1
|
Jia G, Kim SH, Min J, Zamora NV, Montero SS, Kim SY, Oh SK. Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation. THE PLANT PATHOLOGY JOURNAL 2024; 40:475-485. [PMID: 39397302 PMCID: PMC11471931 DOI: 10.5423/ppj.oa.07.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.
Collapse
Affiliation(s)
- Guogeng Jia
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | | | - Silvia Soto Montero
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Padmavathi AR, Reddy GKK, Murthy PS, Nancharaiah YV. New arsenals for old armour: Biogenic nanoparticles in the battle against drug-resistant Candidaalbicans. Microb Pathog 2024; 194:106800. [PMID: 39025380 DOI: 10.1016/j.micpath.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Candida albicans is a common commensal fungus and fourth most frequent causative agent of nosocomial infections including life-threatening invasive candidiasis in humans. The effectiveness of present antifungal therapies using azoles, polyenes, flucytosine and echinocandins has plateaued in managing fungal infections. The limitations of these antifungal drugs are related to polymorphic morphology, biofilm formation, emergence of drug-resistant strains and production of several virulence factors. Development of new antifungal agents, which can particularly afflict multiple cellular targets and limiting evolving resistant strains are needed. Recently, metal nanoparticles have emerged as a source of new antifungal agents for antifungal formulations. Furthermore, green nanotechnology deals with the use of biosynthetic routes that offer new avenue for synthesizing antifungal nanoparticles coupled with less toxic chemical inventory and environmental sustainability. This article reviews the recent developments on C. albicans pathogenesis, biofilm formation, drug resistance, mode of action of antifungal drugs and antifungal activities of metal nanoparticles. The antifungal efficacy and mode of action of metal nanoparticles are described in the context of prospective therapeutic applications.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
3
|
Rackov S, Pilić B, Janković N, Kosanić M, Petković M, Vraneš M. From Synthesis to Functionality: Tailored Ionic Liquid-Based Electrospun Fibers with Superior Antimicrobial Properties. Polymers (Basel) 2024; 16:2094. [PMID: 39125121 PMCID: PMC11314316 DOI: 10.3390/polym16152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024] Open
Abstract
Herein, we report an efficient and facile strategy for the preparation of imidazolium-based ionic liquid (IL) monomers ([CnVIm][Br], n = 2, 4, 6, 8, 10, and 12) and their corresponding polymeric ionic liquids (PILs) with potent antimicrobial activities against Gram-negative and Gram-positive bacteria and fungi. The electrospinning technique was utilized to tailor the polymers with the highest antimicrobial potency into porous membranes that can be easily implemented into diverse systems and extend their practical bactericidal application. The antimicrobial mechanism of obtained ILs, polymers, and nanomaterials is considered concerning the bearing chain length, polymerization process, and applied processing technique that provides a unique fibrous structure. The structure composition was selected due to the well-established inherent amphiphilicity that 1-alkylimidazolium ILs possess, coupled with proven antimicrobial, antiseptic, and antifungal behavior. The customizable nature of ILs and PILs complemented with electrospinning is exploited for the development of innovative antimicrobial performances born from the intrinsic polymer itself, offering solutions to the increasing challenge of bacterial resistance. This study opens up new prospects toward designer membranes providing a complete route in their designing and revolutionizing the approach of fabricating multi-functional systems with tunable physicochemical, surface properties, and interesting morphology.
