1
|
Matusiak I, Strzałka A, Wadach P, Gongerowska-Jac M, Szwajczak E, Szydłowska-Helbrych A, Kepplinger B, Pióro M, Jakimowicz D. The interplay between the polar growth determinant DivIVA, the segregation protein ParA, and their novel interaction partner PapM controls the Mycobacterium smegmatis cell cycle by modulation of DivIVA subcellular distribution. Microbiol Spectr 2023; 11:e0175223. [PMID: 37966202 PMCID: PMC10714820 DOI: 10.1128/spectrum.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.
Collapse
Affiliation(s)
- Izabela Matusiak
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Patrycja Wadach
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Gongerowska-Jac
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
3
|
Kawalek A, Bartosik AA, Jagura-Burdzy G. Robust ParB Binding to Half- parS Sites in Pseudomonas aeruginosa-A Mechanism for Retaining ParB on the Nucleoid? Int J Mol Sci 2023; 24:12517. [PMID: 37569892 PMCID: PMC10419367 DOI: 10.3390/ijms241512517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Chromosome segregation in Pseudomonas aeruginosa is assisted by the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB) and its target parS sequence(s). ParB forms a nucleoprotein complex around four parSs (parS1-parS4) that overlaps oriC and facilitates relocation of newly synthesized ori domains inside the cells by ParA. Remarkably, ParB of P. aeruginosa also binds to numerous heptanucleotides (half-parSs) scattered in the genome. Here, using chromatin immunoprecipitation-sequencing (ChIP-seq), we analyzed patterns of ParB genome occupancy in cells growing under conditions of coupling or uncoupling between replication and cell division processes. Interestingly, a dissipation of ParB-parS complexes and a shift of ParB to half-parSs were observed during the transition from the exponential to stationary phase of growth on rich medium, suggesting the role of half-parSs in retaining ParB on the nucleoid within non-dividing P. aeruginosa cells. The ChIP-seq analysis of strains expressing ParB variants unable to dislocate from parSs showed that the ParB spreading ability is not required for ParB binding to half-parSs. Finally, a P. aeruginosa strain with mutated 25 half-parSs of the highest affinity towards ParB was constructed and analyzed. It showed altered ParB coverage of the oriC region and moderate changes in gene expression. Overall, this study characterizes a novel aspect of conserved bacterial chromosome segregation machinery.
Collapse
Affiliation(s)
- Adam Kawalek
- Laboratory of DNA Segregation and Life Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Grazyna Jagura-Burdzy
- Laboratory of DNA Segregation and Life Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Chodha SS, Brooks AC, Davis PJ, Ramachandran R, Chattoraj D, Hwang L. Kinetic principles of ParA2-ATP cycling guide dynamic subcellular localizations in Vibrio cholerae. Nucleic Acids Res 2023; 51:5603-5620. [PMID: 37140034 PMCID: PMC10287910 DOI: 10.1093/nar/gkad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Dynamic protein gradients are exploited for the spatial organization and segregation of replicated chromosomes. However, mechanisms of protein gradient formation and how that spatially organizes chromosomes remain poorly understood. Here, we have determined the kinetic principles of subcellular localizations of ParA2 ATPase, an essential spatial regulator of chromosome 2 segregation in the multichromosome bacterium, Vibrio cholerae. We found that ParA2 gradients self-organize in V. cholerae cells into dynamic pole-to-pole oscillations. We examined the ParA2 ATPase cycle and ParA2 interactions with ParB2 and DNA. In vitro, ParA2-ATP dimers undergo a rate-limiting conformational switch, catalysed by DNA to achieve DNA-binding competence. This active ParA2 state loads onto DNA cooperatively as higher order oligomers. Our results indicate that the midcell localization of ParB2-parS2 complexes stimulate ATP hydrolysis and ParA2 release from the nucleoid, generating an asymmetric ParA2 gradient with maximal concentration toward the poles. This rapid dissociation coupled with slow nucleotide exchange and conformational switch provides for a temporal lag that allows the redistribution of ParA2 to the opposite pole for nucleoid reattachment. Based on our data, we propose a 'Tug-of-war' model that uses dynamic oscillations of ParA2 to spatially regulate symmetric segregation and positioning of bacterial chromosomes.
