1
|
Wang H, Xue J, Song Y, Li D, Wei C, Wan L. Deciphering the Transformed bacterial ocular surface microbiome in diabetic mice and its Consequential influence on corneal wound healing restoration. Exp Eye Res 2025; 255:110350. [PMID: 40122365 DOI: 10.1016/j.exer.2025.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
To obtain a profound understanding of microbiome variations and their associations with diabetic cornea wound healing, a type 1 diabetic mouse model and a corneal epithelial wound healing model were established. Corneal tissues from diabetic mice and healthy controls were collected. The 2bRAD sequencing for microbiome (2bRAD-M)technique was used to analyze the ocular microbiome profiles. Fifty-five distinct bacterial species were identified through alignment against the 2bRAD-M database. Among all the species identified on the corneal wound, 17 (30.91 %) unique species were discovered on the diabetic epithelium side, 13 (23.64 %) on the non-diabetic epithelium side, and 25 (45.45 %) species were common to both. The top five most abundant bacterial species on the non-diabetic side were Exiguobacterium sibiricum (26.50 %), Enterobacter hormaechei (13.37 %), Brevibacillus agri (6.24 %), Ralstonia sp. UNC404CL21Col (6.11 %), and Cupriavidus pauculus (5.71 %). On the diabetic side, the predominant five species were Methylobacterium sp. MB200 (38.73 %), Exiguobacterium sibiricum (11.58 %), Acinetobacter johnsonii (9.80 %), Corynebacterium glutamicum (6.46 %), and Corynebacterium stationis (5.71 %). Increased levels of gram-negative bacilli, such as Methylobacterium, in the diabetic ocular surface microbiota may be involved in the delayed healing of corneal wounds. Gatifloxacin eye drops with antibacterial activity against gram-negative bacteria were applied to the ocular surface. The corneal epithelium of diabetic mice healed more rapidly after the application of gatifloxacin eye drops. The changes in the ocular surface microbiota of diabetic corneal wounds may be related to delayed healing of the corneal epithelium in diabetic mice, providing a new research target for the investigation of this pathology.
Collapse
Affiliation(s)
- Huifeng Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, China; School of Ophthalmology, Shandong First Medical University, China
| | - Junfa Xue
- Shanghai Fosun Pharmaceutical (Group) Co., Ltd., 9th Floor, No. 510, Caoyang Road, Shanghai, China
| | - Yi Song
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, China; School of Ophthalmology, Shandong First Medical University, China
| | - Dewei Li
- Eye Institute of Shandong First Medical University, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, China; School of Ophthalmology, Shandong First Medical University, China; Eye Institute of Shandong First Medical University, China
| | - Luqin Wan
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, China; School of Ophthalmology, Shandong First Medical University, China.
| |
Collapse
|
2
|
Shi K, Huang K, Li L, Liu Q, Zhang Y, Zheng H. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion. Front Microbiol 2024; 15:1438942. [PMID: 39355422 PMCID: PMC11443509 DOI: 10.3389/fmicb.2024.1438942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 10/03/2024] Open
Abstract
Background Clinical studies have demonstrated that microbes play a crucial role in human health and disease. The identification of microbe-disease interactions can provide insights into the pathogenesis and promote the diagnosis, treatment, and prevention of disease. Although a large number of computational methods are designed to screen novel microbe-disease associations, the accurate and efficient methods are still lacking due to data inconsistence, underutilization of prior information, and model performance. Methods In this study, we proposed an improved deep learning-based framework, named GIMMDA, to identify latent microbe-disease associations, which is based on graph autoencoder and inductive matrix completion. By co-training the information from microbe and disease space, the new representations of microbes and diseases are used to reconstruct microbe-disease association in the end-to-end framework. In particular, a similarity fusion strategy is conducted to improve prediction performance. Results The experimental results show that the performance of GIMMDA is competitive with that of existing state-of-the-art methods on 3 datasets (i.e., HMDAD, Disbiome, and multiMDA). In particular, it performs best with the area under the receiver operating characteristic curve (AUC) of 0.9735, 0.9156, 0.9396 on abovementioned 3 datasets, respectively. And the result also confirms that different similarity fusions can improve the prediction performance. Furthermore, case studies on two diseases, i.e., asthma and obesity, validate the effectiveness and reliability of our proposed model. Conclusion The proposed GIMMDA model show a strong capability in predicting microbe-disease associations. We expect that GPUDMDA will help identify potential microbe-related diseases in the future.
