1
|
Ishak A, Mazonakis N, Spernovasilis N, Akinosoglou K, Tsioutis C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J Antimicrob Chemother 2024:dkae380. [PMID: 39471409 DOI: 10.1093/jac/dkae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Antibacterial activity can be classified as either bactericidal or bacteriostatic, using methods such as the MBC/MIC ratio and time-kill curves. However, such categorization has proven challenging in clinical practice, as these definitions only apply under specific laboratory conditions, which may differ from clinical settings. Several factors, such as the specific bacteria or infectious medium, can affect the action of antibiotics, with many antibacterials exerting both activities. These definitions have also led to the belief that bactericidal antibacterials are superior to bacteriostatic, especially in more severe cases, such as endocarditis, neutropenia and bacteraemia. Additionally, current dogma dictates against the combination of bactericidal and bacteriostatic antibacterials in clinical practice, due to potential antagonism. This review aimed to assess the differences in antibacterial activity of bactericidal and bacteriostatic antibacterials based on in vitro and in vivo studies and examine their antagonistic or synergistic effects. Our findings show that specific bacteriostatic agents, such as linezolid and tigecycline, are clinically non-inferior to bactericidals in multiple infections, including pneumonia, intra-abdominal infections, and skin and soft tissue infections. Studies also support using several bacteriostatic agents as salvage therapies in severe infections, such as neutropenic fever and endocarditis. Additionally, not all combinations of bacteriostatic and bactericidal agents appear to be antagonistic, with many combinations, such as linezolid and rifampicin, already being used. The findings should be interpreted with caution, as most evidence is from observational studies and there is a need for randomized controlled trials to assess their effectiveness and combinations, especially within the context of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Internal Medicine, 48202 Henry Ford Hospital, Detroit, MI, USA
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, 11527 Athens, Greece
| | - Nikolaos Spernovasilis
- Department of Infectious Diseases, German Oncology Centre, 4108 Limassol, Cyprus
- School of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Rio, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, 6 Diogenes str, Nicosia 2404, Cyprus
| |
Collapse
|
2
|
Al-Marzooq F, Ghazawi A, Daoud L, Tariq S. Boosting the Antibacterial Activity of Azithromycin on Multidrug-Resistant Escherichia coli by Efflux Pump Inhibition Coupled with Outer Membrane Permeabilization Induced by Phenylalanine-Arginine β-Naphthylamide. Int J Mol Sci 2023; 24:ijms24108662. [PMID: 37240007 DOI: 10.3390/ijms24108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The global spread of multidrug-resistant (MDR) bacteria increases the demand for the discovery of new antibiotics and adjuvants. Phenylalanine-arginine β-naphthylamide (PAβN) is an inhibitor of efflux pumps in Gram-negative bacteria, such as the AcrAB-TolC complex in Escherichia coli. We aimed to explore the synergistic effect and mechanism of action of PAβN combined with azithromycin (AZT) on a group of MDR E. coli strains. Antibiotic susceptibility was tested for 56 strains, which were screened for macrolide resistance genes. Then, 29 strains were tested for synergy using the checkerboard assay. PAβN significantly enhanced AZT activity in a dose-dependent manner in strains expressing the mphA gene and encoding macrolide phosphotransferase, but not in strains carrying the ermB gene and encoding macrolide methylase. Early bacterial killing (6 h) was observed in a colistin-resistant strain with the mcr-1 gene, leading to lipid remodeling, which caused outer membrane (OM) permeability defects. Clear OM damage was revealed by transmission electron microscopy in bacteria exposed to high doses of PAβN. Increased OM permeability was also proven by fluorometric assays, confirming the action of PAβN on OM. PAβN maintained its activity as an efflux pump inhibitor at low doses without permeabilizing OM. A non-significant increase in acrA, acrB, and tolC expression in response to prolonged exposure to PAβN was noted in cells treated with PAβN alone or with AZT, as a reflection of bacterial attempts to counteract pump inhibition. Thus, PAβN was found to be effective in potentiating the antibacterial activity of AZT on E. coli through dose-dependent action. This warrants further investigations of its effect combined with other antibiotics on multiple Gram-negative bacterial species. Synergetic combinations will help in the battle against MDR pathogens, adding new tools to the arsenal of existing medications.