Collapse
Affiliation(s)
- Satpal S Chodha
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Adam C Brooks
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Davis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Revathy Ramachandran
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Ling Chin Hwang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Medical Technology Research Centre, School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
5
|
Abstract
Maintaining proper chromosome inheritance after the completion of each cell cycle is paramount for bacterial survival. Mechanistic details remain incomplete for how bacteria manage to retain complete chromosomes after each cell cycle. In this study, we examined the potential roles of the partitioning protein ParA on chromosomal maintenance that go beyond triggering the onset of chromosome segregation in Caulobacter crescentus. Our data revealed that increasing the levels of ParA result in cells with multiple origins of replication in a DnaA-ATP-dependent manner. This ori supernumerary is retained even when expressing variants of ParA that are deficient in promoting chromosome segregation. Our data suggest that in Caulobacter ParA's impact on replication initiation is likely indirect, possibly through the effect of other cell cycle events. Overall, our data provide new insights into the highly interconnected network that drives the forward progression of the bacterial cell cycle. IMPORTANCE The successful generation of a daughter cell containing a complete copy of the chromosome requires the exquisite coordination of major cell cycle events. Any mistake in this coordination can be lethal, making these processes ideal targets for novel antibiotics. In this study, we focused on the coordination between the onset of chromosome replication, and the partitioning protein ParA. We demonstrate that altering the cellular levels of ParA causes cells to accumulate multiple origins of replication in Caulobacter crescentus. Our work provides important insights into the complex regulation involved in the coordination of the bacterial cell cycle.
Collapse
|
6
|
Diverse Partners of the Partitioning ParB Protein in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0428922. [PMID: 36622167 PMCID: PMC9927451 DOI: 10.1128/spectrum.04289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.
Collapse
|
7
|
Stoll J, Zegarra V, Bange G, Graumann PL. Single-molecule dynamics suggest that ribosomes assemble at sites of translation in Bacillus subtilis. Front Microbiol 2022; 13:999176. [PMID: 36406443 PMCID: PMC9670183 DOI: 10.3389/fmicb.2022.999176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 04/07/2024] Open
Abstract
Eukaryotic cells transcribe ribosomal RNA and largely assemble ribosomes in a structure called the nucleolus, where chromosomal regions containing rRNA operons are clustered. In bacteria, many rRNA operons cluster close to the origin regions that are positioned on the outer borders of nucleoids, close to polar areas, where translating 70S ribosomes are located. Because outer regions of the nucleoids contain the highest accumulation of RNA polymerase, it has been hypothesized that bacteria contain "nucleolus-like" structures. However, ribosome subunits freely diffuse through the entire cells, and could thus be assembled and matured throughout the non-compartmentalized cell. By tracking single molecules of two GTPases that play an essential role in ribosomal folding and processing in Bacillus subtilis, we show that this process takes place at sites of translation, i.e., predominantly at the cell poles. Induction of the stringent response led to a change in the population of GTPases assumed to be active in maturation, but did not abolish nucleoid occlusion of ribosomes or of GTPases. Our findings strongly support the idea of the conceptualization of nucleolus-like structures in bacteria, i.e., rRNA synthesis, ribosomal protein synthesis and subunit assembly occurring in close proximity at the cell poles, facilitating the efficiency of ribosome maturation even under conditions of transient nutrient deprivation.
