1
|
Dank A, Liu Y, Wen X, Lin F, Wiersma A, Boeren S, Smid EJ, Notebaart RA, Abee T. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Propionibacterium freudenreichii. Heliyon 2024; 10:e33444. [PMID: 39027605 PMCID: PMC11255663 DOI: 10.1016/j.heliyon.2024.e33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Xin Wen
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Fan Lin
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Wiersma
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
4
|
Zeng Z, Wijnands LM, Boeren S, Smid EJ, Notebaart RA, Abee T. Impact of vitamin B 12 on rhamnose metabolism, stress defense and in-vitro virulence of Listeria monocytogenes. Int J Food Microbiol 2024; 410:110486. [PMID: 37992553 DOI: 10.1016/j.ijfoodmicro.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/05/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. L. monocytogenes is capable of utilizing various nutrient sources including rhamnose, a naturally occurring deoxy sugar abundant in foods. L. monocytogenes can degrade rhamnose into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulated anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartments for 1,2-propanediol utilization (pdu BMC) with concomitant production of propionate and propanol. Notably, anaerobic 1,2-propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigated the impact of B12 and BMC activation on i) aerobic and anerobic growth of L. monocytogenes on rhamnose and ii) the level of virulence. We observed B12-induced pdu BMC activation and growth stimulation only in anaerobically grown cells. Comparative Caco-2 virulence assays showed that these pdu BMC-induced cells have significantly higher translocation efficiency compared to non-induced cells (anaerobic growth without B12; aerobic growth with or without B12), while adhesion and invasion capacity is similar for all cells. Comparative proteome analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL, teichoic acid export ATP-binding protein TagH, DNA repair and protection proteins, RadA and DPS, and glutathione synthase GshAB, previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu-induced cells. Our results shed light on possible effects of B12 on L. monocytogenes competitive fitness and virulence activation when utilizing rhamnose in anaerobic conditions encountered during transmission and the human intestine.
Collapse
Affiliation(s)
- Zhe Zeng
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Lucas M Wijnands
- National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Niu M, Sui Z, Jiang G, Wang L, Yao X, Hu Y. The Mutation of the DNA-Binding Domain of Fur Protein Enhances the Pathogenicity of Edwardsiella piscicida via Inducing Overpowering Pyroptosis. Microorganisms 2023; 12:11. [PMID: 38276180 PMCID: PMC10821184 DOI: 10.3390/microorganisms12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Edwardsiella piscicida is an important fish pathogen with a broad host that causes substantial economic losses in the aquaculture industry. Ferric uptake regulator (Fur) is a global transcriptional regulator and contains two typical domains, the DNA-binding domain and dimerization domain. In a previous study, we obtained a mutant strain of full-length fur of E. piscicida, TX01Δfur, which displayed increased siderophore production and stress resistance factors and decreased pathogenicity. To further reveal the regulatory mechanism of Fur, the DNA-binding domain (N-terminal) of Fur was knocked out in this study and the mutant was named TX01Δfur2. We found that TX01Δfur2 displayed increased siderophore production and enhanced adversity tolerance, including a low pH, manganese, and high temperature stress, which was consistent with the phenotype of TX01Δfur. Contrary to TX01Δfur, whose virulence was weakened, TX01Δfur2 displayed an ascended invasion of nonphagocytic cells and enhanced destruction of phagocytes via inducing overpowering or uncontrollable pyroptosis, which was confirmed by the fact that TX01Δfur2 induced higher levels of cytotoxicity, IL-1β, and p10 in macrophages than TX01. More importantly, TX01Δfur2 displayed an increased global virulence to the host, which was confirmed by the result that TX01Δfur2 caused higher lethality outcomes for healthy tilapias than TX01. These results demonstrate that the mutation of the Fur N-terminal domain augments the resistance level against the stress and pathogenicity of E. piscicida, which is not dependent on the bacterial number in host cells or host tissues, although the capabilities of biofilm formation and the motility of TX01Δfur2 decline. These interesting findings provide a new insight into the functional analysis of Fur concerning the regulation of virulence in E. piscicida and prompt us to explore the subtle regulation mechanism of Fur in the future.