Collapse
Affiliation(s)
- Kai Shi
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, China
| | - Kai Huang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Qiaohui Liu
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yi Zhang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huilin Zheng
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
3
|
Zhu H, Hao H, Yu L. Identification of microbe-disease signed associations via multi-scale variational graph autoencoder based on signed message propagation. BMC Biol 2024; 22:172. [PMID: 39148051 PMCID: PMC11328394 DOI: 10.1186/s12915-024-01968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. RESULTS Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. CONCLUSIONS MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Collapse
Affiliation(s)
- Huan Zhu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Hongxia Hao
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
4
|
Zhu H, Hao H, Yu L. Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance. BMC Biol 2023; 21:294. [PMID: 38115088 PMCID: PMC10731776 DOI: 10.1186/s12915-023-01796-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement. RESULTS In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer's disease, Crohn's disease, and colorectal neoplasms, to validate the effectiveness of our framework. CONCLUSIONS Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
Collapse
Affiliation(s)
- Huan Zhu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Hongxia Hao
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
5
|
Peng W, Liu M, Dai W, Chen T, Fu Y, Pan Y. Multi-View Feature Aggregation for Predicting Microbe-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2748-2758. [PMID: 34871177 DOI: 10.1109/tcbb.2021.3132611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes play a crucial role in human health and disease. Figuring out the relationship between microbes and diseases leads to significant potential applications in disease treatments. It is an urgent need to devise robust and effective computational methods for identifying disease-related microbes. This work proposes a Multi-View Feature Aggregation (MVFA) scheme that integrates the linear and nonlinear features to identify disease-related microbes. We introduce a non-negative matrix tri-factorization (NMTF) model to extract linear features for diseases and microbes. Then we learn another type of linear feature by utilizing a bi-random walk model. The nonlinear feature is obtained by inputting the two kinds of linear features into a capsule neural network. These three types of features describe the associations between diseases and microbes from different views. Finally, considering the complementary of these features, we leverage a logistic regression model to combine the NMTF model predictions, bi-random walk model predictions, and the capsule neural network predictions to obtain the final microbe-disease pair scores. We apply our method to predict human microbe-disease associations on two datasets. Experimental results show that our multi-view model outperforms the state-of-the-art models in recovering missing microbe-disease associations and predicting associations for new microbes. The ablation study shows that aggregating multi-view linear and nonlinear features can improve the prediction performance. Case studies on two diseases, i.e. Type 1 diabetes and Liver cirrhosis, further validate our method effectiveness.