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Cui ZH, He HL, Zheng ZJ, Yuan ZQ, Chen Y, Huang XY, Ren H, Zhou YF, Zhao DH, Fang LX, Yu Y, Liu YH, Liao XP, Sun J. Phentolamine Significantly Enhances Macrolide Antibiotic Antibacterial Activity against MDR Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12040760. [PMID: 37107122 PMCID: PMC10135019 DOI: 10.3390/antibiotics12040760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES Multidrug-resistant (MDR) Gram-negative bacterial infections have limited treatment options due to the impermeability of the outer membrane. New therapeutic strategies or agents are urgently needed, and combination therapies using existing antibiotics are a potentially effective means to treat these infections. In this study, we examined whether phentolamine can enhance the antibacterial activity of macrolide antibiotics against Gram-negative bacteria and investigated its mechanism of action. METHODS Synergistic effects between phentolamine and macrolide antibiotics were evaluated by checkerboard and time-kill assays and in vivo using a Galleria mellonella infection model. We utilized a combination of biochemical tests (outer membrane permeability, ATP synthesis, ΔpH gradient measurements, and EtBr accumulation assays) with scanning electron microscopy to clarify the mechanism of phentolamine enhancement of macrolide antibacterial activity against Escherichia coli. RESULTS In vitro tests of phentolamine combined with the macrolide antibiotics erythromycin, clarithromycin, and azithromycin indicated a synergistic action against E. coli test strains. The fractional concentration inhibitory indices (FICI) of 0.375 and 0.5 indicated a synergic effect that was consistent with kinetic time-kill assays. This synergy was also seen for Salmonella typhimurium, Klebsiella pneumoniae, and Actinobacter baumannii but not Pseudomonas aeruginosa. Similarly, a phentolamine/erythromycin combination displayed significant synergistic effects in vivo in the G. mellonella model. Phentolamine added singly to bacterial cells also resulted in direct outer membrane damage and was able to dissipate and uncouple membrane proton motive force from ATP synthesis that, resulted in enhanced cytoplasmic antibiotic accumulation via reduced efflux pump activity. CONCLUSIONS Phentolamine potentiates macrolide antibiotic activity via reducing efflux pump activity and direct damage to the outer membrane leaflet of Gram-negative bacteria both in vitro and in vivo.
Collapse
Affiliation(s)
- Ze-Hua Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Ling He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhao-Qi Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ying Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Yi Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Liang-Xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yang Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Wang D, Zou H, Zhao L, Li Q, Meng M, Li X, Berglund B. High prevalence of Escherichia coli co-harboring conjugative plasmids with colistin- and carbapenem resistance genes in a wastewater treatment plant in China. Int J Hyg Environ Health 2023; 250:114159. [PMID: 36989999 DOI: 10.1016/j.ijheh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Emergence and dissemination of resistance to last-resort antibiotics such as carbapenem and colistin is a growing, global health concern. Wastewater treatment plants (WWTPs) link human activities and the environment, can act as reservoirs and sources for emerging antibiotic resistance, and likely play a large role in antibiotic resistance transmission. The aim of this study was to investigate occurrence and characteristics of colistin- and carbapenem-resistant Escherichia coli (CCREC) in wastewater and sludge samples collected over a one-year period from different functional areas of an urban WWTP in Jinan city, Shandong, China. A total of 8 CCREC were isolated from 168 samples with selective agar and PCR, corresponding to high prevalence of 4.8%, co-harboring carbapenem resistance genes (blaNDM) and colistin resistance gene (mcr-1) and subsequently whole-genome sequenced. Additionally, all isolates were multidrug-resistant by antimicrobial susceptibility testing and carried a variety of antibiotic resistance genes. Two isolates carrying virulence genes associated with avian pathogenic E. coli were identified, one belonging to the high-risk clone O101:H9-ST167. Southern blotting was used to characterize CCREC isolates and plasmids carrying blaNDM-genes or mcr-1 could be transferred to a recipient