Collapse
Affiliation(s)
- Sanja Rackov
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Branka Pilić
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Petković
- Department of Atomic Physics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia;
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| |
Collapse
|
4
|
Reddy GKK, Kavibharathi K, Singh A, Nancharaiah YV. Growth-dependent cr(VI) reduction by Alteromonas sp. ORB2 under haloalkaline conditions: toxicity, removal mechanism and effect of heavy metals. World J Microbiol Biotechnol 2024; 40:165. [PMID: 38630187 DOI: 10.1007/s11274-024-03982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Bacterial reduction of hexavalent chromium (VI) to chromium (III) is a sustainable bioremediation approach. However, the Cr(VI) containing wastewaters are often characterized with complex conditions such as high salt, alkaline pH and heavy metals which severely impact the growth and Cr(VI) reduction potential of microorganisms. This study investigated Cr(VI) reduction under complex haloalkaline conditions by an Alteromonas sp. ORB2 isolated from aerobic granular sludge cultivated from the seawater-microbiome. Optimum growth of Alteromonas sp. ORB2 was observed under haloalkaline conditions at 3.5-9.5% NaCl and pH 7-11. The bacterial growth in normal culture conditions (3.5% NaCl; pH 7.6) was not inhibited by 100 mg/l Cr(VI)/ As(V)/ Pb(II), 50 mg/l Cu(II) or 5 mg/l Cd(II). Near complete reduction of 100 mg/l Cr(VI) was achieved within 24 h at 3.5-7.5% NaCl and pH 8-11. Cr(VI) reduction by Alteromonas sp. ORB2 was not inhibited by 100 mg/L As(V), 100 mg/L Pb(II), 50 mg/L Cu(II) or 5 mg/L Cd(II). The bacterial cells grew in the medium with 100 mg/l Cr(VI) contained lower esterase activity and higher reactive oxygen species levels indicating toxicity and oxidative stress. In-spite of toxicity, the cells grew and reduced 100 mg/l Cr(VI) completely within 24 h. Cr(VI) removal from the medium was driven by bacterial reduction to Cr(III) which remained in the complex medium. Cr(VI) reduction was strongly linked to aerobic growth of Alteromonas sp. The Cr(VI) reductase activity of cytosolic protein fraction was pronounced by supplementing with NADPH in vitro assays. This study demonstrated a growth-dependent aerobic Cr(VI) reduction by Alteromonas sp. ORB2 under complex haloalkaline conditions akin to wastewaters.
Collapse
Affiliation(s)
- G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - K Kavibharathi
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
| | - Anuroop Singh
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India.
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Chilamakuri SN, Kumar A, Nath AG, Gupta A, Selvaraju S, Basrani S, Jadhav A, Gulbake A. Development and In-Vitro Evaluation of Eugenol-Based Nanostructured Lipid Carriers for Effectual Topical Treatment Against C. albicans. J Pharm Sci 2024; 113:772-784. [PMID: 38043682 DOI: 10.1016/j.xphs.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The main objective of the experiment is to develop and evaluate hydrogel-bearing nanostructured lipid carriers (NLCs) loaded with ketoconazole (KTZ) for the effective treatment of candidiasis. The eugenol was used as a liquid lipid (excipient) for the development of KTZ-loaded NLCs and was explored for anti-fungal effect. The production of NLCs involves high energy processes to generate spherical, uniform particles, having a higher percentage of entrapment efficiency (%EE) for KTZ with 89.83 ± 2.31 %. The data from differential scanning calorimeter (DSC), powder x-ray diffraction (PXRD), and attenuated total reflectance (ATR) demonstrated the KTZ dispersion in NLCs. The NLCs loaded hydrogel possessed optimum spreadability and exhibited shear thinning behavior, indicating the ease of application of the final formulation. The 6.41-fold higher transdermal flux (Jss) was governed for KTZ from KTZ-NLC than coarse-KTZ, which explains the usefulness of NLCs. The KTZ-NLCs exhibited significant 2.58 and 6.35-fold higher retention in the stratum corneum and viable epidermis of the skin. The cell cytotoxicity studies using human dermal fibroblast cell (HDFS) lines depicted the usefulness of NLCs in reducing cell toxicities for KTZ. The KTZ-NLCs were found to inhibit planktonic growth and hyphal transition and showed a larger zone of inhibition against C. albicans strains with a MIC-50 value of 0.39 μg/mL. The antibiofilm activity of KTZ-NLCs at lower concentrations, in contrast to plain KTZ, explained the interaction of developed NLCs with fungal membranes. The overall results depicted the effectiveness of the loading KTZ in the lipid matrix to achieve antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Sudarshan Naidu Chilamakuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - A Gowri Nath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Anshu Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sargun Basrani