Collapse
|
6
|
Sengupta P, Sivabalan SKM, Mahesh A, Palanikumar I, Kuppa Baskaran DK, Raman K. Big Data for a Small World: A Review on Databases and Resources for Studying Microbiomes. J Indian Inst Sci 2023; 103:1-17. [PMID: 37362854 PMCID: PMC10073628 DOI: 10.1007/s41745-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 06/28/2023]
Abstract
Microorganisms are ubiquitous in nature and form complex community networks to survive in various environments. This community structure depends on numerous factors like nutrient availability, abiotic factors like temperature and pH as well as microbial composition. Categorising accessible biomes according to their habitats would help in understanding the complexity of the environment-specific communities. Owing to the recent improvements in sequencing facilities, researchers have started to explore diverse microbiomes rapidly and attempts have been made to study microbial crosstalk. However, different metagenomics sampling, preprocessing, and annotation methods make it difficult to compare multiple studies and hinder the recycling of data. Huge datasets originating from these experiments demand systematic computational methods to extract biological information beyond microbial compositions. Further exploration of microbial co-occurring patterns across the biomes could help us in designing cross-biome experiments. In this review, we catalogue databases with system-specific microbiomes, discussing publicly available common databases as well as specialised databases for a range of microbiomes. If the new datasets generated in the future could maintain at least biome-specific annotation, then researchers could use those contemporary tools for relevant and bias-free analysis of complex metagenomics data.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | | | - Amrita Mahesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Indumathi Palanikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
7
|
Shokri Garjan H, Omidi Y, Poursheikhali Asghari M, Ferdousi R. In-silico computational approaches to study microbiota impacts on diseases and pharmacotherapy. Gut Pathog 2023; 15:10. [PMID: 36882861 PMCID: PMC9990230 DOI: 10.1186/s13099-023-00535-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology and microbiology. The growing recognition of human microbe-disease relationships provides crucial insights into the underlying disease process from the perspective of pathogens, which is extremely useful for pathogenesis research, early diagnosis, and precision medicine and therapy. Microbe-based analysis in terms of diseases and related drug discovery can predict new connections/mechanisms and provide new concepts. These phenomena have been studied via various in-silico computational approaches. This review aims to elaborate on the computational works conducted on the microbe-disease and microbe-drug topics, discuss the computational model approaches used for predicting associations and provide comprehensive information on the related databases. Finally, we discussed potential prospects and obstacles in this field of study, while also outlining some recommendations for further enhancing predictive capabilities.
Collapse
Affiliation(s)
- Hassan Shokri Garjan
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, Fort Lauderdale, FL, USA
| | | | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wang Z, Gu Y, Zheng S, Yang L, Li J. MGREL: A multi-graph representation learning-based ensemble learning method for gene-disease association prediction. Comput Biol Med 2023; 155:106642. [PMID: 36805231 DOI: 10.1016/j.compbiomed.2023.106642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
The identification of gene-disease associations plays an important role in the exploration of pathogenic mechanisms and therapeutic targets. Computational methods have been regarded as an effective way to discover the potential gene-disease associations in recent years. However, most of them ignored the combination of abundant genetic, therapeutic information, and gene-disease network topology. To this end, we re-organized the current gene-disease association benchmark dataset by extracting the newest gene-disease associations from the OMIM database. Then, we developed a multi-graph representation learning-based ensemble model, named MGREL to predict gene-disease associations. MGREL integrated two feature generation channels to extract gene and disease features, including a knowledge extraction channel which learned high-order representations from genetic and therapeutic information, and a graph learning channel which acquired network topological representations through multiple advanced graph representation learning methods. Then, an ensemble learning method with 5 machine learning models was used as the classifier to predict the gene-disease association. Comprehensive experiments have demonstrated the significant performance achieved by MGREL compared to 5 state-of-the-art methods. For the major measurements (AUC = 0.925, AUPR = 0.935), the relative improvements of MGREL compared to the suboptimal methods are 3.24%, and 2.75%, respectively. MGREL also achieved impressive improvements in the challenging tasks of predicting potential associations for unknown genes/diseases. In addition, case studies implied potential applications for MGREL in the discovery of potential therapeutic targets.
Collapse
Affiliation(s)
- Ziyang Wang
- Institute of Medical Information IMI, Chinese Academy of Medical Sciences and Peking Union Medical College CAMS & PUMC, Beijing, 100020, China
| | - Yaowen Gu
- Institute of Medical Information IMI, Chinese Academy of Medical Sciences and Peking Union Medical College CAMS & PUMC, Beijing, 100020, China
| | - Si Zheng
- Institute of Medical Information IMI, Chinese Academy of Medical Sciences and Peking Union Medical College CAMS & PUMC, Beijing, 100020, China; Institute for Artificial Intelligence, Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, 100084, China
| | - Lin Yang
- Institute of Medical Information IMI, Chinese Academy of Medical Sciences and Peking Union Medical College CAMS & PUMC, Beijing, 100020, China
| | - Jiao Li
- Institute of Medical Information IMI, Chinese Academy of Medical Sciences and Peking Union Medical College CAMS & PUMC, Beijing, 100020, China.
