1
|
Li Y, Wang Y, Luo YL, Bai DQ, Zhang G, Wang JR, Wei H, Li S. Epinecidin-1 and lactic acid synergistically inhibit Aeromonas hydrophila through membrane disruption. Microb Pathog 2024; 196:106879. [PMID: 39218372 DOI: 10.1016/j.micpath.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Epinecidin-1 (Epi-1) is an antimicrobial peptide originated from fish with various pharmacological activities but carries the risk of acquiring resistance with long-term use. In the present study, we use L-lactic acid to enhance the antibacterial activity of synthesized Epi-1 against the aquaculture and food pathogen Aeromonas hydrophila. The results showed that 5.5 mmol/L lactic acid increased the inhibitory and bactericidal activity of 25 μmol/L Epi-1 against two strains of A. hydrophila. The laser confocal images proved that lactic acid pre-treatment improved the attachment efficiency of Epi-1 in A.hydrophila cells. In addition, lactic acid enhanced the damaging effect of Epi-1 on the cell membrane of A. hydrophila, evidenced by releasing more nucleic acids, proteins, and transmembrane pH ingredients decrease and electromotive force dissipation. SEM images showed that compared with the single Epi-1 treatment, the co-treatment of Epi-1 and lactic acid caused more outer membrane vesicles (OMVs) and more severe cell deformation. These findings proved that lactic acid could enhance the efficiency of Epi-1 against A. hydrophila and shed light on new aspects to avoid resistance of pathogens against Epi-1.
Collapse
Affiliation(s)
- Yanzi Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Yang Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Yun-Long Luo
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Dong-Qing Bai
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Guangchen Zhang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Jing-Ru Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China
| | - Hongshuo Wei
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Shufang Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| |
Collapse
|
2
|
Yu HH, Wu LY, Hsu PL, Lee CW, Su BC. Marine Antimicrobial Peptide Epinecidin-1 Inhibits Proliferation Induced by Lipoteichoic acid and Causes cell Death in non-small cell lung cancer Cells via Mitochondria Damage. Probiotics Antimicrob Proteins 2024; 16:1724-1733. [PMID: 37523113 PMCID: PMC11445356 DOI: 10.1007/s12602-023-10130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is among the deadliest cancers worldwide. Despite the recent introduction of several new therapeutic approaches for the disease, improvements in overall survival and progression-free survival have been minimal. Conventional treatments for NSCLC include surgery, chemotherapy and radiotherapy. Except for surgery, these treatments can impair a patient's immune system, leaving them susceptible to bacterial infections. As such, Staphylococcus aureus infections are commonly seen in NSCLC patients receiving chemotherapy, and a major constituent of the S. aureus cell surface, lipoteichoic acid (LTA), is thought to stimulate NSCLC cancer cell proliferation. Thus, inhibition of LTA-mediated cell proliferation might be a useful strategy for treating NSCLC. Epinecidin-1 (EPI), a marine antimicrobial peptide, exhibits broad-spectrum antibacterial activity, and it also displays anti-cancer activity in glioblastoma and synovial sarcoma cells. Furthermore, EPI has been shown to inhibit LTA-induced inflammatory responses in murine macrophages. Nevertheless, the anti-cancer and anti-LTA activities of EPI and the underlying mechanisms of these effects have not been fully tested in the context of NSCLC. In the present study, we demonstrate that EPI suppresses LTA-enhanced proliferation of NSCLC cells by neutralizing LTA and blocking its effects on toll-like receptor 2 and interleukin-8. Moreover, we show that EPI induces necrotic cell death via mitochondrial damage, elevated reactive oxygen species levels, and disrupted redox balance. Collectively, our results reveal dual anti-cancer activities of EPI in NSCLC, as the peptide not only directly kills cancer cells but it also blocks LTA-mediated enhancement of cell proliferation.