- Department of Medical Biotechnology, CIR, DY Patil Education Society, Institution Deemed to be University, Kolhapur, India
| | - Ashwini Jadhav
- Department of Medical Biotechnology, CIR, DY Patil Education Society, Institution Deemed to be University, Kolhapur, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
6
|
Sharma K, Parmanu PK, Sharma M. Mechanisms of antifungal resistance and developments in alternative strategies to combat Candida albicans infection. Arch Microbiol 2024; 206:95. [PMID: 38349529 DOI: 10.1007/s00203-023-03824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Candida albicans is a commensal fungus that infects the humans and becomes an opportunistic pathogen particularly in immuno-compromised patients. Among the Candida genus, yeast C. albicans is the most frequently incriminated species and is responsible for nearly 50-90% of human candidiasis, with vulvovaginal candidiasis alone, affecting about 75% of the women worldwide. One of the significant virulence traits in C. albicans is its tendency to alternate between the yeast and hyphae morphotypes, accounting for the development of multi-drug resistance in them. Thus, a thorough comprehension of the decision points and genes controlling this transition is necessary, to understand the pathogenicity of this, naturally occurring, pernicious fungus. Additionally, the formation of C. albicans biofilm is yet another pathogenesis trait and a paramount cause of invasive candidiasis. Since 1980 and in 90 s, wide spread use of immune-suppressing therapies and over prescription of fluconazole, a drug used to treat chronic fungal infections, triggered the emergence of novel anti-fungal drug development. Thus, this review thoroughly elucidates the diseases associated with C. albicans infection as well as the anti-fungal resistance mechanism associated with them and identifies the emerging therapeutic agents, along with a rigorous discussion regarding the future strategies that can possibly be adopted for the cure of this deleterious pathogen.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Prashant Kumar Parmanu
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India.
| |
Collapse
|
7
|
Yu Q, Sun L, Peng F, Sun C, Xiong F, Sun M, Liu J, Peng C, Zhou Q. Antimicrobial Activity of Stilbenes from Bletilla striata against Cutibacterium acnes and Its Effect on Cell Membrane. Microorganisms 2023; 11:2958. [PMID: 38138103 PMCID: PMC10746055 DOI: 10.3390/microorganisms11122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 μg/mL and 62.5 μg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luyao Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Xiong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiji Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Mitra S, Sharma VK, Ghosh SK. Effects of ionic liquids on biomembranes: A review on recent biophysical studies. Chem Phys Lipids 2023; 256:105336. [PMID: 37586678 DOI: 10.1016/j.chemphyslip.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
10
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
11
|
Garcia LGS, Rocha MGD, Freire RS, Nunes PIG, Nunes JVS, Fernandes MR, Pereira-Neto WA, Sidrim JJC, Santos FA, Rocha MFG, Rodrigues LKA, Vieira RS, Brilhante RSN. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Appl Oral Sci 2023; 31:e20230146. [PMID: 37729259 PMCID: PMC10519671 DOI: 10.1590/1678-7757-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.
Collapse
Affiliation(s)
| | | | | | - Paulo Iury Gomes Nunes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Mirele Rodrigues Fernandes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Waldemiro Aquino Pereira-Neto
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - José Júlio Costa Sidrim
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Flavia Almeida Santos
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Lidiany Karla Azevedo Rodrigues
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Odontologia Restauradora, Ceará, Brasil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| |
Collapse
|
12
|
Alsaiari M, Roghani K, Liaqat S, Alkorbi AS, Sharif F, Irfan M, Rizk MA, Uroos M, Ahmad N, Muhammad N. Effect of Ionic Liquids on Mechanical, Physical, and Antifungal Properties and Biocompatibility of a Soft Denture Lining Material. ACS OMEGA 2023; 8:27300-27311. [PMID: 37546657 PMCID: PMC10399165 DOI: 10.1021/acsomega.3c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
