1
|
Cheng Y, Liu M, Yu Q, Huang S, Han S, Shi J, Wei H, Zou J, Li P. Effect of EGCG Extracted from Green Tea against Largemouth Bass Virus Infection. Viruses 2023; 15:151. [PMID: 36680191 PMCID: PMC9864265 DOI: 10.3390/v15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
(1) Background: Largemouth bass virus (LMBV) is a major viral pathogen in largemouth bass (Micropterus salmoides) aquaculture that often causes high mortality and heavy economic losses, thus developing treatments to combat this pathogen is of great commercial importance. Green tea is a well-known medicinal plant that contains active ingredients with antiviral, antibacterial, and other biological activities. The goals of this study were to explore the effect and mechanism of green tea source compounds on LMBV and provide data to serve as the basis for the screening of targeted drugs in the future. In this study, we evaluated the effects of the main component of green tea, epigallocatechin-3-gallate (EGCG), against LMBV infection. (2) Methods: The safe working concentration of EGCG was identified by cell viability detection and light microscopy. The antiviral activity and mechanism of action of EGCG against LMBV infection were evaluated with light microscopy, an aptamer 6-carboxy-fluorescein-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentration of EGCG was ≤10 μg/mL. EGCG showed significant anti-LMBV infection activity in a concentration-dependent manner, and it also destroyed the structure of virus particles. EGCG impacted the binding of virus particles to cell receptors and virus invasion into the host cells. Inhibitory effects of EGCG on LMBV particles, LMBV binding to the host-cell membrane, and LMBV invasion were 84.89%, 98.99%, and 95.23%, respectively. Meanwhile, the effects of EGCG subsequently were verified in vivo. The fatality rate of the LMBV + EGCG group was significantly lower than that of the LMBV group. (4) Conclusions: Our results suggest that EGCG has effective antiviral properties against LMBV and may be a candidate for the effective treatment and control of LMBV infections in largemouth bass aquaculture.
Collapse
Affiliation(s)
- Yuan Cheng
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Nanning 530000, China
| | - Shuaishuai Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
| | - Shuyu Han
- Guangxi Fisheries Technology Extension Station, Nanning 530000, China
| | - Jingu Shi
- Beihai Fisheries Technology Extension Station, Beihai 536001, China
| | - Hongling Wei
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
| | - Jianwei Zou
- Beihai Fisheries Technology Extension Station, Beihai 536001, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning 530000, China
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Nanning 530000, China
| |
Collapse
|
2
|
Wei H, Guo Z, Long Y, Liu M, Xiao J, Huang L, Yu Q, Li P. Aptamer-Based High-Throughput Screening Model for Efficient Selection and Evaluation of Natural Ingredients against SGIV Infection. Viruses 2022; 14:v14061242. [PMID: 35746713 PMCID: PMC9227401 DOI: 10.3390/v14061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Singapore grouper iridovirus (SGIV) causes high economic losses in mariculture. Effective drugs for managing SGIV infection are urgently required. Medicinal plant resources are rich in China. Medicinal plants have a long history and significant curative effects in the treatment of many diseases. Reverse-transcription quantitative real-time PCR is the most commonly used method for detecting virus infection and assessing antiviral efficacy with high accuracy. However, their applications are limited due to high reagent costs and complex time-consuming operations. Aptamers have been applied in some biosensors to achieve the accurate detection of pathogens or diseases through signal amplification. This study aimed to establish an aptamer-based high-throughput screening (AHTS) model for the efficient selection and evaluation of medicinal plants components against SGIV infection. Q2-AHTS is an expeditious, rapid method for selecting medicinal plant drugs against SGIV, which was characterized as being dram, high-speed, sensitive, and accurate. AHTS strategy reduced work intensity and experimental costs and shortened the whole screening cycle for effective ingredients. AHTS should be suitable for the rapid selection of effective components against other viruses, thus further promoting the development of high-throughput screening technology.
Collapse
Affiliation(s)
- Hongling Wei
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning 530007, China; (H.W.); (M.L.); (L.H.)
| | - Zhongbao Guo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Breeding, Guangxi Academy of Fishery Science, Nanning 530000, China; (Z.G.); (J.X.)
| | - Yu Long
- Department of Biochemistry and Molecular Biology, Wuzhou Medical College, Wuzhou 543000, China;
| | - Mingzhu Liu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning 530007, China; (H.W.); (M.L.); (L.H.)
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Breeding, Guangxi Academy of Fishery Science, Nanning 530000, China; (Z.G.); (J.X.)
| | - Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning 530007, China; (H.W.); (M.L.); (L.H.)
| | - Qing Yu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning 530007, China; (H.W.); (M.L.); (L.H.)
- Correspondence: (Q.Y.); (P.L.); Tel.: +86-0771-2503976 (P.L.); Fax: +86-0771-2503976 (P.L.)
| | - Pengfei Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning 530007, China; (H.W.); (M.L.); (L.H.)