strain E. coli J53 by in vitro conjugation assays. Resistance to other antibiotic classes were sporadically co-transferred to the transconjugant. Transposition of and mcr-1-carrying element from a transferable IncHI2-plasmid was observed among two CCREC clones isolated within 4 days of each other. The occurrence of multidrug-resistant CCREC capable of transferring their antibiotic resistance genotypes via conjugative plasmids is alarming. WWTPs bring bacteria from different sources together, providing opportunities for horizontal exchange of DNA among compatible hosts. Further dissemination of the colistin-, carbapenem-, or both colistin- and carbapenem resistant E. coli could lead to a serious threat to public health.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| |
Collapse
|
5
|
Haeili M, Barmudeh S, Omrani M, Zeinalzadeh N, Kafil HS, Batignani V, Ghodousi A, Cirillo DM. Whole-genome sequence analysis of clinically isolated carbapenem resistant Escherichia coli from Iran. BMC Microbiol 2023; 23:49. [PMID: 36850019 PMCID: PMC9969672 DOI: 10.1186/s12866-023-02796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Enterobacterales (CRE) continues to threaten public health due to limited therapeutic options. In the current study the incidence of carbapenem resistance among the 104 clinical isolates of Escherichia coli and the genomic features of carbapenem resistant isolates were investigated. METHODS The susceptibility to imipenem, tigecycline and colistin was tested by broth dilution method. Susceptibility to other classes of antimicrobials was examined by disk diffusion test. The presence of blaOXA-48, blaKPC, blaNDM, and blaVIM carbapenemase genes was examined by PCR. Molecular characteristics of carbapenem resistant isolates were further investigated by whole-genome sequencing (WGS) using Illumina and Nanopore platforms. RESULTS Four isolates (3.8%) revealed imipenem MIC of ≥32 mg/L and positive results for modified carbapenem inactivation method and categorized as carbapenem resistant E. coli (CREC). Colistin, nitrofurantoin, fosfomycin, and tigecycline were the most active agents against all isolates (total susceptibility rate of 99, 99, 96 and 95.2% respectively) with the last three compounds being found as the most active antimicrobials for carbapenem resistant isolates (susceptibility rate of 100%). According to Multilocus Sequence Type (MLST) analysis the 4 CREC isolates belonged to ST167 (n = 2), ST361 (n = 1) and ST648 (n = 1). NDM was detected in all CREC isolates (NDM-1 (n = 1) and NMD-5 (n = 3)) among which one isolate co-harbored NDM-5 and OXA-181 carbapenemases. WGS further detected blaCTX-M-15, blaCMY-145, blaCMY-42 and blaTEM-1 (with different frequencies) among CREC isolates. Co-occurrence of NDM-type carbapenemase and 16S rRNA methyltransferase RmtB and RmtC was found in two isolates belonging to ST167 and ST648. A colistin-carbapenem resistant isolate which was mcr-negative, revealed various amino acid substitutions in PmrB, PmrD and PhoPQ proteins. CONCLUSION About 1.9% of E. coli isolates studied here were resistant to imipenem, colistin and/or amikacin which raises the concern about the outbreaks of difficult-to-treat infection by these emerging superbugs in the future.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Samaneh Barmudeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Narges Zeinalzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Virginia Batignani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Shafiq M, Yao F, Bilal H, Rahman SU, Zeng M, Ali I, Zeng Y, Li X, Yuan Y, Jiao X. Synergistic Activity of Tetrandrine and Colistin against mcr-1-Harboring Escherichia coli. Antibiotics (Basel) 2022; 11:1346. [PMID: 36290004 PMCID: PMC9598752 DOI: 10.3390/antibiotics11101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Before the emergence of plasmid-mediated colistin resistance, colistin was once considered the last drug of choice for infections caused by carbapenem-resistant bacteria. Currently, researchers are relentlessly exploring possible alternative therapies that could efficiently curb the spread of drug resistance. In this study, we aim to investigate the synergistic antibacterial activity of tetrandrine in combination with colistin against mcr-1-harboring Escherichia coli. We examined the antibacterial activity of tetrandrine in combination with colistin in vivo and in vitro and examined the bacterial cells by fluorescence, scanning, and transmission electron microscopy (TEM) to explore their underlying mechanism of action. We further performed a computational analysis of MCR-1 protein and tetrandrine to determine the interaction interface of these two molecules. We confirmed that neither colistin nor tetrandrine could, on their own, inhibit the growth of mcr-1-positive E. coli. However, in combination, tetrandrine synergistically enhanced colistin activity to inhibit the growth of E. coli both in vivo and in vitro. Similarly, molecular docking showed that tetrandrine interacted with the three crucial amino acids of the MCR-1 protein in the active site, which might inhibit MCR-1 from binding to its substrates, cause MCR-1 to lose its ability to confer resistance. This study confirmed that tetrandrine and colistin have the ability to synergistically overcome the issue of colistin resistance in mcr-1-harboring E. coli.