This study aims to evaluate the effect of ionic liquids and their structure on the mechanical (tensile bond strength (TBS) and Shore A hardness), mass change, and antifungal properties of soft denture lining material. Butyl pyridinium chloride (BPCL) and octyl pyridinium chloride (OPCL) were synthesized, characterized, and mixed in concentrations ranging from 0.65-10% w/w with a soft denture liner (Molloplast-B) and were divided into seven groups (C, BPCL1-3, and OPCL1-3). The TBS of bar-shaped specimens was calculated on a Universal Testing Machine. For Shore A hardness, disc-shaped specimens were analyzed using a durometer. The mass change (%) of specimens was calculated by the weight loss method. The antifungal potential of ionic liquids and test specimens was measured using agar well and disc diffusion methods (p ≤ 0.05). The alamarBlue assay was performed to assess the biocompatibility of the samples. The mean TBS values of Molloplast-B samples were significantly lower (p ≤ 0.05) for all groups except for OPCL1. Compared with the control, the mean shore A hardness values were significantly higher (p ≤ 0.05) for samples in groups BPCL 2 and 3. After 6 weeks, the OPCL samples showed a significantly lower (p ≤ 0.05) mass change as compared to the control. Agar well diffusion methods demonstrated a maximum zone of inhibition for 2.5% OPCL (20.5 ± 0.05 mm) after 24 h. Disc diffusion methods showed no zones of inhibition. The biocompatibility of the ionic liquid-modified sample was comparable to that of the control. The addition of ionic liquids in Molloplast-B improved the liner's surface texture, increased its hardness, and decreased its % mass change and tensile strength. Ionic liquids exhibited potent antifungal activity.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Khumara Roghani
- Department
of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| | - Saad Liaqat
- Department
of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ali S. Alkorbi
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Faiza Sharif
- Interdisciplinary
Research Center for Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54590, Punjab, Pakistan
| | - Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Moustafa A. Rizk
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Maliha Uroos
- Centre for
Research in Ionic Liquids, Institute of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Naveed Ahmad
- Department
of Chemical and Material Engineering, College of Engineering, Northern Border University, Arar 73213, Saudi Arabia
| | - Nawshad Muhammad
- Department
of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
13
|
Zhang Z, Zhang Q, Gao S, Xu H, Guo J, Yan F. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection. Acta Biomater 2023; 166:254-265. [PMID: 37187300 DOI: 10.1016/j.actbio.2023.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Oral aphthous ulcers are a common inflammatory efflorescence of oral mucosa, presenting as inflammation and oral mucosal damage and manifesting as pain. The moist and highly dynamic environment of the oral cavity makes the local treatment of oral aphthous ulcers challenging. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch fabricated with intrinsically antimicrobial, highly wet environment adhesive properties and anti-inflammatory activities to treat oral aphthous ulcers was developed. The PIL-DS patch was prepared via polymerization of a catechol-containing ionic liquid, acrylic acid, and butyl acrylate, followed by anion exchange with DS-. The PIL-DS can adhere to wet tissues, including mucosa muscles and organs, and efficiently deliver the carried DS- at wound sites, exerting remarkable synergistic antimicrobial (bacteria and fungi) properties. Accordingly, the PIL-DS elicited dual therapeutic effects on oral aphthous ulcers with Staphylococcus aureus infection through antibacterial and anti-inflammatory activities, significantly accelerating oral aphthous ulcer healing as an oral mucosa patch. The results indicated that the PIL-DS patch, with inherently antimicrobial and wet adhesion properties, is promising for treating oral aphthous ulcers in clinical practice. STATEMENT OF SIGNIFICANCE: Oral aphthous ulcers are a common oral mucosal disease, which could lead to bacterial infection and inflammation in severe cases, especially for people with large ulcers or low immunity. However, moist oral mucosa and highly dynamic oral environment make it challenging to maintain therapeutic agents and physical barriers at the wound surface. Therefore, an innovative drug carrier with wet adhesion is urgently needed. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch was developed to treat oral aphthous ulcers showing intrinsically antimicrobial and highly wet environment adhesive properties due to the presence of catechol-containing ionic liquid monomer. Additionally, the PIL-DS showed significantly therapeutic effects on oral aphthous ulcers with S. aureus infection through antibacterial and anti-inflammatory activities. We expect that our work can provide inspiration for the development of treatment for microbially infected oral ulcers.