Collapse
Affiliation(s)
- Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Huang Y, Song M, Li X, Du Y, Gao Z, Zhao YQ, Li C, Yan H, Mo X, Wang C, Hou G, Xie X. Temperature-responsive self-contraction nanofiber/hydrogel composite dressing facilitates the healing of diabetic-infected wounds. Mater Today Bio 2024; 28:101214. [PMID: 39280109 PMCID: PMC11402428 DOI: 10.1016/j.mtbio.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Bacterial infections and long-term inflammation cause serious secondary damage to chronic diabetic wounds and hinder the wound healing processes. Currently, multifunctional hydrogels have shown promising effects in chronic wound repair. However, traditional hydrogels only keep the wound moist and protect it from bacterial infection, and cannot provide mechanical force to contract the wound edges to achieve facilitated wound closure. Here, an asymmetric composite dressing was created by combining biaxially oriented nanofibers and hydrogel, inspired by the double-layer structure of the traditional Chinese medicinal plaster patch, for managing chronic wounds. Specifically, electrospun Poly-(lactic acid-co-trimethylene carbonate) (PLATMC) nanofibers and methacrylate gelatin (GelMa) hydrogel loaded with Epinecidin-1@chitosan (Epi-1@CS) nanoparticles are assembled as the temperature-responsive self-contracting nanofiber/hydrogel (TSNH) composite dressing. The substrate layer of PLATMC nanofibers combines topological morphology with material properties to drive wound closure through temperature-triggered contraction force. The functional layer of GelMa hydrogel is loaded with Epi-1@CS nanoparticles that combine satisfactory cytocompatibility, and antioxidant, anti-inflammatory, and antibacterial properties. Strikingly, in vivo, the TSNH dressing could regulate the diabetic wound microenvironment, thereby promoting collagen deposition, facilitating angiogenesis, and reducing the inflammatory response, which promotes the rapid healing of chronic wounds. This study highlights the potential of synergizing mechanical and biochemical signals in enhancing chronic wound treatment. Overall, this TSNH composite dressing is provided as a reliable approach to solving the long-standing problem of chronically infected wound healing.
Collapse
Affiliation(s)
- Yakun Huang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Meilin Song
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xianchao Li
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yanran Du
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Zhongfei Gao
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yu-Qing Zhao
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Chengbo Li
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Huanhuan Yan
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
4
|
Zhang BY, Nie QJ, Xu JM, Cai GH, Ye JD, Jin T, Yang HL, Sun YZ. Preventive and reparative potentials of heat-inactivated and viable commensal Bacillus pumilus SE5 in ameliorating the adverse impacts of high soybean meal in grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109846. [PMID: 39168291 DOI: 10.1016/j.fsi.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/06/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-β1) and reduced the expressions of pro-inflammatory genes (il-1β, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (β-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing-Jie Nie
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jian-Ming Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ting Jin
- Xiamen Canco Bioengineering Co., LTD, China
| | - Hong-Ling Yang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Yun-Zhang Sun
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
5
|
Mulukutla A, Shreshtha R, Kumar Deb V, Chatterjee P, Jain U, Chauhan N. Recent advances in antimicrobial peptide-based therapy. Bioorg Chem 2024; 145:107151. [PMID: 38359706 DOI: 10.1016/j.bioorg.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs) are a group of polypeptide chains that have the property to target and kill a myriad of microbial organisms including viruses, bacteria, protists, etc. The first discovered AMP was named gramicidin, an extract of aerobic soil bacteria. Further studies discovered that these peptides are present not only in prokaryotes but in eukaryotes as well. They play a vital role in human innate immunity and wound repair. Consequently, they have maintained a high level of intrigue among scientists in the field of immunology, especially so with the rise of antibiotic-resistant pathogens decreasing the reliability of antibiotics in healthcare. While AMPs have promising potential to substitute for common antibiotics, their use as effective replacements is barred by certain limitations. First, they have the potential to be cytotoxic to human cells. Second, they are unstable in the blood due to action by various proteolytic agents and ions that cause their degradation. This review provides an overview of the mechanism of AMPs, their limitations, and developments in recent years that provide techniques to overcome those limitations. We also discuss the advantages and drawbacks of AMPs as a replacement for antibiotics as compared to other alternatives such as synthetically modified bacteriophages, traditional medicine, and probiotics.