Collapse
Affiliation(s)
- Mimi Niu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhihai Sui
- School of Life Science, Linyi University, Linyi 276000, China;
| | - Guoquan Jiang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Xuemei Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Yonghua Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| |
Collapse
|
6
|
D'Onofrio F, Schirone M, Krasteva I, Tittarelli M, Iannetti L, Pomilio F, Torresi M, Paparella A, D'Alterio N, Luciani M. A comprehensive investigation of protein expression profiles in L. monocytogenes exposed to thermal abuse, mild acid, and salt stress conditions. Front Microbiol 2023; 14:1271787. [PMID: 37876777 PMCID: PMC10591339 DOI: 10.3389/fmicb.2023.1271787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Preventing L. monocytogenes infection is crucial for food safety, considering its widespread presence in the environment and its association with contaminated RTE foods. The pathogen's ability to persist under adverse conditions, for example, in food processing facilities, is linked to virulence and resistance mechanisms, including biofilm formation. In this study, the protein expression patterns of two L. monocytogenes 1/2a strains, grown under environmental stressors (mild acidic pH, thermal abuse, and high concentration of NaCl), were investigated. Protein identification and prediction were performed by nLC-ESI-MS/MS and nine different bioinformatic software programs, respectively. Gene enrichment analysis was carried out by STRING v11.05. A total of 1,215 proteins were identified, of which 335 were non-cytosolic proteins and 265 were immunogenic proteins. Proteomic analysis revealed differences in protein expression between L. monocytogenes strains in stressful conditions. The two strains exhibited unique protein expression profiles linked to stress response, virulence, and pathogenesis. Studying the proteomic profiles of such microorganisms provides information about adaptation and potential treatments, highlighting their genetic diversity and demonstrating the utility of bioinformatics and proteomics for a broader analysis of pathogens.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
7
|
Wu J, McAuliffe O, O'Byrne CP. Manganese uptake mediated by the NRAMP-type transporter MntH is required for acid tolerance in Listeria monocytogenes. Int J Food Microbiol 2023; 399:110238. [PMID: 37148667 DOI: 10.1016/j.ijfoodmicro.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland..
| |
Collapse
|
8
|
Mills CE, Waltmann C, Archer AG, Kennedy NW, Abrahamson CH, Jackson AD, Roth EW, Shirman S, Jewett MC, Mangan NM, Olvera de la Cruz M, Tullman-Ercek D. Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. Nat Commun 2022; 13:3746. [PMID: 35768404 PMCID: PMC9243111 DOI: 10.1038/s41467-022-31279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andre G Archer
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Alexander D Jackson
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL, USA
| | - Sasha Shirman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Zeng Z, Dank A, Smid EJ, Notebaart RA, Abee T. Bacterial microcompartments in food-related microbes. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hobbs L, Allen L, Bias M, Johnson S, DeRespiris H, Diallo C, Bui L, Sun Y. The Opposing Role of Propionate in Modulating Listeria monocytogenes Intracellular Infections. Front Microbiol 2021; 12:721801. [PMID: 34539613 PMCID: PMC8442606 DOI: 10.3389/fmicb.2021.721801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.
Collapse
Affiliation(s)
- Laura Hobbs
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Leah Allen
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Megan Bias
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Stephanie Johnson
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hannah DeRespiris
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Chantal Diallo
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, OH, United States
| |
Collapse
|
11
|
Anaerobic Growth of Listeria monocytogenes on Rhamnose Is Stimulated by Vitamin B 12 and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. mSphere 2021; 6:e0043421. [PMID: 34287006 PMCID: PMC8386454 DOI: 10.1128/msphere.00434-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B12, followed by metabolic analysis. We show that vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenespdu BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. IMPORTANCEListeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol (pdu) in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.
Collapse
|
12
|
Prentice MB. Bacterial microcompartments and their role in pathogenicity. Curr Opin Microbiol 2021; 63:19-28. [PMID: 34107380 DOI: 10.1016/j.mib.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Catabolic bacterial microcompartments (BMC), or metabolosomes, are self-assembling structures formed by enzymes enclosed by porous protein shells. They provide a specialised environment inside bacterial cells separating a short catabolic pathway with reactive or toxic intermediates from the cytoplasm. Substrates for microcompartment metabolism like ethanolamine and 1,2-propanediol are constantly produced in the human intestine by bacterial metabolism of food or host cell components. Enteric pathogens gain a competitive advantage in the intestine by metabolising these substrates, an advantage enhanced by the host inflammatory response. They exploit the intestinal specificity of signature metabolosome substrates by adopting substrate sensors and regulators encoded by BMC operons for governance of non-metabolic processes in pathogenesis. In turn, products of microcompartment metabolism regulate the host immune system.
