1
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
2
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
3
|
Chen D, Chen J, Dai R, Zheng X, Han Y, Chen Y, Xue T. Integration analysis of ATAC-seq and RNA-seq provides insight into fatty acid biosynthesis in Schizochytrium limacinum under nitrogen limitation stress. BMC Genomics 2024; 25:141. [PMID: 38311722 PMCID: PMC10840233 DOI: 10.1186/s12864-024-10043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Schizochytrium limacinum holds significant value utilized in the industrial-scale synthesis of natural DHA. Nitrogen-limited treatment can effectively increase the content of fatty acids and DHA, but there is currently no research on chromatin accessibility during the process of transcript regulation. The objective of this research was to delve into the workings of fatty acid production in S. limacinum by examining the accessibility of promoters and profiling gene expressions. RESULTS Results showed that differentially accessible chromatin regions (DARs)-associated genes were enriched in fatty acid metabolism, signal transduction mechanisms, and energy production. By identifying and annotating DARs-associated motifs, the study obtained 54 target transcription factor classes, including BPC, RAMOSA1, SPI1, MYC, and MYB families. Transcriptomics results revealed that several differentially expressed genes (DEGs), including SlFAD2, SlALDH, SlCAS1, SlNSDHL, and SlDGKI, are directly related to the biosynthesis of fatty acids, meanwhile, SlRPS6KA, SlCAMK1, SlMYB3R1, and SlMYB3R5 serve as transcription factors that could potentially influence the regulation of fatty acid production. In the integration analysis of DARs and ATAC-seq, 13 genes were identified, which were shared by both DEGs and DARs-associated genes, including SlCAKM, SlRP2, SlSHOC2, SlTN, SlSGK2, SlHMP, SlOGT, SlclpB, and SlDNAAF3. CONCLUSIONS SlCAKM may act as a negative regulator of fatty acid and DHA synthesis, while SlSGK2 may act as a positive regulator, which requires further study in the future. These insights enhance our comprehension of the processes underlying fatty acid and DHA production in S. limacinum. They also supply a foundational theoretical framework and practical assistance for the development of strains rich in fatty acids and DHA.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jing Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Rongchun Dai
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuying Han
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
4
|
Dalmia A, Daga P, Datey A, Chakravortty D, Tumaney AW. Biochemical characterization of lipid metabolic genes of Aurantiochytrium limacinum. Int J Biol Macromol 2024; 259:129078. [PMID: 38176490 DOI: 10.1016/j.ijbiomac.2023.129078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Docosahexaenoic acid (DHA) is known to have numerous health benefits and immense dietary value. There is a pressing need to have a deeper understanding of DHA metabolism. Acyl CoA: Diacylglycerol Acyltransferase (DGAT) is an important enzyme of lipid anabolism and an essential piece of the puzzle. Aurantiochytrium limacinum, a primary producer of DHA, is a good model for studying DHA metabolism. Thus, we aimed to investigate important lipid metabolic genes from A. limacinum. We cloned four putative DGATs (DGAT2a, DGAT2b, DGAT2c, and DGAT2d) from A. limacinum and performed detailed in vivo and in vitro characterization. Functional characterization showed that not all the studied genes exhibited DGAT activity. DGAT2a and DGAT2d conferred DGAT activity whereas DGAT2b showed wax synthase (WS) activity and DGAT2c showed dual function of both WS and DGAT. Based on their identified function, DGAT2b and DGAT2c were renamed as AlWS and AlWS/DGAT respectively. DGAT2a was found to exhibit a preference for DHA as a substrate. DGAT2d was found to have robust activity and emerged as a promising candidate for genetic engineering aimed at increasing oil yield. The study enriches our knowledge of lipid biosynthetic enzymes in A. limacinum, which can be utilized to design suitable application strategies.