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Sadeeq Ur Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
7
|
Zhang S, Wen J, Wang Y, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). Front Microbiol 2022; 13:969769. [PMID: 36246244 PMCID: PMC9557194 DOI: 10.3389/fmicb.2022.969769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Al-Marzooq F, Ghazawi A, Tariq S, Daoud L, Collyns T. Discerning the role of polymyxin B nonapeptide in restoring the antibacterial activity of azithromycin against antibiotic-resistant Escherichia coli. Front Microbiol 2022; 13:998671. [PMID: 36212888 PMCID: PMC9532765 DOI: 10.3389/fmicb.2022.998671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance is a global public health threat. Antibiotic development pipeline has few new drugs; therefore, using antibiotic adjuvants has been envisioned as a successful method to preserve existing medications to fight multidrug-resistant (MDR) pathogens. In this study, we investigated the synergistic effect of a polymyxin derivative known as polymyxin B nonapeptide (PMBN) with azithromycin (AZT). A total of 54 Escherichia coli strains were first characterized for macrolide resistance genes, and susceptibility to different antibiotics, including AZT. A subset of 24 strains was then selected for synergy testing by the checkerboard assay. PMBN was able to re-sensitize the bacteria to AZT, even in strains with high minimum inhibitory concentrations (MIC: 32 to ≥128 μg/ml) for AZT, and in strains resistant to the last resort drugs such as colistin and meropenem. The fractional inhibitory concentration index was lower than 0.5, demonstrating that PMBN and AZT combinations had a synergistic effect. The combinations worked efficiently in strains carrying mphA gene encoding macrolide phosphotransferase which can cause macrolide inactivation. However, the combinations were inactive in strains having an additional ermB gene encoding macrolide methylase which causes ribosomal drug target alteration. Killing kinetics study showed a significant reduction of bacterial growth after 6 h of treatment with complete killing achieved after 24 h. Transmission electron microscopy showed morphological alterations in the bacteria treated with PMBN alone or in combination with AZT, with evidence of damage to the outer membrane. These results suggested that PMBN acted by increasing the permeability of bacterial outer membrane to AZT, which was also evident using a fluorometric assay. Using multiple antimicrobial agents could therefore be a promising strategy in the eradication of MDR bacteria. PMBN is a good candidate for use with other antibiotics to potentiate their activity, but further studies are required in vivo. This will significantly contribute to resolving antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Farah Al-Marzooq,
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
9
|
Tangsawad W, Kositamongkol C, Chongtrakool P, Phisalprapa P, Jitmuang A. The burden of carbapenem-resistant Enterobacterales infection in a large Thai tertiary care hospital. Front Pharmacol 2022; 13:972900. [PMID: 36120317 PMCID: PMC9479096 DOI: 10.3389/fphar.2022.972900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Carbapenem-resistant Enterobacterales (CRE) are resistant to several other classes of antimicrobials, reducing treatment options and increasing mortality. We studied the clinical characteristics and burden of hospitalized adult patients with CRE infections in a setting where treatment options are limited. Methods: A retrospective cohort study included adult inpatients between January 2015–December 2019 at Siriraj Hospital in Bangkok, Thailand. Clinical and microbiological data were reviewed. Results: Of 420 patients with CRE infections, the mean age was 65.00 ± 18.89 years, 192 (45.72%) were male, and 112 (26.90%) were critically ill. Three hundred and eighty (90.48%) had Klebsiella pneumoniae, and 40 (9.52%) had Escherichia coli infections. The mean APACHE II score was 14.27 ± 6.36. Nearly half had previous hospitalizations (48.81%), 41.2% received antimicrobials, and 88.1% had