Collapse
Affiliation(s)
- Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
Liu C, Chen S, Shan Y, Du C, Zhu J, Bao Q, Shao Y, Yin W, Yang F, Ran Y, Wang Y. Screening of Ionic Liquids against Bamboo Mildew and Its Inhibition Mechanism. Molecules 2023; 28:molecules28083432. [PMID: 37110666 PMCID: PMC10145214 DOI: 10.3390/molecules28083432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Ionic liquids are a class of organic molten salts that consist entirely of cations and anions. They are characterized by their low vapor pressure, low viscosity, low toxicity, high thermal stability, and strong antifungal potential. In this study, the inhibitory performance of ionic liquid cations against Penicillium citrinum, Trichoderma viride, and Aspergillus niger was investigated, along with the mechanism of cell membrane disruption. The Oxford cup method, SEM, and TEM were employed to examine the extent of damage and the specific site of action of ionic liquids on the mycelium and cell structure of these fungi. The results showed that 1-decyl-3-methylimidazole had a strong inhibitory effect on TV; benzyldimethyldodecylammonium chloride had a weak inhibitory effect on PC, TV, AN, and a mixed culture; while dodecylpyridinium chloride exhibited significant inhibitory effects on PC, TV, AN, and Mix, with more prominent effects observed on AN and Mix, exhibiting MIC values of 5.37 mg/mL, 5.05 mg/mL, 5.10 mg/mL, and 5.23 mg/mL, respectively. The mycelium of the mildews showed drying, partial loss, distortion, and uneven thickness. The cell structure showed separation of the plasma wall. The absorbance of the extracellular fluid of PC and TV reached the maximum after 30 min, while that of AN reached the maximum after 60 min. The pH of the extracellular fluid decreased initially and then increased within 60 min, followed by a continuous decrease. These findings provide important insights for the application of ionic liquid antifungal agents in bamboo, medicine, and food.
Collapse
Affiliation(s)
- Chunlin Liu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Shiqin Chen
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yingying Shan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Chungui Du
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Jiawei Zhu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Qichao Bao
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuran Shao
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Wenxiu Yin
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Fei Yang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Ying Ran
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuting Wang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
15
|
Zhang Q, Zhang Z, Zou X, Liu Z, Li Q, Zhou J, Gao S, Xu H, Guo J, Yan F. Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater Sci 2023; 11:3114-3127. [PMID: 36917099 DOI: 10.1039/d2bm02096c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Poor permeation of therapeutic agents and similar eukaryotic cell metabolic and physiological properties of fungi and human cells are two major challenges that lead to the failure of current therapy for fungi-induced skin and soft tissue infections. Herein, a nitric oxide (NO)-releasing poly(ionic liquid)-based microneedle (PILMN-NO) with the capacity of deep persistent NO toward subcutaneous fungal bed is presented as a synergistic antifungal treatment strategy to treat subcutaneous fungal infection. Upon the insertion of PILMN-NO into skin, the contact fungicidal activities induced by electrostatic and hydrophobic effects of poly(ionic liquid) and the released NO sterilization resulting from the peroxidation and nitrification effect of NO achieved enhanced antifungal efficacy against fungi (Candida albicans) both in vitro and in vivo. Simultaneously, PILMN-NO showed biofilm ablation ability and efficiently eliminated mature biofilms. In vivo fungal-induced subcutaneous abscess studies revealed that PILMN-NO could effectively sterilize fungi while suppressing the inflammatory reaction, facilitating collagen deposition and angiogenesis, and promoting wound healing. This work provides a new strategy to overcome the difficulties in deep skin fungal infection treatment and has potential for further exploitation of NO-releasing microbicidal therapy.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiamei Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Song W, Xin J, Yu C, Xia C, Pan Y. Alkyl ferulic acid esters: Evaluating their structure and antibacterial properties. Front Microbiol 2023; 14:1135308. [PMID: 36860482 PMCID: PMC9968881 DOI: 10.3389/fmicb.2023.1135308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Ferulic acid (FA) is a natural antibacterial agent rich in plants, FA has excellent antioxidant and antibacterial properties. However, because of its short alkane chain and large polarity, FA is difficult to penetrate the soluble lipid bilayer in the biofilm to enter the cell to play an inhibitory role, limiting its biological activity. To improve the antibacterial activity of FA, with the catalytic condition of Novozym 435, four alkyl ferulic acid esters (FCs) with different alkyl chain lengths were obtained by fatty alcohols (including 1-propanol (C3), 1-hexanol (C6), nonanol (C9), and lauryl alcohol (C12)) modification. The effect of FCs on P. aeruginosa