- Correspondence: (Q.Y.); (P.L.); Tel.: +86-0771-2503976 (P.L.); Fax: +86-0771-2503976 (P.L.)
| |
Collapse
|
3
|
Zhang Z, Liu G, Liu J, Zhu B, Wang G, Ling F. Epitope screening of the major capsid protein within grouper iridovirus of Taiwan and the immunoprotective effect with SWCNTs as the vaccine carrier. FISH & SHELLFISH IMMUNOLOGY 2021; 117:17-23. [PMID: 34280519 DOI: 10.1016/j.fsi.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Iridovirus can cause a mass of death in grouper, leading to huge economic loss in recent years. At present, practical vaccine is still the best way to control the outbreak of this virus. Many researches had indicated that the major capsid protein (MCP) of grouper iridovirus of Taiwan (TGIV) is an effective antigen to induce a specific immune response in grouper. However, these traditional vaccines that based on large proteins or whole organisms are faced with challenges because of the unnecessary antigenic load. Thus, in this study, we screened the dominant linear epitope within the MCP of TGIV and then, a new peptide vaccine (P2) was developed via prokaryotic expression system. Furthermore, SWCNTs was used as a vaccine carrier to enhance the immunoprotective effect. To evaluate the immunoprotective effect of this vaccine, a total of 245 fish were vaccinated with P2 (5, 10, 20 mg L-1) and SWCNTs-P2 (5, 10, 20 mg L-1) via immersion before being challenged with live TGIV at 28 days post immunization (d.p.i.). Results showed that the serum antibody titer, enzymatic activity, expression level of some immune-related genes (CC chemokine, IgM and TNF-α) and survival rate were significantly increased (SWCNTs-P2, 20 mg L-1, 100%) compared to the control group (0%). These results indicated that this peptide vaccine could effectively induce specific immune response in vaccinated groupers. Functionalized SWCNTs could serve as a carrier of the peptide vaccine to enhance the immunoprotective effect via immersion. To sum up, epitope screening might be a potential way to develop an effective vaccine nowadays, and SWCNTs might provide a practical method that can be used in large-scale vaccination, especially for juvenile fish, to fight against diseases in aquaculture industry.
Collapse
Affiliation(s)
- Zhongyu Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoyang Liu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Jingyao Liu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem 2021; 296:100015. [PMID: 33139328 PMCID: PMC7948977 DOI: 10.1074/jbc.ra120.014005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal β-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 μM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Liu M, Yu Q, Xiao H, Li M, Huang Y, Zhang Q, Li P. The Inhibitory Activities and Antiviral Mechanism of Medicinal Plant Ingredient Quercetin Against Grouper Iridovirus Infection. Front Microbiol 2020; 11:586331. [PMID: 33178170 PMCID: PMC7596301 DOI: 10.3389/fmicb.2020.586331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Singapore grouper iridovirus (SGIV) causes high mortality rates in mariculture, and effective treatments against SGIV infection are urgently required. Illicium verum Hook. f. (I. verum) is a well-known medicinal plant with a variety of biological activities. The natural ingredient quercetin isolated from I. verum could effectively inhibit SGIV infection in a dose-dependent manner. The possible antiviral mechanism of quercetin was further analyzed in this study. It showed that quercetin did obvious damages to SGIV particles. Furthermore, quercetin could interfere with SGIV binding to targets on host cells (by 76.14%), disturb SGIV invading into host cells (by 56.03%), and effect SGIV replication in host cells (by 52.73%), respectively. Quercetin had the best antiviral effects during the SGIV life cycle of binding to the receptors on host cells' membranes. Overall, the results suggest that quercetin has direct and host-mediated antiviral effects against SGIV and holds great potential for developing effective drugs to control SGIV infection in aquaculture.