Collapse
Affiliation(s)
- Michael B Prentice
- Department of Pathology, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
13
|
Asija K, Sutter M, Kerfeld CA. A Survey of Bacterial Microcompartment Distribution in the Human Microbiome. Front Microbiol 2021; 12:669024. [PMID: 34054778 PMCID: PMC8156839 DOI: 10.3389/fmicb.2021.669024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based organelles that expand the metabolic potential of many bacteria by sequestering segments of enzymatic pathways in a selectively permeable protein shell. Sixty-eight different types/subtypes of BMCs have been bioinformatically identified based on the encapsulated enzymes and shell proteins encoded in genomic loci. BMCs are found across bacterial phyla. The organisms that contain them, rather than strictly correlating with specific lineages, tend to reflect the metabolic landscape of the environmental niches they occupy. From our recent comprehensive bioinformatic survey of BMCs found in genome sequence data, we find many in members of the human microbiome. Here we survey the distribution of BMCs in the different biotopes of the human body. Given their amenability to be horizontally transferred and bioengineered they hold promise as metabolic modules that could be used to probiotically alter microbiomes or treat dysbiosis.
Collapse
Affiliation(s)
- Kunica Asija
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Markus Sutter
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Dank A, Zeng Z, Boeren S, Notebaart RA, Smid EJ, Abee T. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization of Propionibacterium freudenreichii. Front Microbiol 2021; 12:679827. [PMID: 34054787 PMCID: PMC8149966 DOI: 10.3389/fmicb.2021.679827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous prokaryotic organelles that enable the utilization of substrates such as 1,2-propanediol and ethanolamine. BMCs are mostly linked to the survival of particular pathogenic bacteria by providing a growth advantage through utilization of 1,2-propanediol and ethanolamine which are abundantly present in the human gut. Although a 1,2-propanediol utilization cluster was found in the probiotic bacterium Propionibacterium freudenreichii, BMC-mediated metabolism of 1,2-propanediol has not been demonstrated experimentally in P. freudenreichii. In this study we show that P. freudenreichii DSM 20271 metabolizes 1,2-propanediol in anaerobic conditions to propionate and 1-propanol. Furthermore, 1,2-propanediol induced the formation of BMCs, which were visualized by transmission electron microscopy and resembled BMCs found in other bacteria. Proteomic analysis of 1,2-propanediol grown cells compared to L-lactate grown cells showed significant upregulation of proteins involved in propanediol-utilization (pdu-cluster), DNA repair mechanisms and BMC shell proteins while proteins involved in oxidative phosphorylation were down-regulated. 1,2-Propanediol utilizing cells actively produced vitamin B12 (cobalamin) in similar amounts as cells growing on L-lactate. The ability to metabolize 1,2-propanediol may have implications for human gut colonization and modulation, and can potentially aid in delivering propionate and vitamin B12in situ.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Zhe Zeng
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Unravelling the Molecular Mechanisms Underlying the Protective Effect of Lactate on the High-Pressure Resistance of Listeria monocytogenes. Biomolecules 2021; 11:biom11050677. [PMID: 33946460 PMCID: PMC8147161 DOI: 10.3390/biom11050677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Formulations with lactate as an antimicrobial and high-pressure processing (HPP) as a lethal treatment are combined strategies used to control L. monocytogenes in cooked meat products. Previous studies have shown that when HPP is applied in products with lactate, the inactivation of L. monocytogenes is lower than that without lactate. The purpose of the present work was to identify the molecular mechanisms underlying the piezo-protection effect of lactate. Two L. monocytogenes strains (CTC1034 and EGDe) were independently inoculated in a cooked ham model medium without and with 2.8% potassium lactate. Samples were pressurized at 400 MPa for 10 min at 10 °C. Samples were subjected to RNA extraction, and a shotgun transcriptome sequencing was performed. The short exposure of L. monocytogenes cells to lactate through its inoculation in a cooked ham model with lactate 1h before HPP promoted a shift in the pathogen’s central metabolism, favoring the metabolism of propanediol and ethanolamine together with the synthesis of the B12 cofactor. Moreover, the results suggest an activated methyl cycle that would promote modifications in membrane properties resulting in an enhanced resistance of the pathogen to HPP. This study provides insights on the mechanisms developed by L. monocytogenes in response to lactate and/or HPP and sheds light on the understanding of the piezo-protective effect of lactate.