Collapse
Affiliation(s)
- Ayushi Dalmia
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palak Daga
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ajay W Tumaney
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
5
|
Zeng Z, Wang B, Ibrar M, Ying M, Li S, Yang X. Schizochytrium sp. Extracted Lipids Prevent Alopecia by Enhancing Antioxidation and Inhibiting Ferroptosis of Dermal Papilla Cells. Antioxidants (Basel) 2023; 12:1332. [PMID: 37507872 PMCID: PMC10375984 DOI: 10.3390/antiox12071332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia has gradually become a problem that puzzles an increasing number of people. Dermal papilla cells (DPCs) play an important role in hair follicle (HF) growth; thus, exploring the effective chemicals or natural extracts that can remediate the growth of DPCs is vital. Our results showed that Schizochytrium sp.-extracted lipids (SEL) significantly promoted proliferation (up to 1.13 times) and survival ratio (up to 2.45 times) under oxidative stress. The treatment with SEL can protect DPCs against oxidative stress damage, reducing the reactive oxygen species (ROS) level by 90.7%. The relative gene transcription and translation were thoroughly analyzed using RNA-Seq, RT-qPCR, and Western blot to explore the mechanism. Results showed that SEL significantly inhibited the ferroptosis pathway and promoted the expression of antioxidant genes (up to 1.55-3.52 times). The in vivo application of SEL improved hair growth, with the length of new hair increasing by 16.7% and the length of new HF increasing by 92.6%, and the period of telogen shortening increased by 40.0%. This study proposes a novel therapeutic option for alopecia, with the effect and regulation mechanism of SEL on DPC systematically clarified.
Collapse
Affiliation(s)
- Zuye Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Innova Bay (Shenzhen) Technology Co., Ltd., Shenzhen 518118, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Puri M, Gupta A, Sahni S. Schizochytrium sp. Trends Microbiol 2023:S0966-842X(23)00029-X. [PMID: 36801156 DOI: 10.1016/j.tim.2023.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Affiliation(s)
- Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, and Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia.
| | - Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, and Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia
| | - Shweta Sahni
- Medical Biotechnology, College of Medicine and Public Health, and Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia
| |
Collapse
|
7
|
Liu X, Lyu L, Li J, Sen B, Bai M, Stajich JE, Collier JL, Wang G. Comparative Genomic Analyses of Cellulolytic Machinery Reveal Two Nutritional Strategies of Marine Labyrinthulomycetes Protists. Microbiol Spectr 2023; 11:e0424722. [PMID: 36744882 PMCID: PMC10101102 DOI: 10.1128/spectrum.04247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Labyrinthulomycetes are a group of ubiquitous and diverse unicellular Stramenopiles and have long been known for their vital role in ocean carbon cycling. However, their ecological function from the perspective of organic matter degradation remains poorly understood. This study reports high-quality genomes of two newly isolated Labyrinthulomycetes strains, namely, Botryochytrium sp. strain S-28 and Oblongichytrium sp. strain S-429, and provides molecular analysis of their ecological functions using comparative genomics and a biochemical assay. Our results suggest that Labyrinthulomycetes may occupy multiple ecological niches in marine ecosystems because of the significant differences in gene function among different genera. Certain strains could degrade wheat bran independently by secreting cellulase. The key glycoside hydrolase families (GH1, GH5, and GH9) related to cellulase and the functional domains of carbohydrate-active enzymes (CAZymes) were more enriched in their genomes. This group can actively participate in marine biochemical cycles as decomposers. In contrast, other strains that could not produce cellulase may thrive as "leftover scavengers" and act as a source of nutrients to the higher-trophic-level plankton. In addition, our findings emphasize the dual roles of endoglucanase, acting as both exo- and endoglucanases, in the process of cellulose degradation. Using genomic, biochemical, and phylogenetic analyses, our study provides a broader insight into the nutritional patterns and ecological functions of Labyrinthulomycetes. IMPORTANCE Unicellular heterotrophic eukaryotes are an important component of marine ecosystems. However, their ecological functions and modes of nutrition remain largely unknown. Our current understanding of marine microbial ecology is incomplete without integrating these heterotrophic microeukaryotes into the food web models. This study focuses on the unicellular fungus-like protists Labyrinthulomycetes and provides two high-quality genomes of cellulase-producing Labyrinthulomycetes. Our study uncovers the basis of their cellulase production by deciphering the results of genomic, biochemical, and phylogenetic analyses. This study instigates a further investigation of the molecular mechanism of organic matter utilization by Labyrinthulomycetes in the world's oceans.