Collapse
Affiliation(s)
- Aditya Mulukutla
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Romi Shreshtha
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Pallabi Chatterjee
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
6
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Salimnejhad Z, Hassanzadazar H, Aminzare M. Epinecidin-1 (an active marine antimicrobial peptide): Effects on the survival of inoculated Escherichia Coli O157:H7 And Staphylococcus aureus bacteria, antioxidant, and sensory attributes in raw milk. Food Sci Nutr 2023; 11:5573-5581. [PMID: 37701235 PMCID: PMC10494623 DOI: 10.1002/fsn3.3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
This study aimed to evaluate the effects of Epinecidin-1 (Epi-1) on total viable count (TVC), total psychrotrophic count (TPC), sensory attributes, and the survival of Escherichia Coli O157:H7 and Staphylococcus aureus bacteria inoculated in pasteurized milk samples during cold storage (4°C). Four treatments of milk samples were prepared including milk samples containing three concentrations of Epi-1 (0.0025, 0.005, and 0.01%) and control (without Epi-1). The treated milk samples were evaluated in vitro (minimum inhibitory concentration, Minimum bactericidal concentration, disk diffusion test, DPPH, reducing power assays) and in vivo (TVC, TPC, sensory properties, and enumeration of inoculated E. coli and S. aureus) during 9 days at cold storage. The best antibacterial and antioxidant power of Epi-1 was observed at a concentration of 0.01%. Based on the MICs and MBCs, the most susceptible and resistant bacteria to Epi-1 were B. cereus and S. aureus strains, respectively. The DPPH scavenging potential of Epi-1 was in the range of 77%-80%. Treated samples containing 0.01% Epi-1 had the lowest TVC and TPC and reached 3.9 and 2.96 CFU log/mL at the end day of storage. A decrease of 6 and 1.4 logs CFU/g of E. coli O157:H7 and S. aureus was seen in all treatments containing Epi-1, respectively, on the last day of storage period. There are no unpleasant sensory properties in treated samples with Epi-1. Our results indicate that Epi-1 has good potential as a bio-preservative to prevent raw milk spoilage and reduction of milk-borne pathogens.
Collapse
Affiliation(s)
- Ziba Salimnejhad
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
8
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
9
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Hsieh CY, Rajanbabu V, Pan CY, Chen JY. Transcriptome analysis reveals modulation of differentially expressed genes in LPS-treated mouse macrophages (RAW264.7 cells) by grouper (Epinephelus coioides) Epinecidin-1. FISH & SHELLFISH IMMUNOLOGY 2023:108880. [PMID: 37327978 DOI: 10.1016/j.fsi.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The marine antimicrobial peptide Epinecidin (Epi)-1 has been shown to exert direct antimicrobial and immunomodulatory actions in teleost, mammalian and avian organisms. For instance, Epi-1 can suppress bacterial endotoxin lipolysachcharide (LPS)-induced proinflammatory cytokines in RAW264.7 murine macrophages. However, it remains unknown how Epi-1 might broadly affect non-activated and LPS-activated macrophages. To address this question, we performed a comparative transcriptomic analysis of non-treated and LPS-treated RAW264.7 cells in the presence and absence of Epi-1. Gene enrichment analysis was conducted on filtered reads, followed by GO and KEGG analyses. The results showed that Epi-1 treatment modulated pathways and genes associated with nucleoside binding, intramolecular oxidoreductase activity, GTPase activity, peptide antigen binding, GTP binding, ribonucleoside/nucleotide binding, phosphatidylinositol binding and phosphatidylinositol-4-phosphate binding. Based on the GO analysis results, we performed real-time PCR at different treatment times to compare expression levels of selected proinflammatory cytokines, anti-inflammatory cytokines, MHC, proliferation and differentiation genes. Epi-1 decreased expression of the proinflammatory cytokines, TNF-α, IL-6 and IL-1β, and it increased the anti-inflammatory cytokine TGFβ and Sytx1. MHC-associated genes, GM7030, Arfip1, Gpb11 and Gem, were induced by Epi-1, which is expected to enhance the immune response against LPS. Immunoglobulin-associated Nuggc was also upregulated by Epi-1. Finally, we found that Epi-1 downregulated the expression of host defense peptides CRAMP, Leap2 and BD3. Taken together, these findings suggest that Epi-1 treatment induces orchestrated changes in the transcriptome of LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Chu-Yi Hsieh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Venugopal Rajanbabu
- Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Tiruchchirapalli, 620027, Tamil Nadu, India
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan.