| |
Collapse
|
9
|
Guan J, Zhang ZG, Liu Y, Wang M. A novel bi-directional heterogeneous network selection method for disease and microbial association prediction. BMC Bioinformatics 2022; 23:483. [PMID: 36376802 PMCID: PMC9664813 DOI: 10.1186/s12859-022-04961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms in the human body have a great impact on human health. Therefore, mastering the potential relationship between microorganisms and diseases is helpful to understand the pathogenesis of diseases and is of great significance to the prevention, diagnosis, and treatment of diseases. In order to predict the potential microbial disease relationship, we propose a new computational model. Firstly, a bi-directional heterogeneous microbial disease network is constructed by integrating multiple similarities, including Gaussian kernel similarity, microbial function similarity, disease semantic similarity, and disease symptom similarity. Secondly, the neighbor information of the network is learned by random walk; Finally, the selection model is used for information aggregation, and the microbial disease node pair is analyzed. Our method is superior to the existing methods in leave-one-out cross-validation and five-fold cross-validation. Moreover, in case studies of different diseases, our method was proven to be effective.
Collapse
|
10
|
Zhang W, Wei H, Liu B. idenMD-NRF: a ranking framework for miRNA-disease association identification. Brief Bioinform 2022; 23:6604995. [PMID: 35679537 DOI: 10.1093/bib/bbac224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
Identifying miRNA-disease associations is an important task for revealing pathogenic mechanism of complicated diseases. Different computational methods have been proposed. Although these methods obtained encouraging performance for detecting missing associations between known miRNAs and diseases, how to accurately predict associated diseases for new miRNAs is still a difficult task. In this regard, a ranking framework named idenMD-NRF is proposed for miRNA-disease association identification. idenMD-NRF treats the miRNA-disease association identification as an information retrieval task. Given a novel query miRNA, idenMD-NRF employs Learning to Rank algorithm to rank associated diseases based on high-level association features and various predictors. The experimental results on two independent test datasets indicate that idenMD-NRF is superior to other compared predictors. A user-friendly web server of idenMD-NRF predictor is freely available at http://bliulab.net/idenMD-NRF/.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hang Wei
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
11
|
Wang Y, Lei X, Lu C, Pan Y. Predicting Microbe-Disease Association Based on Multiple Similarities and LINE Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2399-2408. [PMID: 34014827 DOI: 10.1109/tcbb.2021.3082183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous microbes have been found to have vital impacts on human health through affecting biological processes. Therefore, exploring potential associations between microbes and diseases will promote the understanding and diagnosis of diseases. In this study, we present a novel computational model, named MSLINE, to infer potential microbe-disease associations by integrating Multiple Similarities and Large-scale Information Network Embedding (LINE) based on known associations. Specifically, on the basis of known microbe-disease associations from the Human Microbe-Disease Association Database, we first increase the known associations by collecting proven associations from existing literatures. We then construct a microbe-disease heterogeneous network (MDHN) by integrating known associations and multiple similarities (including Gaussian interaction profile kernel similarity, microbe function similarity, disease semantic similarity and disease-symptom similarity). After that, we implement random walk and LINE algorithm on MDHN to learn its structure information. Finally, we score the microbe-disease associations according to the structure information for every nodes. In the Leave-one-out cross validation and 5-fold cross validation, MSLINE performs better compared to other existing methods. Moreover, case studies of different diseases proved that MSLINE could predict the potential microbe-disease associations efficiently.