Collapse
Affiliation(s)
- Xiuping Liu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Guo P, Dong L, Wang F, Chen L, Zhang W. Deciphering and engineering the polyunsaturated fatty acid synthase pathway from eukaryotic microorganisms. Front Bioeng Biotechnol 2022; 10:1052785. [DOI: 10.3389/fbioe.2022.1052785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important nutrients that play important roles in human health. In eukaryotes, PUFAs can be de novo synthesized through two independent biosynthetic pathways: the desaturase/elongase pathway and the PUFA synthase pathway. Among them, PUFAs synthesized through the PUFA synthase pathway typically have few byproducts and require fewer reduction equivalents. In the past 2 decades, numerous studies have been carried out to identify, analyze and engineer PUFA synthases from eukaryotes. These studies showed both similarities and differences between the eukaryotic PUFA synthase pathways and those well studied in prokaryotes. For example, eukaryotic PUFA synthases contain the same domain types as those in prokaryotic PUFA synthases, but the number and arrangement of several domains are different; the basic functions of same-type domains are similar, but the properties and catalytic activities of these domains are somewhat different. To further utilize the PUFA synthase pathway in microbial cell factories and improve the productivity of PUFAs, many challenges still need to be addressed, such as incompletely elucidated PUFA synthesis mechanisms and the difficult genetic manipulation of eukaryotic hosts. In this review, we provide an updated introduction to the eukaryotic PUFA synthase pathway, summarize the functions of domains and propose the possible mechanisms of the PUFA synthesis process, and then provide future research directions to further elucidate and engineer the eukaryotic PUFA synthase pathway for the maximal benefits of humans.
Collapse
|
9
|
Jia YL, Wang YZ, Nong FT, Ma W, Huang PW, Sun XM. Identification and characterization of fatty acid desaturases in Schizochytrium sp. HX-308. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Patel A, Bettiga M, Rova U, Christakopoulos P, Matsakas L. Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol 2022; 40:1261-1273. [PMID: 35450778 DOI: 10.1016/j.tibtech.2022.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Squalene is generally sourced from the liver oil of deep sea sharks (Squalus spp.), in which it accounts for 40-70% of liver mass. To meet the growing demand for squalene because of its beneficial effects for human health, three to six million deep sea sharks are slaughtered each year, profoundly endangering marine ecosystems. To overcome this unsustainable practice, microbial sources of squalene might offer a viable alternative to plant- or animal-based squalene, although only a few microorganisms have been found that are capable of synthesizing up to 30% squalene of dry biomass by native biosynthetic pathways. These squalene biosynthetic pathways, on the other hand, can be genetically manipulated to transform microorganisms into 'cellular factories' for squalene overproduction.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Bioeconomy Division, EviKrets Biobased Processes Consultants, Landvetter, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
11
|
Kubo Y, Morimoto D, Shiroi M, Yoshimi T, Ohara K, Higashine T, Mori Y, Takeuchi M, Sawayama S. Transcriptional responses of
Aurantiochytrium limacinum
under light conditions. J Appl Microbiol 2022; 132:4330-4337. [DOI: 10.1111/jam.15527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Kubo
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Daichi Morimoto
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Mai Shiroi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Toru Yoshimi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Kanta Ohara
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Tokuhiro Higashine
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Yuki Mori
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Masato Takeuchi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Shigeki Sawayama
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| |
Collapse
|
12
|
Konstantinov DK, Menzorov A, Krivenko O, Doroshkov AV. Isolation and transcriptome analysis of a biotechnologically promising Black Sea protist, Thraustochytrium aureum ssp. strugatskii. PeerJ 2022; 10:e12737. [PMID: 35287351 PMCID: PMC8917795 DOI: 10.7717/peerj.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Marine protists are an important part of the ocean ecosystem. They may possess unique sets of biosynthetic pathways and, thus, be promising model organisms for metabolic engineering for producing substances for the pharmaceutical, cosmetic, and perfume industries. Currently, full-genome data are available just for a limited number of protists hampering their use in biotechnology. Methods We characterized the morphology of a new cultured strain of Thraustochytriaceae isolated from the Black Sea ctenophore Beroe ovata using phase-contrast microscopy. Cell culture was performed in the FAND culture medium based on fetal bovine serum and DMEM. Phylogenetic analysis was performed using the 18S rRNA sequence. We also conducted a transcriptome assembly and compared the data with the closest species. Results The protist belongs to the genus Thraustochytrium based on the 18S rRNA sequence analysis. We designated the isolated protist as T. aureum ssp. strugatskii. The closest species with the genome assembly is Schizochytrium aggregatum. Transcriptome analysis revealed the majority of the fatty acid synthesis enzymes. Conclusion Our findings suggest that the T. aureum ssp. strugatskii is a promising candidate for biotechnological use. Together with the previously available, our data would allow the establishment of an accurate phylogeny of the family Thraustochytriaceae. Also, it could be a reference point for studying the evolution of the enzyme families.