Collapse
Affiliation(s)
- Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Mengmeng Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaming Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China.,Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
6
|
Yu Q, Liu M, Wu S, Wei X, Xiao H, Yi Y, Cheng H, Wang S, Zhang Q, Qin Q, Li P. Specific Aptamer-Based Probe for Analyzing Biomarker MCP Entry Into Singapore Grouper Iridovirus-Infected Host Cells via Clathrin-Mediated Endocytosis. Front Microbiol 2020; 11:1206. [PMID: 32636813 PMCID: PMC7318552 DOI: 10.3389/fmicb.2020.01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biomarkers have important roles in various physiological functions and disease pathogenesis. As a nucleocytoplasmic DNA virus, Singapore grouper iridovirus (SGIV) causes high economic losses in the mariculture industry. Aptamer-Q5-complexed major capsid protein (MCP) in the membrane of SGIV-infected cells can be used as a specific molecular probe to investigate the crucial events of MCP endocytosis into SGIV-infected host cells during viral infection. Chlorpromazine blocks clathrin-mediated endocytosis, and MCP endocytosis into SGIV-infected cells decreased significantly when the cells were pretreated with chlorpromazine. The disruption of cellular cholesterol by methyl-β-cyclodextrin also significantly reduced MCP endocytosis. In contrast, inhibitors of key regulators of caveolae/raft-dependent endocytosis and macropinocytosis, including genistein, Na+/H+ exchanger, p21-activated kinase 1 (PAK1), myosin II, Rac1 GTPase, and protein kinase C (PKC), had no effect on MCP endocytosis. The endocytosis of the biomarker MCP is dependent on low pH and cytoskeletal actin filaments, as shown with various inhibitors (chloroquine, ammonia chloride, cytochalasin D). Therefore, MCP enters SGIV-infected host cells via clathrin-mediated endocytosis, which is dependent on dynamin, cholesterol, low pH, and cytoskeletal actin filaments. This is the first report of a specific aptamer-based probe used to analyze MCP endocytosis into SGIV-infected host cells during viral infection. This method provides a convenient strategy for exploring viral pathogenesis and facilitates the development of diagnostic tools for and therapeutic approaches to viral infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China.,Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fishery Sciences, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Shaowen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
7
|
Liu M, Yu Q, Xiao H, Yi Y, Cheng H, Putra DF, Huang Y, Zhang Q, Li P. Antiviral activity of Illicium verum Hook. f. extracts against grouper iridovirus infection. JOURNAL OF FISH DISEASES 2020; 43:531-540. [PMID: 32100315 DOI: 10.1111/jfd.13146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Grouper iridovirus causes high mortality rates in cultured groupers, and effective treatment for grouper iridovirus infection is urgently required. Illicium verum Hook. f. is a well-known medicinal plant with a variety of biological activities. The aim of this study was to analyse the use of I. verum extracts to treat grouper iridovirus infection. The safe working concentration of each I. verum extract was identified both in vitro and in vivo as follows: I. verum aqueous extract (IVAE) ≤ 500 μg/ml; I. verum ethanol extract (IVEE) ≤ 250 μg/ml; shikimic acid (SKA) ≤ 250 μg/ml; trans-anethole (TAT) ≤ 800 μg/ml; 3,4-dihydroxybenzoic acid (DDBA) ≤ 400 μg/ml; and quercetin (QCE) ≤ 50 μg/ml. The inhibitory activity of each I. verum extract against grouper iridovirus infection was analysed using aptamer (Q2)-based fluorescent molecular probe (Q2-AFMP) and RT-qPCR. All of the I. verum extracts displayed dose-dependent antiviral activities against grouper iridovirus. Based on the achieved per cent inhibition, IVAE, IVEE, DDBA and QCE were associated with the greatest antiviral activity (all > 90%). Together, our results indicate that I. verum extracts have effective antiviral properties, making it an excellent potential source material for the development of effective treatment for grouper iridovirus infection.
Collapse
Affiliation(s)
- Mingzhu Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | | | - Yaming Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
8
|
Zhou L, Wang S, Yu Q, Wei S, Liu M, Wei J, Huang Y, Huang X, Li P, Qin Q. Characterization of Novel Aptamers Specifically Directed to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV)-Infected Cells for Mediating Targeted siRNA Delivery. Front Microbiol 2020; 11:660. [PMID: 32425897 PMCID: PMC7203557 DOI: 10.3389/fmicb.2020.00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Nervous necrosis virus (NNV) causes viral nervous necrosis, the most devastating disease in more than 50 fish species worldwide, with massive mortality rates up to 100%, resulting in great economic losses to mariculture. However, few methods are available for the efficient diagnosis and treatment of viral nervous necrosis. Aptamers are molecular recognition ligands characterized by their remarkably high specificity and affinity, great stability, and ease of synthesis, and have been widely studied in application of disease diagnosis and therapies. In this study, we generated three aptamers against red-spotted grouper nervous necrosis virus (RGNNV)-infected grouper brain (GB) cells using the Cell-SELEX (cell based-systematic evolution of ligands by exponential enrichment) technology. The selected aptamers formed stable stem-loop structures, and could specifically recognize RGNNV-infected GB cells, with calculated dissociation constants (Kd) of 27.96, 29.3, and 59.5 nM for aptamers GBN2, GBN10, and GBN34, respectively. They also recognized RGNNV-infected brain tissues. The three aptamers were non-toxic and showed antiviral activities both in vitro and in vivo. Fluorescence microscopy and flow cytometry also demonstrated that aptamer GBN34 could be efficiently and specifically internalized into RGNNV-infected GB cells. The targeted cellular delivery of aptamer-small interfering RNA (siRNA) conjugates remarkably inhibited RGNNV infection in GB cells. The efficiency of the aptamer-based targeted delivery system was about 75% reduction in infection after 48 h, which was similar to that of transfection. These aptamers have great potential utility in the rapid diagnosis and inhibition of RGNNV infection in mariculture.
Collapse
Affiliation(s)
- Lingli Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaowen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shina Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Jingguang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|