undergone medical procedures before the onset of infection. The median time of onset of CRE infection was 16 days after admission. Common sites of infection were bacteremia (53.90%) and pneumonia (45.47%). Most CRE-infected patients had septic shock (63.10%) and Gram-negative co-infections (62.85%). Colistin (29.95%) and non-colistin (12.91%) monotherapies, and colistin-based (44.78%) and non-colistin-based (12.36%) combination therapies were the best available antimicrobial therapies (BAAT). The median length of hospitalization was 31 days, and the median hospitalization cost was US$10,435. The in-hospital mortality rate was 68.33%. Septic shock [adjusted odds ratio (aOR) 10.73, 5.65–20.42, p <0 .001], coinfection (aOR 2.43, 1.32–4.47, p = 0.004), mechanical ventilation (aOR 2.33, 1.24–4.36, p = 0.009), and a high SOFA score at onset (aOR 1.18, 1.07–1.30, p <0 .001) were associated with mortality. Conclusion: CRE infection increases mortality, hospital stays, and healthcare costs. A colistin-based regimen was the BAAT in this study. Therefore, newer antimicrobial agents are urgently needed.
Collapse
Affiliation(s)
- Watcharaphon Tangsawad
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chayanis Kositamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anupop Jitmuang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Anupop Jitmuang,
| |
Collapse
|
10
|
Singh M, Thakur V, Kumar V, Raj M, Gupta S, Devi N, Upadhyay SK, Macho M, Banerjee A, Ewe D, Saurav K. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules 2022; 27:5587. [PMID: 36080353 PMCID: PMC9457915 DOI: 10.3390/molecules27175587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long process that split into at least three continuous and overlapping processes: an inflammatory response, a proliferative phase, and finally the tissue remodeling. Therefore, these processes are extensively studied to develop novel therapeutics in order to achieve maximum recovery with minimum scarring. Several growth hormones and cytokines secreted at the site of lesions tightly regulates the healing processes. The traditional approach for wound management has been represented by topical treatments. Metal nanoparticles (e.g., silver, gold and zinc) are increasingly being employed in dermatology due to their favorable effects on healing, as well as in treating and preventing secondary bacterial infections. In the current review, a brief introduction on traditional would healing approach is provided, followed by focus on the potential of wound dressing therapeutic techniques functionalized with Ag-NPs.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Vanita Thakur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Mayank Raj
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Shivani Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Nisha Devi
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Markéta Macho
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Avik Banerjee
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Kumar Saurav
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| |
Collapse
|
11
|
Enciso-Martínez Y, González-Aguilar GA, Martínez-Téllez MA, González-Pérez CJ, Valencia-Rivera DE, Barrios-Villa E, Ayala-Zavala JF. Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. Int J Food Microbiol 2022; 374:109736. [DOI: 10.1016/j.ijfoodmicro.2022.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
12
|
El-Defrawy I, Aitta AA, Fam N, Khaled M, Madany N, El Damarawy M, Gamal D, Alkholy MA. In Vitro Activity of Single and Combined Antibiotics against Carbapenem Resistant Enterobacteriaceae Clinical Isolates in Relation to their Resistance Genes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Mortality due to infection with carbapenem-resistant Enterobacteriaceae (CRE) is reported globally and carbapenemase production is the main mechanism of resistance in these isolates. The detection and treatment of carbapenemase-producing Enterobacteriaceae (CPE) is a major challenge in health care facilities.
Objectives: The aim of the current study was to evaluate the in-vitro effect of different single and combined antibiotic agents against CRE clinical isolates.
Methodology: Fifty CRE isolates were detected using disk diffusion test as a screening test. Species identification and antibiotic susceptibility testing was done using Vitek 2 system. Carbapenemase enzyme production was confirmed by Carba NP test. Multiplex PCR was done to detect carbapenem resistance genes. Antibiotics were tested in the form of single agents (colistin and tigecycline) and combined (tigecycline/ colistin, doripenem/ colistin and dual carbapenem therapy (ertapenem and doripenem) against CRE isolates using E-test method.