Collapse
Affiliation(s)
| | | | | | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
8
|
Yan C, Niu Y, Wang X. Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV. Front Immunol 2022; 13:1008653. [PMID: 36389792 PMCID: PMC9650272 DOI: 10.3389/fimmu.2022.1008653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The severe coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in the most devastating pandemic in modern history. Human immunodeficiency virus (HIV) destroys immune system cells and weakens the body's ability to resist daily infections and diseases. Furthermore, HIV-infected individuals had double COVID-19 mortality risk and experienced worse COVID-related outcomes. However, the existing research still lacks the understanding of the molecular mechanism underlying crosstalk between COVID-19 and HIV. The aim of our work was to illustrate blood transcriptome crosstalk between COVID-19 and HIV and to provide potential drugs that might be useful for the treatment of HIV-infected COVID-19 patients. METHODS COVID-19 datasets (GSE171110 and GSE152418) were downloaded from Gene Expression Omnibus (GEO) database, including 54 whole-blood samples and 33 peripheral blood mononuclear cells samples, respectively. HIV dataset (GSE37250) was also obtained from GEO database, containing 537 whole-blood samples. Next, the "Deseq2" package was used to identify differentially expressed genes (DEGs) between COVID-19 datasets (GSE171110 and GSE152418) and the "limma" package was utilized to identify DEGs between HIV dataset (GSE37250). By intersecting these two DEG sets, we generated common DEGs for further analysis, containing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional enrichment analysis, protein-protein interaction (PPI) analysis, transcription factor (TF) candidate identification, microRNAs (miRNAs) candidate identification and drug candidate identification. RESULTS In this study, a total of 3213 DEGs were identified from the merged COVID-19 dataset (GSE171110 and GSE152418), and 1718 DEGs were obtained from GSE37250 dataset. Then, we identified 394 common DEGs from the intersection of the DEGs in COVID-19 and HIV datasets. GO and KEGG enrichment analysis indicated that common DEGs were mainly gathered in chromosome-related and cell cycle-related signal pathways. Top ten hub genes (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5, RRM2) were ranked according to their scores, which were screened out using degree algorithm on the basis of common DEGs. Moreover, top ten drug candidates (LUCANTHONE, Dasatinib, etoposide, Enterolactone, troglitazone, testosterone, estradiol, calcitriol, resveratrol, tetradioxin) ranked by their P values were screened out, which maybe be beneficial for the treatment of HIV-infected COVID-19 patients. CONCLUSION In this study, we provide potential molecular targets, signaling pathways, small molecular compounds, and promising biomarkers that contribute to worse COVID-19 prognosis in patients with HIV, which might contribute to precise diagnosis and treatment for HIV-infected COVID-19 patients.
Collapse
Affiliation(s)
- Cheng Yan
- *Correspondence: Cheng Yan, ; Xuannian Wang,
| | | | | |
Collapse
|
9
|
Pióro M, Matusiak I, Gawek A, Łebkowski T, Jaroszek P, Bergé M, Böhm K, Armitage J, Viollier PH, Bramkamp M, Jakimowicz D. Genus-Specific Interactions of Bacterial Chromosome Segregation Machinery Are Critical for Their Function. Front Microbiol 2022; 13:928139. [PMID: 35875543 PMCID: PMC9298525 DOI: 10.3389/fmicb.2022.928139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Most bacteria use the ParABS system to segregate their newly replicated chromosomes. The two protein components of this system from various bacterial species share their biochemical properties: ParB is a CTPase that binds specific centromere-like parS sequences to assemble a nucleoprotein complex, while the ParA ATPase forms a dimer that binds DNA non-specifically and interacts with ParB complexes. The ParA-ParB interaction incites the movement of ParB complexes toward the opposite cell poles. However, apart from their function in chromosome segregation, both ParAB may engage in genus-specific interactions with other protein partners. One such example is the polar-growth controlling protein DivIVA in Actinomycetota, which binds ParA in Mycobacteria while interacts with ParB in Corynebacteria. Here, we used heterologous hosts to investigate whether the interactions between DivIVA and ParA or ParB are maintained across phylogenic classes. Specifically, we examined interactions of proteins from four bacterial species, two belonging to the Gram positive Actinomycetota phylum and two belonging to the Gram-negative Pseudomonadota. We show that while the interactions between ParA and ParB are preserved for closely related orthologs, the interactions with polarly localised protein partners are not conferred by orthologous ParABs. Moreover, we demonstrate that heterologous ParA cannot substitute for endogenous ParA, despite their high sequence similarity. Therefore, we conclude that ParA orthologs are fine-tuned to interact with their partners, especially their interactions with polarly localised proteins are adjusted to particular bacterial species demands.