was determined by Minimum inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC), Growth curves, alkaline phosphatase (AKP) activity, crystal violet method, scanning electron microscopy (SEM), membrane potential, PI, cell contents leakage. Results showed that the antibacterial activity of FCs increased after esterification, and the antibacterial activity significantly increased and then decreased with the extension of the alkyl chain of the FCs. Hexyl ferulate (FC6) showed the best antibacterial activities against E. coli and P. aeruginosa (MIC for E. coli was 0.5 mg/ml, MIC for P. aeruginosa was 0.4 mg/ml). And Propyl ferulate (FC3) and FC6 showed the best antibacterial activities S. aureus and B. subtilis (MIC for S. aureus was 0.4 mg/ml, The MIC of B. subtilis was 1.1 mg/ml). In addition, the growth, AKP activity, bacterial biofilm, bacterial cell morphology, membrane potential and cell contents leakage of P. aeruginosa after different FCs were investigated, which found that FCs could damage the cell wall of P. aeruginosa and showed different effects on the P. aeruginosa cell biofilm. FC6 showed the best inhibition on the biofilm formation of P. aeruginosa cells, which caused the surface of P. aeruginosa cells to be rough and wrinkled. Some P. aeruginosa cells showed aggregation and adhesion, even rupture. The membrane hyperpolarization was obvious, which appeared as holes, leading to cell contents leakage (protein and nucleic acid). All these results concluded that the antibacterial activities FCs against foodborne pathogens depended on different fatty alcohol esterification of FA. FC6 showed the best inhibition on P. aeruginosa due to its effect on P. aeruginosa cell walls and biofilms and the leak of the cell contents. This study provides more practical methods and a theoretical basis for giving full play to the bacteriostatic effect of plant FA.
Collapse
Affiliation(s)
- Wei Song
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin, China
| | - Jiaying Xin
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin, China,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China,*Correspondence: Jiaying Xin, ✉
| | - Chong Yu
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yu Pan
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
17
|
Synthesis, Characterization, Biological Evaluation, and In Silico Studies of Imidazolium-, Pyridinium-, and Ammonium-Based Ionic Liquids Containing n-Butyl Side Chains. Molecules 2022; 27:molecules27196650. [PMID: 36235187 PMCID: PMC9572234 DOI: 10.3390/molecules27196650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
Collapse
|
18
|
Gomes A, Bessa LJ, Fernandes I, Aguiar L, Ferraz R, Monteiro C, Martins MCL, Mateus N, Gameiro P, Teixeira C, Gomes P. Boosting Cosmeceutical Peptides: Coupling Imidazolium-Based Ionic Liquids to Pentapeptide-4 Originates New Leads with Antimicrobial and Collagenesis-Inducing Activities. Microbiol Spectr 2022; 10:e0229121. [PMID: 35950860 PMCID: PMC9431032 DOI: 10.1128/spectrum.02291-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Following our previous reports on dual-action antibacterial and collagenesis-inducing hybrid peptide constructs based on "pentapeptide-4" (PP4, with amino acid sequence KTTKS), whose N-palmitoyl derivative is the well-known cosmeceutical ingredient Matrixyl, herein we disclose novel ionic liquid/PP4 conjugates (IL-KTTKS). These conjugates present potent activity against either antibiotic-susceptible strains or multidrug resistant clinical isolates of both Gram-positive and Gram-negative bacterial species belonging to the so-called "ESKAPE" group of pathogens. Noteworthy, their antibacterial activity is preserved in simulated wound fluid, which anticipates an effective action in the setting of a real wound bed. Moreover, their collagenesis-inducing effects in vitro are comparable to or stronger than those of Matrixyl. Altogether, IL-KTTKS exert a triple antibacterial, antifungal, and collagenesis-inducing action in vitro. These findings provide solid grounds for us to advance IL-KTTKS conjugates as promising leads for future development of topical treatments for complicated skin and soft tissue infections (cSSTI). Further studies are envisaged to incorporate IL-conjugates into suitable nanoformulations, to reduce toxicity and/or improve resistance to proteolytic degradation. IMPORTANCE As life expectancy increases, diseases causing chronic wound infections become more prevalent. Diabetes, peripheral vascular diseases, and bedridden patients are often associated with non-healing wounds that become infected, resulting in high morbidity and mortality. This is exacerbated by the fact that microbes are becoming increasingly resistant to antibiotics, so efforts must converge toward finding efficient therapeutic alternatives. Recently, our team identified a new type of constructs that combine (i) peptides used in cosmetics to promote collagen formation with (ii) imidazolium-based ionic liquids, which have antimicrobial and skin penetration properties. These constructs have potent wide-spectrum antimicrobial action, including against multidrug-resistant Gram-positive and Gram-negative bacteria, and fungi. Moreover, they can boost collagen formation. Hence, this is an unprecedented class of lead molecules toward development of a new topical medicine for chronically infected wounds.