Collapse
|
16
|
Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. mSystems 2021; 6:6/2/e01349-20. [PMID: 33850044 PMCID: PMC8547011 DOI: 10.1128/msystems.01349-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B12-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.
Collapse
|
17
|
Anast JM, Bobik TA, Schmitz-Esser S. The Cobalamin-Dependent Gene Cluster of Listeria monocytogenes: Implications for Virulence, Stress Response, and Food Safety. Front Microbiol 2020; 11:601816. [PMID: 33240255 PMCID: PMC7677406 DOI: 10.3389/fmicb.2020.601816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Several genes of the eut, pdu, and cob/cbi operons are responsible for the metabolism of ethanolamine (EA) and 1,2-propanediol (PD) and are essential during the pathogenic lifecycles of various enteric pathogens. Studies concerning EA and PD metabolism have primarily focused on bacterial genera from the family Enterobacteriaceae, especially the genus Salmonella. Listeria monocytogenes is a member of the Firmicutes phylum and is the causative agent of the rare but highly fatal foodborne disease listeriosis. The eut, pdu, and cob/cbi operons are organized as a single large locus collectively referred to as the cobalamin-dependent gene cluster (CDGC). The CDGC is well conserved in L. monocytogenes; however, functional characterization of the genes in this cluster and how they may contribute to Listeria virulence and stress tolerance in food production environments is highly limited. Previous work suggests that the degradation pathway of PD is essential for L. monocytogenes establishment in the gastrointestinal tract. In contrast, EA metabolism may be more important during intracellular replication. Other studies indicate that the CDGC is utilized when L. monocytogenes is exposed to food and food production relevant stress conditions. Perhaps most noteworthy, L. monocytogenes exhibits attenuated growth at cold temperatures when a key EA utilization pathway gene was deleted. This review aims to summarize the current knowledge of these pathways in L. monocytogenes and their significance in virulence and stress tolerance, especially considering recent developments.
Collapse
Affiliation(s)
- Justin M Anast
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Thomas A Bobik
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Mattila M, Somervuo P, Korkeala H, Stephan R, Tasara T. Transcriptomic and Phenotypic Analyses of the Sigma B-Dependent Characteristics and the Synergism between Sigma B and Sigma L in Listeria monocytogenes EGD-e. Microorganisms 2020; 8:microorganisms8111644. [PMID: 33114171 PMCID: PMC7690807 DOI: 10.3390/microorganisms8111644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous gene expression and stress adaptation responses in L. monocytogenes are regulated through alternative sigma factors σB and σL. Stress response phenotypes and transcriptomes were compared between L. monocytogenes EGD-e and its ΔsigB and ΔsigBL mutants. Targeted growth phenotypic analysis revealed that the ΔsigB and ΔsigBL mutants are impaired during growth under cold and organic-acid stress conditions. Phenotypic microarrays revealed increased sensitivity in both mutants to various antimicrobial compounds. Genes de-regulated in these two mutants were identified by genome-wide transcriptome analysis during exponential growth in BHI. The ΔsigB and ΔsigBL strains repressed 198 and 254 genes, respectively, compared to the parent EGD-e strain at 3 °C, whereas 86 and 139 genes, respectively, were repressed in these mutants during growth at 37 °C. Genes repressed in these mutants are involved in various cellular functions including transcription regulation, energy metabolism and nutrient transport functions, and viral-associated processes. Exposure to cold stress induced a significant increase in σB and σL co-dependent genes of L. monocytogenes EGD-e since most (62%) of the down-regulated genes uncovered at 3 °C were detected in the ΔsigBL double-deletion mutant but not in ΔsigB or ΔsigL single-deletion mutants. Overall, the current study provides an expanded insight into σB and σL phenotypic roles and functional interactions in L. monocytogenes. Besides previously known σB- and σL-dependent genes, the transcriptomes defined in ΔsigB and ΔsigBL mutants reveal several new genes that are positively regulated by σB alone, as well as those co-regulated through σB- and σL-dependent mechanisms during L. monocytogenes growth under optimal and cold-stress temperature conditions.
Collapse
Affiliation(s)
- Mirjami Mattila
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
- Correspondence: ; Tel.: +41-44-635-8669
| |
Collapse
|