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
11
|
Wu YX, Hu SY, Lu XJ, Hu JR. Identification and characterization of two novel antimicrobial peptides from Japanese sea bass (Lateolabrax japonicus) with antimicrobial activity and MO/MФ activation capability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104726. [PMID: 37149238 DOI: 10.1016/j.dci.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Piscidins participate in the innate immune response of fish, which aims to eliminate recognized foreign microbes and restore the homeostasis of immune system. We characterized two piscidin-like antimicrobial peptides (LjPL-3 and LjPL-2) isolated from Japanese sea bass (Lateolabrax japonicus). LjPL-3 and LjPL-2 showed different expression patterns in tissues. After Vibrio harveyi infection, the mRNA expression of LjPL-3 and LjPL-2 was upregulated in the liver, spleen, head kidney, and trunk kidney. The synthetic mature peptides LjPL-3 and LjPL-2 exhibited different antimicrobial spectra. Furthermore, LjPL-3 and LjPL-2 treatments decreased inflammatory cytokine production while promoting chemotaxis and phagocytosis in monocytes/macrophages (MO/MФ). LjPL-2, but not LjPL-3, displayed bacterial killing capability in MO/MФ. LjPL-3 and LjPL-2 administration increased Japanese sea bass survival after V. harveyi challenge, which was accompanied by a decline in bacterial burden. These data suggested that LjPL-3 and LjPL-2 participate in immune response through direct bacterial killing and MO/MФ activation.
Collapse
Affiliation(s)
- Yi-Xin Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shuai-Yue Hu
- Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
12
|
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022; 49:10039-10050. [PMID: 35606604 PMCID: PMC9126628 DOI: 10.1007/s11033-022-07572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are a diverse class of molecules that represent a vital part of innate immunity. AMPs are evolutionarily conserved molecules that exhibit structural and functional diversity. They provide a possible solution to the antibiotic-resistance crisis. MAIN TEXT These small cationic peptides can target bacteria, fungi, and viruses, as well as cancer cells. Their unique action mechanisms, rare antibiotic-resistant variants, broad-spectrum activity, low toxicity, and high specificity encourage pharmaceutical industries to conduct clinical trials to develop them as therapeutic drugs. The rapid development of computer-assisted strategies accelerated the identification of AMPs. The Antimicrobial Peptide Database (APD) so far contains 3324 AMPs from different sources. In addition to their applications in different fields, some AMPs demonstrated the potential to combat COVID-19, and hinder viral infectivity in diverse ways. CONCLUSIONS This review provides a brief history of AMPs and their features, including classification, evolution, sources and mechanisms of action, biosynthesis pathway, and identification techniques. Furthermore, their different applications, challenges to clinical applications, and their potential use against COVID-19 are presented.