Collapse
Affiliation(s)
- Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Lucinda J. Bessa
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, Almada, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Ciências Químicas e das Biomoléculas – CISA, Escola Superior de Saúde, Politécnico do Porto, Porto, Portugal
| | - Cláudia Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - M. Cristina L. Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Fang Z, Zheng X, Li L, Qi J, Wu W, Lu Y. Ionic Liquids: Emerging Antimicrobial Agents. Pharm Res 2022; 39:2391-2404. [PMID: 35879499 DOI: 10.1007/s11095-022-03336-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.
Collapse
Affiliation(s)
- Zhezheng Fang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xianzi Zheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
20
|
Wang Q, Pan L, Han Y, Zhou Z. Antimicrobial Mechanisms of Enterocin CHQS Against Candida albicans. Curr Microbiol 2022; 79:191. [PMID: 35552837 DOI: 10.1007/s00284-022-02878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is the most common fungal pathogen in hospital-acquired infections, which is extremely harmful to health. The increasing fungal infections is requiring the rapid development of novel antifungal agents. In this study, the antimicrobial activity of CHQS, an enterocin isolated from Enterococcus faecalis TG2 against C. albicans was confirmed by the minimum inhibitory concentration, minimum fungicidal concentration, and time-kill curve. Aniline blue and calcofluor white staining methods showed that CHQS remarkably affected β-1,3-glucan and chitin cell wall components and made cell wall more vulnerable. The C. albicans cell wall rupture and intracellular vacuolation were observed by TEM and SEM. Moreover, CHQS induced the accumulation of intracellular reactive oxygen species and decreased mitochondrial membrane potential. These results suggested that CHQS might have a complex multi-target antimicrobial mechanism against C. albicans. In addition, the use of CHQS combined with amphotericin B showed synergistic antimicrobial effects against C. albicans. In conclusion, enterocin CHQS, a natural product with antimicrobial effect, might has a bright future for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Reddy GKK, Padmavathi AR, Nancharaiah Y. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100137. [PMID: 35909631 PMCID: PMC9325902 DOI: 10.1016/j.crmicr.2022.100137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increasing incidence of fungal infections of recent times requires immediate intervention. Fungal infections are seldom construed at initial stages that intensify the severity of infections and complicate the treatment procedures. Fungal pathogens employ various mechanisms to evade the host immune system and to progress the severity of infections. For the treatment of diverse superficial and systemic infections, antifungal drugs from the available repertoire are administered. However, well documented evidence of fungal resistance to most of the antifungal drugs hampers disease control and poses challenges in antifungal therapy. Several physiological adaptations and genetic mutations followed by their selection in presence of antifungal agents drive the resistance development in fungi. The availability of limited antifungal arsenal, emergence of resistance and biofilm-conferred resistance drives the need for development of novel drugs and alternate approaches for the better treatment outcome against mycoses. This graphical review explicitly shed light on various fungal infections and causative organisms, pathogenesis, different antifungal drugs and resistance mechanisms including host immune response and evasion strategies. Here, we have highlighted recent developments on novel antifungal agents and other alternate approaches for fighting against fungal infections.