Results: Most of the CRE isolates were K. pneumoniae, 68%, followed by E. coli, 22%, S. marcescens, 4%, E. cloacae, 4% and C. freundii, 2%. CPE was confirmed in 46 isolates by multiplex PCR; blaNDM-like was the main carbapenem resistance gene in (84%) of the isolates, followed by blaOXA-48-like (6%) and blaKPC-like (2%). Carba NP test detected 90% of CPE isolates. Single use of colistin and tigecycline showed 100% sensitivity against all tested CRE isolates except in blaNDM-like (83%). Combination of colistin/tigecycline showed synergetic activity in 18% of CRE that was correlated to their carbapenemase R genes showing a significant increase in blaOXA-48-like and blaKPC-like positive isolates (100%) compared to blaNDM-like (7%). Other combinations showed indifferent effect whereas antagonism was not detected in any of the tested combinations.
Conclusions: blaNDM-like is the main carbapenemase-producing gene detected among our CPE isolates followed by blaOXA-48-like. Colistin and tigecycline are still effective when used as single agents, and may offer effective treatment options when used in combination for CRE infections. Characterization of carbapenemases is crucial in determining treatment options. There is urgent demand for the development of novel therapeutic agents against NDM-producing CPE isolates.
Collapse
|
13
|
Wang RL, Liu P, Chen XF, Yao X, Liao XP, Liu YH, Sun J, Zhou YF. Pharmacodynamic Target Assessment and PK/PD Cutoff Determination for Gamithromycin Against Streptococcus suis in Piglets. Front Vet Sci 2022; 9:945632. [PMID: 35898553 PMCID: PMC9310021 DOI: 10.3389/fvets.2022.945632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Gamithromycin is a long-acting azalide antibiotic that has been developed recently for the treatment of swine respiratory diseases. In this study, the pharmacokinetic/pharmacodynamic (PK/PD) targets, PK/PD cutoff, and optimum dosing regimen of gamithromycin were evaluated in piglets against Streptococcus suis in China, including a subset with capsular serotype 2. Short post-antibiotic effects (PAEs) (0.5–2.6 h) and PA-SMEs (2.4–7.7 h) were observed for gamithromycin against S. suis. The serum matrix dramatically facilitated the intracellular uptake of gamithromycin by S. suis strains, thus contributing to the potentiation effect of serum on their susceptibilities, with a Mueller-Hinton broth (MHB)/serum minimum inhibitory concentration (MIC) ratio of 28.86 for S. suis. Dose-response relationship demonstrated the area under the concentration (AUC)/MIC ratio to be the predictive PK/PD index closely linked to activity (R2 > 0.93). For S. suis infections, the net stasis, 1–log10, and 2–log10 kill effects were achieved at serum AUC24h/MIC targets of 17.9, 49.1, and 166 h, respectively. At the current clinical dose of 6.0 mg/kg, gamithromycin PK/PD cutoff value was determined to be 8 mg/L. A PK/PD-based dose assessment demonstrated that the optimum dose regimen of gamithromycin to achieve effective treatments for the observed wild-type MIC distribution of S. suis in China with a probability of target attainment (PTA) ≥ 90% was 2.53 mg/kg in this study. These results will aid in the development of clinical dose-optimization studies and the establishment of clinical breakpoints for gamithromycin in the treatment of swine respiratory infections due to S. suis.