Collapse
Affiliation(s)
- Dalia Mamdouh Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth, St., P.O.12622, Dokki, Giza, Egypt.
| |
Collapse
|
13
|
Antimicrobial Peptides Epinecidin-1 and Beta-Defesin-3 Are Effective against a Broad Spectrum of Antibiotic-Resistant Bacterial Isolates and Increase Survival Rate in Experimental Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11010076. [PMID: 35052952 PMCID: PMC8773371 DOI: 10.3390/antibiotics11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
The antimicrobial peptides human Beta-defensin-3 (hBD-3) and Epinecidin-1 (Epi-1; by Epinephelus coioides) could be a promising tool to develop novel antibacterials to combat antibiotic resistance. The antibacterial activity of Epi-1 + vancomycin against methicillin-resistant Staphylococcus aureus (22 isolates) and Epi-1 + hBD-3 against carbapenem-resistant isolates of Klebsiella pneumoniae (n = 23), Klebsiella aerogenes (n = 17), Acinetobacter baumannii (n = 9), and Pseudomonas aeruginosa (n = 13) was studied in vitro. To evaluate the in vivo efficacy of hBD-3 and Epi-1, ICR (CD-1) mice were injected intraperitoneally with a lethal dose of K. pneumoniae or P. aeruginosa. The animals received a single injection of either sterile saline, hBD-3 monotherapy, meropenem monotherapy, hBD-3 + meropenem, or hBD-3 + Epi-1. Studied peptides showed antibacterial activity in vitro against all studied clinical isolates in a concentration of 2 to 32 mg/L. In both experimental models of murine sepsis, an increase in survival rate was seen with hBD-3 monotherapy, hBD-3 + meropenem, and hBD-3 + Epi-1. For K. pneumoniae-sepsis, hBD-3 was shown to be a promising option in overcoming the resistance of Klebsiella spp. to carbapenems, though more research is needed. In the P. aeruginosa-sepsis model, the addition of Epi-1 to hBD-3 was found to have a slightly reduced mortality rate compared to hBD-3 monotherapy.
Collapse
|
14
|
Amirova M, Bagirova S, Azizova U, Guliyeva S. The Main Directions of Antimicrobial Peptides Use and Synthesis Overview. Health (London) 2022. [DOI: 10.4236/health.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, Tan LTH, Lee LH. Streptomyces sp.-A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci 2021; 22:ijms22179360. [PMID: 34502269 PMCID: PMC8431294 DOI: 10.3390/ijms22179360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| |
Collapse
|
16
|
Li D, Yang Y, Li R, Huang L, Wang Z, Deng Q, Dong S. N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci 2021; 27:e3337. [PMID: 33987904 DOI: 10.1002/psc.3337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptide L163 was computationally designed by our laboratory; L163 is active against multidrug-resistant (MDR) bacteria but is easily degraded in the plasma and by trypsin. Amino acid substitution, cyclization, and amino-terminal (N-terminal) acetylation were performed to obtain L163 analogs with high stability in the plasma and in trypsin solutions. The stability, antimicrobial activity, and biosafety of L163 and its analogs were investigated. Comparison with unmodified L163 indicated that N-terminal acetylation enhanced the stability against pH, plasma, and trypsin degradation, and phenylalanine (Phe) substitution for leucine (Leu) and cysteine bridge (S-S) cyclization decreased the stability. N-terminal acetylation also enhanced antimicrobial activity against MDR Streptococcus Sc181, Listeria monocytogenes, and Enterococcus E1478F; did not change the activity against MDR Staphylococcus aureus 9, Staphylococcus sciuri P254, and Staphylococcus aureus RN4220; and decreased the activity against Candida tropicalis, Candida albicans, and Enterococcus faecalis Fbc35. Phe substitution for Leu and S-S cyclization decreased the antimicrobial activity. The negative effect of these modifications was detected against biofilm formation by the tested microbial strains. Comparison of Phe substitution for Leu and S-S cyclization indicated that N-terminally acetylated L163 (L163-Ac) is the best candidate. L163-Ac peptide had the highest antibacterial activity and enhanced tolerance to temperature, pH, plasma, and trypsin and low toxicity.
Collapse
Affiliation(s)
- Dandan Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanhui Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Liang Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Qiwu Deng
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibo Dong
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
17
|
Low CX, Tan LTH, Ab Mutalib NS, Pusparajah P, Goh BH, Chan KG, Letchumanan V, Lee LH. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics (Basel) 2021; 10:578. [PMID: 34068272 PMCID: PMC8153128 DOI: 10.3390/antibiotics10050578] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.