Collapse
Affiliation(s)
- Monika Pióro
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Monika Pióro,
| | - Izabela Matusiak
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Adam Gawek
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Tomasz Łebkowski
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Patrycja Jaroszek
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kati Böhm
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Judith Armitage
- Department of Biochemistry, University of Oxford, Oxford,United Kingdom
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- Dagmara Jakimowicz,
| |
Collapse
|
10
|
Guzzo M, Sanderlin AG, Castro LK, Laub MT. Activation of a signaling pathway by the physical translocation of a chromosome. Dev Cell 2021; 56:2145-2159.e7. [PMID: 34242584 DOI: 10.1016/j.devcel.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
In every organism, the cell cycle requires the execution of multiple processes in a strictly defined order. However, the mechanisms used to ensure such order remain poorly understood, particularly in bacteria. Here, we show that the activation of the essential CtrA signaling pathway that triggers cell division in Caulobacter crescentus is intrinsically coupled to the initiation of DNA replication via the physical translocation of a newly replicated chromosome, powered by the ParABS system. We demonstrate that ParA accumulation at the new cell pole during chromosome segregation recruits ChpT, an intermediate component of the CtrA signaling pathway. ChpT is normally restricted from accessing the selective PopZ polar microdomain until the new chromosome and ParA arrive. Consequently, any disruption to DNA replication initiation prevents ChpT polarization and, in turn, cell division. Collectively, our findings reveal how major cell-cycle events are coordinated in Caulobacter and, importantly, how chromosome translocation triggers an essential signaling pathway.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lennice K Castro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Gogou C, Japaridze A, Dekker C. Mechanisms for Chromosome Segregation in Bacteria. Front Microbiol 2021; 12:685687. [PMID: 34220773 PMCID: PMC8242196 DOI: 10.3389/fmicb.2021.685687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
12
|
Maurya GK, Misra HS. Characterization of ori and parS-like functions in secondary genome replicons in Deinococcus radiodurans. Life Sci Alliance 2020; 4:4/1/e202000856. [PMID: 33199509 PMCID: PMC7671480 DOI: 10.26508/lsa.202000856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanisms underlying multipartite genome maintenance and its functional significance in extraordinary radioresistance of Deinococcus radiodurans are not well understood. The sequences upstream to parAB operons in chrII (cisII) and MP (cisMP) could stabilize an otherwise, non-replicative colE1 plasmid, in D. radiodurans DnaA and cognate ParB proteins bound specifically with cisII and cisMP elements. The ΔcisII and ΔcisMP cells showed the reduced copy number of cognate replicons and radioresistance as compared with wild type. Fluorescent reporter-operator system inserted in chrI, chrII, and MP in wild type and cisII mutants showed the presence of all three replicons in wild-type cells. Although chrI was present in all the ΔcisII and ΔcisMP cells, nearly half of these cells had chrII and MP, respectively, and the other half had the reduced number of foci representing these replications. These results suggested that cisII and cisMP elements contain both origin of replication and parS-like functions and the secondary genome replicons (chrII and MP) are maintained independent of chrI and have roles in radioresistance of D. radiodurans.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India .,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Front Microbiol 2020; 11:2040. [PMID: 32983034 PMCID: PMC7483581 DOI: 10.3389/fmicb.2020.02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.
Collapse
Affiliation(s)
- Man Yin
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ye Li
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
14
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|