Collapse
Affiliation(s)
- Rui-Ling Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ping Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Feng Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin Yao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Yu-Feng Zhou
| |
Collapse
|
14
|
Gerace E, Mancuso G, Midiri A, Poidomani S, Zummo S, Biondo C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens 2022; 11:pathogens11060663. [PMID: 35745518 PMCID: PMC9229729 DOI: 10.3390/pathogens11060663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of six highly virulent multidrug-resistant bacteria named ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) responsible for life-threatening diseases. Taken together with Clostridioides difficile, Escherichia coli, Campylobacter spp., (C. jejuni and C. coli), Legionella spp., Salmonella spp., and Neisseria gonorrhoeae, all of these microorganisms are the leading causes of nosocomial infections. The rapid and accurate detection of these pathogens is not only important for the early initiation of appropriate antibiotic therapy, but also for resolving outbreaks and minimizing subsequent antimicrobial resistance. The need for ever-improving molecular diagnostic techniques is also of fundamental importance for improving epidemiological surveillance of bacterial infections. In this review, we aim to discuss the recent advances on the use of molecular techniques based on genomic and proteomic approaches for the diagnosis of bacterial infections. The advantages and limitations of each of the techniques considered are also discussed.
Collapse
Affiliation(s)
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Stefano Poidomani
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
- Correspondence: ; Tel.: +39-090-2213322
| |
Collapse
|
15
|
Katip W, Uitrakul S, Oberdorfer P. Clinical Efficacy and Nephrotoxicity of the Loading Dose Colistin for the Treatment of Carbapenem-Resistant Acinetobacter baumannii in Critically Ill Patients. Pharmaceutics 2021; 14:pharmaceutics14010031. [PMID: 35056926 PMCID: PMC8780224 DOI: 10.3390/pharmaceutics14010031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is one of the most common causes of nosocomial infections in critically ill patients. Colistin methanesulfonate (CMS), an inactive prodrug, has been considered as a last-resort treatment for CRAB infection in critically ill patients. The objective of this study was to assess 30-day survival and nephrotoxicity in critically ill patients who received non-loading dose (LD) versus LD of CMS for CRAB infection treatment. Between 2012 and 2017, this retrospective cohort analysis was performed at Chiang Mai University Hospital (CMUH), focusing on critically ill patients with CRAB infection who received either non-LD or LD of CMS. A total of 383 patients met the criteria for inclusion. At the 30th day of treatment, the survival rate of patients in the LD CMS group was 1.70 times (adjusted HR) of those in the non-LD group (95% CI = 1.17-2.50, p = 0.006). Clinical response was significantly higher in the LD CMS group than non-LD CMS group (aHR, 1.35, 95% CI, 1.01-1.82, p = 0.046). In addition, a microbiological response-eradication of pre-treatment isolated pathogens in post-treatment cultures-in patients with LD CMS was 1.57 times that of patients with non-LD CMS (95% CI, 1.15-2.15, p = 0.004). Additionally, there was a significant difference in nephrotoxicity between LD CMS and non-LD CMS (aHR, 1.57, 95% CI, 1.14-2.17, p = 0.006). Based on these results, LD CMS should be used to increase the opportunity of patients to achieve favourable outcomes. However, LD CMS was found associated with an increase in nephrotoxicity, so renal function should be closely monitored when LD colistin was administered.
Collapse
Affiliation(s)
- Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Epidemiology Research Group of Infectious Disease (ERGID), Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-(53)-9443423; Fax: +66-(53)-222741
| | - Suriyon Uitrakul
- Department of Pharmaceutical Care, School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Peninnah Oberdorfer
- Epidemiology Research Group of Infectious Disease (ERGID), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pediatrics, Division of Infectious Diseases, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
16
|