Collapse
|
22
|
Engineering drug delivery systems to overcome the vaginal mucosal barrier: Current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Assessment of alkylimidazolium chloride ionic liquid formulations for cleaning and disinfection of environmental surfaces. Am J Infect Control 2021; 50:1032-1037. [PMID: 34971712 DOI: 10.1016/j.ajic.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Surface disinfection is fundamental to good environmental hygiene and preventing infections. Development of newer formulations that can effectively kill and remove microorganisms from the surfaces is desired. METHODS Here, we assessed the efficacy of 1-hexadecyl-3-methylimidazolium chloride [C16MIM][Cl] ionic liquid (IL) and its formulation in ethanol for killing and removing bacteria from different environmental surfaces. Efficacy of IL and its formulation was determined on known monospecies bacterial cultures and unknown multispecies bacterial cultures on environmental surfaces. RESULT The surface disinfection efficacy of [C16MIM][Cl] was concentration dependent and achieved 41 to 100% reduction in total viable bacterial counts of Gram positive and Gram negative bacteria at varied concentrations. The treatment of wooden surface with 0.1% [C16MIM][Cl] caused 98% reduction in bacterial load within 20 s contact time as against mere 45% reduction (20 s) with 70% ethanol. Antibacterial and surface disinfection activities of [C16MIM][Cl] have increased markedly when prepared in 70% ethanol, suggesting synergistic activity. A formulation comprising of 0.01% [C16MIM][Cl] in 70% ethanol showed effective surface disinfection and achieved 95% to 98% reduction in bacterial load on different surfaces. CONCLUSION Ionic liquids are potent candidates for disinfection of environmental surfaces.
Collapse
|
25
|
Alkylimidazolium ionic liquids for biofilm control: Experimental studies on controlling multispecies biofilms in natural waters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
dos Santos CM, de Souza Mesquita LM, Braga ARC, de Rosso VV. Red Propolis as a Source of Antimicrobial Phytochemicals: Extraction Using High-Performance Alternative Solvents. Front Microbiol 2021; 12:659911. [PMID: 34168628 PMCID: PMC8217612 DOI: 10.3389/fmicb.2021.659911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Propolis is a resinous material rich in flavonoids and involved in several biological activities such as antimicrobial, fungicide, and antiparasitic functions. Conventionally, ethanolic solutions are used to obtain propolis phytochemicals, which restrict their use in some cultures. Given this, we developed an alcohol-free high-performance extractive approach to recover antibacterial and antioxidants phytochemicals from red propolis. Thus, aqueous-solutions of ionic liquids (IL) and eutectic solvents were used and then tested for their total flavonoids, antioxidant, and antimicrobial activities. The surface-responsive technique was applied regarding some variables, namely, the time of extraction, the number of extractions, and cavitation power (W), to optimize the process (in terms of higher yields of flavonoids and better antioxidant activity). After that, four extractions with the same biomass (repetitions) using 1-hexyl-3-methylimidazolium chloride [C6mim]Cl, under the operational conditions fixed at 3.3 min and 300 W, were able to recover 394.39 ± 36.30 mg RuE. g-1 of total flavonoids, with total antioxidant capacity evaluated up to 7595.77 ± 5.48 μmol TE. g-1 dried biomass, besides inhibiting the growth of Staphylococcus aureus and Salmonella enteritidis bacteria (inhibition halo of 23.0 ± 1.0 and 15.7 ± 2.1, respectively). Aiming at the development of new technologies, the antimicrobial effect also presented by [C6mim]Cl may be appealing, and future studies are required to understand possible synergistic actions with propolis phytochemicals. Thereby, we successfully applied a completely alcohol-free method to obtain antimicrobials phytochemicals and highly antioxidants from red propolis, representing an optimized process to replace the conventional extracts produced until now.
Collapse
Affiliation(s)
- Cíntia M. dos Santos
- Postgraduate Program in Nutrition, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. de Souza Mesquita
- Postgraduate Program in Interdisciplinary Health Science, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Anna Rafaela C. Braga
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Veridiana V. de Rosso
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
27
|
Simões M, Pereira AR, Simões LC, Cagide F, Borges F. Biofilm control by ionic liquids. Drug Discov Today 2021; 26:1340-1346. [PMID: 33549827 DOI: 10.1016/j.drudis.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Ionic liquids (ILs) are remarkable chemical compounds with applications in many areas of modern science. They are increasingly recognized as promising compounds to fight microorganisms in both planktonic and biofilm states, contributing to reinvent the antimicrobial pipeline. Biofilm-related infections are particularly challenging given that the scientific community has not yet identified a reliable control strategy. Understanding of the action of ILs in biofilm control is is still in a very early stage. However, given the highly tunable nature and exceptional properties of ILs, they are excellent candidates for biofilm control. Here, we review the major advances in, and challenges tothe use of ILs for effective biofilm control.
Collapse
Affiliation(s)
- Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
| | - Ana Rita Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Fernando Cagide
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| |
Collapse
|