Collapse
Affiliation(s)
- Chuen Xian Low
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 50603, Malaysia
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhenjiang University, Hangzhou 310058, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| |
Collapse
|
18
|
Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12:648554. [PMID: 33897696 PMCID: PMC8062706 DOI: 10.3389/fimmu.2021.648554] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed wound healing can cause significant issues for immobile and ageing individuals as well as those living with co-morbid conditions such as diabetes, cardiovascular disease, and cancer. These delays increase a patient’s risk for infection and, in severe cases, can result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and expensive to treat and there is an urgent need to develop more effective therapeutics that restore healing processes. Sustained innate immune activation and inflammation are common features observed across most chronic wound types. However, the factors driving this activation remain incompletely understood. Emerging evidence suggests that the composition and structure of the wound microbiome may play a central role in driving this dysregulated activation but the cellular and molecular mechanisms underlying these processes require further investigation. In this review, we will discuss the current literature on: 1) how bacterial populations and biofilms contribute to chronic wound formation, 2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target bacteria-innate immune interactions to improve healing. We will also discuss potential issues in studying the complexity of immune-biofilm interactions in chronic wounds and explore future areas of investigation for the field.
Collapse
Affiliation(s)
- Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Emily Russell
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra Zigic
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Katrina G DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Jonah E Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Targeting Gut Microbial Biofilms-A Key to Hinder Colon Carcinogenesis? Cancers (Basel) 2020; 12:cancers12082272. [PMID: 32823729 PMCID: PMC7465663 DOI: 10.3390/cancers12082272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
Collapse
|
20
|
Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Epinecidin-1 Protects against Methicillin Resistant Staphylococcus aureus Infection and Sepsis in Pyemia Pigs. Mar Drugs 2019; 17:md17120693. [PMID: 31835381 PMCID: PMC6950563 DOI: 10.3390/md17120693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) may be found on the skin, nose, and throats of long-term hospitalized patients. While MRSA infections are usually minor, serious infections and death may occur in immunocompromised or diabetic patients, or after exposure of MRSA to blood. This report demonstrates that the antimicrobial peptide (AMP) epinecidin-1 (Epi-1) efficiently protects against MRSA infection in a pyemia pig model. We first found that Epi-1 exhibits bactericidal activity against MRSA. Next, pharmacokinetic analysis revealed that Epi-1 was stable in serum for 4 h after injection, followed by a gradual decrease. This pharmacokinetic profile suggested Epi-1 may bind serum albumin, which was confirmed in vitro. Harmful effects were not observed for doses up to 100 mg/kg body weight in pigs. When Epi-1 was supplied as a curative agent 30 min post-infection, MRSA-induced abnormalities in blood uric acid (UA), blood urea nitrogen (BUN), creatine (CRE), GOT, and GPT levels were restored to normal levels. We further showed that the bactericidal activity of Epi-1 was higher than that of the antibiotic drug vancomycin. Epi-1 significantly decreased MRSA counts in the blood, liver, kidney, heart, and lungs of infected pigs. Elevated levels of serum C reactive protein (CRP), proinflammatory cytokine IL6, IL1β, and TNFα were also attenuated by Epi-1 treatment. Moreover, the MRSA genes, enterotoxin (et)-A, et-B, intrinsic methicillin resistance A (mecA), and methicillin resistance factor A (femA), were significantly reduced or abolished in MRSA-infected pigs after treatment with Epi-1. Hematoxylin and eosin staining of heart, liver, lung, and kidney sections indicated that Epi-1 attenuated MRSA toxicity in infected pigs. A survival study showed that the pyemia pigs infected with MRSA alone died within a week, whereas the pigs post-treated with 2.5 mg/kg Epi-1 were completely protected against death. The present investigation, thus, demonstrates that Epi-1 effectively protects pyemia pigs against pathogenic MRSA without major toxic side effects.
Collapse
|