Collapse
Affiliation(s)
- Dmitrii K. Konstantinov
- Novosibirsk State University, Novosibirsk, Russia,Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksei Menzorov
- Novosibirsk State University, Novosibirsk, Russia,Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Krivenko
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia
| | - Alexey V. Doroshkov
- Novosibirsk State University, Novosibirsk, Russia,Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia,Siberian Federal University, Krasnoyarsk, Russia
| |
Collapse
|
13
|
Soccol CR, Colonia BSO, de Melo Pereira GV, Mamani LDG, Karp SG, Thomaz Soccol V, Penha RDO, Dalmas Neto CJ, César de Carvalho J. Bioprospecting lipid-producing microorganisms: From metagenomic-assisted isolation techniques to industrial application and innovations. BIORESOURCE TECHNOLOGY 2022; 346:126455. [PMID: 34863851 DOI: 10.1016/j.biortech.2021.126455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, lipid-producing microorganisms have been obtained via conventional bioprospecting based on isolation and screening techniques, demanding time and effort. Thus, high-throughput sequencing combined with conventional microbiological approaches has emerged as an advanced and rapid strategy for recovering novel oleaginous microorganisms from target environments. This review highlights recent developments in lipid-producing microorganism bioprospecting, following (i) from traditional cultivation techniques to state-of-the-art metagenomics approaches; (ii) related topics on workflow, next-generation sequencing platforms, and knowledge bioinformatics; and (iii) biotechnological potential of the production of docosahexaenoic acid (DHA) by Aurantiochytrium limacinum, arachidonic acid (ARA) by Mortierella alpina and biodiesel by Rhodosporidium toruloides. These three species have been shown to be highly promising and studied in research articles, patents and commercialized products. Trends, innovations and future perspectives of these microorganisms are also addressed. Thus, these microbial lipids allow the development of food, feed and biofuels as alternative solutions to animal and vegetable oils.
Collapse
Affiliation(s)
- Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil.
| | | | | | - Luis Daniel Goyzueta Mamani
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Rafaela de Oliveira Penha
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Carlos José Dalmas Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Júlio César de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| |
Collapse
|
14
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Rau EM, Aasen IM, Ertesvåg H. A non-canonical Δ9-desaturase synthesizing palmitoleic acid identified in the thraustochytrid Aurantiochytrium sp. T66. Appl Microbiol Biotechnol 2021; 105:5931-5941. [PMID: 34292356 PMCID: PMC8390409 DOI: 10.1007/s00253-021-11425-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11425-5.
Collapse
Affiliation(s)
- E-Ming Rau
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
16
|
Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qing Wang
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Han
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shuhong Gao
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Chang M, Zhang T, Li L, Lou F, Ma M, Liu R, Jin Q, Wang X. Choreography of multiple omics reveals the mechanism of lipid turnover in Schizochytrium sp. S31. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Xu X, Huang C, Xu Z, Xu H, Wang Z, Yu X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl Microbiol Biotechnol 2020; 104:9433-9447. [PMID: 32978687 DOI: 10.1007/s00253-020-10927-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The marine oleaginous protist Aurantiochytrium sp. (Schizochytrium sp.) is a well-known docosahexaenoic acid (DHA) producer and its different DHA products are the ideal substitute for the traditional fish oil resource. However, the cost of the DHA products derived from Aurantiochytrium sp. (Schizochytrium sp.) is still high, limiting their wide applications. In order to reduce the cost or improve the productivity of DHA from the microbial resource, many researches are focusing on exploring the renewable and low-cost materials as feedbacks, and/or the stimulators for biomass and DHA production. In addition, the genetic engineering is also being used in the Aurantiochytrium sp. (Schizochytrium sp.) system for further improvement. These break the bottleneck of the DHA production by Aurantiochytrium sp. (Schizochytrium sp.) in some degree. In this review, the strategies used currently to reduce cost and improve DHA productivity, mainly from the utilizations of low-cost materials and effective stimulators to the genetic engineering perspectives, are summarized, and the availabilities from the cost perspective are also evaluated. This review provides an overview about the strategies to revolve the production cost and yield of the DHA by Aurantiochytrium sp. (Schizochytrium sp.), a theoretical basis for genetic modification of Aurantiochytrium sp. (Schizochytrium sp.), and a practical basis for the development of DHA industry. KEY POINTS : • Utilizations of various low-cost materials for DHA production • Inducing the growth and DHA biosynthesis by the effective stimulators • Reducing cost and improving DHA productivity by genetic modification • The availability from cost perspective is evaluated.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Changyi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhexian Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Huixia Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|