serve as a guide for future research on the fungus.
Collapse
|
6
|
Rosenblad MA, Larsson E, Walker A, Thongklang N, Wurzbacher C, Nilsson RH. Evidence for further non-coding RNA genes in the fungal rDNA region. MycoKeys 2022; 90:203-213. [PMID: 36760425 PMCID: PMC9849065 DOI: 10.3897/mycokeys.90.84866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Non-coding RNA (ncRNA) genes play important, but incompletely understood, roles in various cellular processes, notably translation and gene regulation. A recent report on the detection of the ncRNA Signal Recognition Particle gene in the nuclear ribosomal internal transcribed spacer region of several species of three genera of ectomycorrhizal basidiomycetes prompted a more thorough bioinformatics search for additional ncRNA genes in the full fungal ribosomal operon. This study reports on the detection of three ncRNA genes hitherto not known from the fungal ribosomal region: nuclear RNase P RNA, RNase MRP RNA, and a possible snoRNA U14 in a total of five species of Auricularia and Inocybe. We verified their presence through resequencing of independent specimens. Two completed Auricularia genomes were found to lack these ncRNAs elsewhere than in the ribosomal operon, suggesting that these are functional genes. It seems clear that ncRNA genes play a larger role in fungal ribosomal genetics than hitherto thought.
Collapse
Affiliation(s)
- Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, National Infrastructure of Bioinformatics (NBIS), Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Ellen Larsson
- Department of Chemistry and Molecular Biology, National Infrastructure of Bioinformatics (NBIS), Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Arttapon Walker
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Naritsada Thongklang
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Christian Wurzbacher
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R. Henrik Nilsson
- Department of Chemistry and Molecular Biology, National Infrastructure of Bioinformatics (NBIS), Lundberg laboratory, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Guo Y, Liu Z, Fu Y, Li Y, Dai Y, Xiao S. Pan-Genomes Provide Insights into the Genetic Basis of Auricularia heimuer Domestication. J Fungi (Basel) 2022; 8:581. [PMID: 35736064 PMCID: PMC9225563 DOI: 10.3390/jof8060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
In order to reveal the genetic variation signals of Auricularia heimuer that have occurred during their domestication and to find potential functional gene families, we constructed a monokaryotic pan-genome of A. heimuer representing four cultivated strains and four wild strains. The pan-genome contained 14,089 gene families, of which 67.56% were core gene families and 31.88% were dispensable gene families. We screened substrate utilization-related genes such as the chitinase gene ahchi1 of the glycoside hydrolase (GH) 18 family and a carbohydrate-binding module (CBM)-related gene from the dispensable families of cultivated populations. The genomic difference in the ahchi1 gene between the wild and cultivated genomes was caused by a 33 kb presence/absence variation (PAV). The detection rate of the ahchi1 gene was 93.75% in the cultivated population, significantly higher than that in the wild population (17.39%), indicating that it has been selected in cultivated strains. Principal component analysis (PCA) of the polymorphic markers in fragments near the ahchi1 gene was enriched in cultivated strains, and this was caused by multiple independent instances of artificial selection. We revealed for the first time the genetic basis of the ahchi1 gene in domestication, thereby providing a foundation for elucidating the potential function of the ahchi1 gene in the breeding of A. heimuer.
Collapse
Affiliation(s)
- Yuxiu Guo
- Life Science College, Northeast Normal University, Changchun 130024, China;
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| | - Zhenhua Liu
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| | - Yongping Fu
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| | - Yu Li
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| | - Yueting Dai
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| | - Shijun Xiao
- Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (Y.F.); (Y.L.)
| |
Collapse
|
8
|
Yu H, Zhang L, Shang X, Peng B, Li Y, Xiao S, Tan Q, Fu Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genomics 2022; 23:120. [PMID: 35144543 PMCID: PMC8832684 DOI: 10.1186/s12864-022-08325-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lentinula edodes (Berk.) is the second most productive mushroom in the world. It contains compounds effective for antiviral, antitumor, antioxidant and immune regulation. Although genomes have previously been reported for this species, a high-quality chromosome-level reference for L. edodes is unavailable. This hinders detailed investigation of population genetics, breeding history of strains and genes related to environmental stress responses. RESULTS A high-quality chromosome-level genome was constructed. We separated a monokaryon from protoplasts of the commercial L. edodes strain L808 and assembled the genome of L. edodes using PacBio long-read and Illumina short-read sequencing, along with the high-throughput chromatin conformation capture (Hi-C) technique. We assembled a 45.87 Mb genome, and 99% of the sequences were anchored onto 10 chromosomes. The contig and scaffold N50 length were 2.17 and 4.94 Mb, respectively. Over 96% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were identified, and 9853 protein-coding genes were predicted. We performed population genome resequencing using 34 wild strains and 65 commercial cultivars of L. edodes originating from China, Japan, the United States and Australia. Based on whole-genome variants, we showed substantial differences in the Chinese wild population, which divided into different branches according to the main areas of their geographical distribution. We also determined the breeding history of L. edodes at the molecular level, and demonstrated that the cultivated strains in China mainly originated from wild strains from China and Northeast Asia. Phenotypic analysis showed that 99 strains exhibited differences on the Cd accumulation. Three significant loci in the of L. edodes genome were identified using the genome-wide association study (GWAS) of Cd accumulation traits. Functional genes associated with Cd accumulation traits were related to DNA ligase and aminoacyl tRNA synthetase, indicating that DNA damage repair and in vivo protein translation may be responses to Cd stress. CONCLUSIONS A high-quality chromosome-level genome and population genetic data of L. edodes provide genetic resources for functional genomic, evolutionary and artificial breeding studies for L. edodes.