Huang YT, Yu CI, Chen PY, Wang CC, Wu CC. Comparison of Bleeding Risk Between Colistin-Tigecycline and Colistin-Carbapenem Treatment Regimens: A Retrospective Cohort Study. Infect Drug Resist 2021; 14:4949-4955. [PMID: 34858035 PMCID: PMC8629913 DOI: 10.2147/idr.s339188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Antibiotic combination is commonly used to treat multidrug-resistant pathogens. Reports have indicated that tigecycline use is associated with hypofibrinogenemia. However, whether the bleeding risk of tigecycline is higher than that of other antibiotics remains unknown. The aim of this study was to compare the bleeding risk between colistin–tigecycline and colistin–carbapenem treatment. Methods This retrospective cohort study enrolled adult patients treated with colistin along with tigecycline or carbapenems (doripenem, imipenem–cilastatin, or meropenem) for ˃72 hours during hospitalization. The primary outcome was major bleeding events, which were determined by a hemoglobin drop of ≥2 g/d and receipt of blood transfusions with whole blood or packed red blood cells. Multivariate logistic regression was applied to determine risk factors for bleeding events. Results In total, 106 and 268 patients in the colistin–tigecycline and colistin–carbapenem groups met the criteria for analysis, respectively. The two groups did not differ significantly in demographic data, except for alanine aminotransferase (ALT), serum creatinine (SCr) and ulcer disease. The colistin–tigecycline group had a higher ALT, SCr and a lower proportion of ulcer disease. Major bleeding events did not differ significantly between the colistin–tigecycline and colistin–carbapenem groups (12.26% vs 9.33%, P = 0.40). Antibiotic duration [OR = 1.06 (1.02–1.11), P=0.007)] and anticoagulant use [OR = 2.16 (1.05–4.42), P=0.04] were associated with major bleeding events. Conclusion Colistin–tigecycline treatment was not associated with a higher bleeding risk. Antibiotic duration and concurrent use of anticoagulant were the risk factors of bleeding events.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-I Yu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Chuan Wang
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chih Wu
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
18
|
Taati Moghadam M, Mirzaei M, Fazel Tehrani Moghaddam M, Babakhani S, Yeganeh O, Asgharzadeh S, Farahani HE, Shahbazi S. The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Microb Drug Resist 2021; 27:1513-1524. [PMID: 33913748 DOI: 10.1089/mdr.2020.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Omid Yeganeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Asgharzadeh
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Abstract
Abstract
Introduction: Resistance to first-line antibiotics of the Proteeae strains within the difficult-to-treat (DTR) phenotype is a cause of limitation of therapeutic options. The study aimed to characterize these strains, to identify the factors that influence their acquisition and the predictive factors for the patient’s evolution.
Material and methods: Between July 2017 and January 2019, 400 of Proteeae strains were isolated from samples of patients admitted to intensive care units (ICUs) and surgical wards of a university hospital in Romania. The identification and testing of antibiotic sensitivity was performed using the Vitek 2 Compact system. The DTR phenotype was defined as the resistance (or intermediate resistance) to all categories of β-lactams, carbapenems and fluoroquinolones.
Results: Out of 400 Proteeae strains, 21% were of the DTR type, most of them from the species Providencia stuartii and Proteus mirabilis, identified predominantly on the ICUs. The excess fatality in the DTR subsample compared to the non-DTR subsample was 16.37%. The multivariate analysis identified as independent risk factors: the number of antibiotics administered, the number of days of urinary catheterization, the presence of tracheostomy, nasogastric nutrition, respectively belonging to the species P. stuartii. The probabilities of survival were reduced by the presence of the central venous catheter (CVC), tracheostomy, by the increase of the number of hospitalization days respectively of the number of antibiotics administered.
Conclusion: The DTR phenotype in the case of Proteeae strains has been associated especially with the species P. stuartii, with invasive exogenous factors and with an increased fatality.
Collapse
|
20
|
Activity of Tigecycline or Colistin in Combination with Zidovudine against Escherichia coli Harboring tet(X) and mcr-1. Antimicrob Agents Chemother 2020; 65:AAC.01172-20. [PMID: 33020156 DOI: 10.1128/aac.01172-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
Alternative therapeutic options are urgently needed against multidrug-resistant Escherichia coli infections, especially in situations of preexisting tigecycline and colistin resistance. Here, we investigated synergistic activity of the antiretroviral drug zidovudine in combination with tigecycline or colistin against E. coli harboring tet(X) and mcr-1 in vitro and in a murine thigh infection model. Zidovudine and tigecycline/colistin combinations achieved synergistic killing and significantly decreased bacterial burdens by >2.5-log10 CFU/g in thigh tissues compared to each monotherapy.
Collapse
|
21
|
Lin Y, Yang L, Lu L, Wang K, Li J, Li P, Liu Y, Liu X, Li P, Song H. Genomic features of an Escherichia coli ST156 strain harboring chromosome-located mcr-1 and plasmid-mediated blaNDM-5. INFECTION GENETICS AND EVOLUTION 2020; 85:104499. [DOI: 10.1016/j.meegid.2020.104499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022]
|