Collapse
|
12
|
Chen Y, Lei X. Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction. Front Microbiol 2022; 13:919380. [PMID: 35711758 PMCID: PMC9194683 DOI: 10.3389/fmicb.2022.919380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
More and more studies have shown that understanding microbe-disease associations cannot only reveal the pathogenesis of diseases, but also promote the diagnosis and prognosis of diseases. Because traditional medical experiments are time-consuming and expensive, many computational methods have been proposed in recent years to identify potential microbe-disease associations. In this study, we propose a method based on heterogeneous network and metapath aggregated graph neural network (MAGNN) to predict microbe-disease associations, called MATHNMDA. First, we introduce microbe-drug interactions, drug-disease associations, and microbe-disease associations to construct a microbe-drug-disease heterogeneous network. Then we take the heterogeneous network as input to MAGNN. Second, for each layer of MAGNN, we carry out intra-metapath aggregation with a multi-head attention mechanism to learn the structural and semantic information embedded in the target node context, the metapath-based neighbor nodes, and the context between them, by encoding the metapath instances under the metapath definition mode. We then use inter-metapath aggregation with an attention mechanism to combine the semantic information of all different metapaths. Third, we can get the final embedding of microbe nodes and disease nodes based on the output of the last layer in the MAGNN. Finally, we predict potential microbe-disease associations by reconstructing the microbe-disease association matrix. In addition, we evaluated the performance of MATHNMDA by comparing it with that of its variants, some state-of-the-art methods, and different datasets. The results suggest that MATHNMDA is an effective prediction method. The case studies on asthma, inflammatory bowel disease (IBD), and coronavirus disease 2019 (COVID-19) further validate the effectiveness of MATHNMDA.
Collapse
Affiliation(s)
- Yali Chen
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
13
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
14
|
Pan Y, Lei X, Zhang Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: A comprehensive approach. Med Res Rev 2021; 42:441-461. [PMID: 34346083 DOI: 10.1002/med.21847] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Currently, the research of multi-omics, such as genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, and radiomics, are hot spots. The relationship between multi-omics data, drugs, and diseases has received extensive attention from researchers. At the same time, multi-omics can effectively predict the diagnosis, prognosis, and treatment of diseases. In essence, these research entities, such as genes, RNAs, proteins, microbes, metabolites, pathways as well as pathological and medical imaging data, can all be represented by the network at different levels. And some computer and biology scholars have tried to use computational methods to explore the potential relationships between biological entities. We summary a comprehensive research strategy, that is to build a multi-omics heterogeneous network, covering multimodal data, and use the current popular computational methods to make predictions. In this study, we first introduce the calculation method of the similarity of biological entities at the data level, second discuss multimodal data fusion and methods of feature extraction. Finally, the challenges and opportunities at this stage are summarized. Some scholars have used such a framework to calculate and predict. We also summarize them and discuss the challenges. We hope that our review could help scholars who are interested in the field of bioinformatics, biomedical image, and computer research.
Collapse
Affiliation(s)
- Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
15
|
Prediction of disease-associated circRNAs via circRNA–disease pair graph and weighted nuclear norm minimization. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|
17
|
Shen L, Shen K, Bai J, Wang J, Singla RK, Shen B. Data-driven microbiota biomarker discovery for personalized drug therapy of cardiovascular disease. Pharmacol Res 2020; 161:105225. [PMID: 33007417 DOI: 10.1016/j.phrs.2020.105225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the most wide-spread disorder all over the world. The personalized and precision diagnosis, treatment and prevention of CVD is still a challenge. With the developing of metagenome sequencing technologies and the paradigm shifting to data-driven discovery in life science, the computer aided microbiota biomarker discovery for CVD is becoming reality. We here summarize the data resources, knowledgebases and computational models available for CVD microbiota biomarker discovery, and review the present status of the findings about the microbiota patterns associated with the therapeutic effects on CVD. The future challenges and opportunities of the translational informatics on the personalized drug usages in CVD diagnosis, prognosis and treatment are also discussed.
Collapse
Affiliation(s)
- Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ke Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinwei Bai
- Library of West-China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|