Collapse
Affiliation(s)
- Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
| | - Bing Peng
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Yu Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Shijun Xiao
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China.
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, 314000, China.
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China.
| | - Yongping Fu
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China.
| |
Collapse
|
9
|
Zhang H, Li S, Zheng X, Zhang J, Bai N, Zhang H, Lv W. Effects of Biogas Slurry Combined With Chemical Fertilizer on Soil Bacterial and Fungal Community Composition in a Paddy Field. Front Microbiol 2021; 12:655515. [PMID: 34526972 PMCID: PMC8435896 DOI: 10.3389/fmicb.2021.655515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The application of biogas slurry and chemical fertilizer in paddy fields can be a practical method to reduce the environmental risk and utilize the nutrients of biogas slurry. The responses of bacterial and fungal communities to the application of biogas slurry and chemical fertilizer are important reflections of the quality of the ecological environment. In this study, based on a 3-year field experiment with different ratios of biogas slurry and chemical fertilizer (applying the same pure nitrogen amount), the Illumina MiSeq platform was used to investigate the bacterial and fungal community diversity and composition in paddy soil. Our results revealed that compared with the observations under regular chemical fertilization, on the basis of stable paddy yield, the application of biogas slurry combined with chemical fertilizer significantly enhanced the soil nutrient availability and bacterial community diversity and reduced the fungal community diversity. Dissolved organic carbon (DOC), DOC/SOC (soil organic carbon), available nitrogen (AN) and available phosphorus (AP) were positively correlated with the bacterial community diversity, but no soil property was significantly associated with the fungal community. The bacterial community was primarily driven by the application of biogas slurry combined with chemical fertilizer (40.78%), while the fungal community was almost equally affected by the addition of pure biogas slurry, chemical fertilizer and biogas slurry combined with chemical fertilizer (25.65–28.72%). Biogas slurry combined with chemical fertilizer significantly enriched Proteobacteria, Acidobacteria, Planctomycetes, Rokubacteria, and Ascomycota and depleted Chloroflexi, Bacteroidetes, Crenarchaeota, Basidiomycota, and Glomeromycota. The observation of the alteration of some bacteria- and fungus-specific taxa provides insights for the proper application of biogas slurry combined with chemical fertilizer, which has the potential to promote crop growth and inhibit pathogens.
Collapse
Affiliation(s)
- Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| |
Collapse
|
10
|
Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN. Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus. DNA Res 2021; 27:5856740. [PMID: 32531032 PMCID: PMC7406137 DOI: 10.1093/dnares/dsaa011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.
Collapse
Affiliation(s)
- Shingo Miyauchi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Hayat Hage
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Elodie Drula
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Jean-Guy Berrin
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - David Navarro
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Anne Favel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Delphine Chaduli
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Sacha Grisel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Mireille Haon
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - François Piumi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | | | - Anne Lomascolo
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Steven Ahrendt
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt M LaButti
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Didier Chevret
- INRAE, UMR1319, Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Chris Daum
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jérôme Mariette
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Allen C Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Matthieu Hainaut
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | | | - Ursula Kües
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.,Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Walt Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Anna Lipzen
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Mélanie Morel-Rouhier
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Emmanuelle Morin
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Jasmyn Pangilinan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | - Robert Riley
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Eric Record
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
11
|
Xu R, Liu X, Peng B, Liu P, Li Z, Dai Y, Xiao S. Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism. Pathogens 2020; 9:pathogens9030232. [PMID: 32245129 PMCID: PMC7157644 DOI: 10.3390/pathogens9030232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cladobotryum dendroides, which causes cobweb disease in edible mushrooms, is one of the major fungal pathogens. Our previous studies focused on the genetic and morphological characterization of this fungus, as well as its pathogenicity and the identification of appropriate fungicides. However, little is known about the genome characters, pathogenic genes, and molecular pathogenic mechanisms of C. dendroides. Herein, we reported a high-quality de novo genomic sequence of C. dendroides and compared it with closely-related fungi. The assembled C. dendroides genome was 36.69 Mb, consisting of eight contigs, with an N50 of 4.76 Mb. This genome was similar in size to that of C. protrusum, and shared highly conserved syntenic blocks and a few inversions with C. protrusum. Phylogenetic analysis revealed that, within the Hypocreaceae, Cladobotryum was closer to Mycogone than to Trichoderma, which is consistent with phenotypic evidence. A significant number of the predicted expanded gene families were strongly associated with pathogenicity, virulence, and adaptation. Our findings will be instrumental for the understanding of fungi-fungi interactions, and for exploring efficient management strategies to control cobweb disease.
Collapse
Affiliation(s)
- Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiaochen Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Bing Peng
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Peibin Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China;
| | - Yueting Dai
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| | - Shijun Xiao
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| |
Collapse
|