1
|
Hu T, Wang S, Bing J, Zheng Q, Du H, Li C, Guan Z, Bai FY, Nobile CJ, Chu H, Huang G. Hotspot mutations and genomic expansion of ERG11 are major mechanisms of azole resistance in environmental and human commensal isolates of Candida tropicalis. Int J Antimicrob Agents 2023; 62:107010. [PMID: 37863341 DOI: 10.1016/j.ijantimicag.2023.107010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES Infections caused by azole-resistant Candida tropicalis strains are increasing in clinical settings. The reason for this epidemical change and the mechanisms of C. tropicalis azole resistance are not fully understood. METHODS In this study, we performed biological and genomic analyses of 239 C. tropicalis strains, including 115 environmental and 124 human commensal isolates. RESULTS Most (99.2%) of the isolates had a baseline diploid genome. The strains from both environmental and human niches exhibit similar abilities to survive under stressful conditions and produce secreted aspartic proteases. However, the human commensal isolates exhibited a stronger ability to filament than the environmental strains. We found that 19 environmental isolates (16.5%) and 24 human commensal isolates (19.4%) were resistant to fluconazole. Of the fluconazole-resistant strains, 37 isolates (86.0%) also exhibited cross-resistance to voriconazole. Whole-genome sequencing and phylogenetic analyses revealed that both environmental and commensal isolates were widely distributed in a number of genetic clusters, but the two populations exhibited a close genetic association. The majority of fluconazole-resistant isolates were clustered within a single clade (X). CONCLUSIONS The combination of hotspot mutations (Y132F and S154F) and genomic expansion of ERG11, which encodes the azole target lanosterol 14-α-demethylase and represents a major target of azole drugs, was a major mechanism for the development of azole resistance. The isolates carrying both hotspot mutations and genomic expansion of ERG11 exhibited cross-resistance to fluconazole and voriconazole. Moreover, the azole-resistant isolates from both the environmental and human commensal niches showed similar genotypes.
Collapse
Affiliation(s)
- Tianren Hu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Sijia Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiushi Zheng
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Du
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhangyue Guan
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California; Health Sciences Research Institute, University of California, Merced, California
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.
| |
Collapse
|
2
|
Wang Y, Wan X, Zhao L, Jin P, Zhang J, Zhou X, Ye N, Wang X, Pan Y, Xu L. Clonal aggregation of fluconazole-resistant Candida tropicalis isolated from sterile body fluid specimens from patients in Hefei, China. Med Mycol 2023; 61:myad097. [PMID: 37777835 DOI: 10.1093/mmy/myad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Li Zhao
- Department of Urology, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Peipei Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Ju Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Naifang Ye
- Department of Clinical Laboratory Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yaping Pan
- Department of Clinical Laboratory Medicine, High Tech Branch of The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Liangfei Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
3
|
Domán M, Makrai L, Vásárhelyi B, Balka G, Bányai K. Molecular epidemiology of Candida albicans infections revealed dominant genotypes in waterfowls diagnosed with esophageal mycosis. Front Vet Sci 2023; 10:1215624. [PMID: 37456960 PMCID: PMC10344593 DOI: 10.3389/fvets.2023.1215624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Fungal infections of animals could yield significant economic losses, especially in the poultry industry, due to their adverse effects on growth, feed intake, digestion, and reproduction. Previous investigations showed that Candida albicans plays the main etiological role in the esophageal mycosis of birds. In this study, we used multilocus sequence typing (MLST) to determine the population structure and molecular epidemiology of C. albicans isolated from geese and ducks in Hungary. Interestingly, only three known genotypes were identified among investigated flocks, namely, diploid sequence type (DST) 840, DST 656, and DST 605, suggesting the intra-species transmission of these genotypes. Additionally, two novel allele combinations (new DSTs) were found that have not been previously submitted to the MLST database. Phylogenetic analysis of isolates revealed a close relationship between DST 656 and DST 605 as well as between the two newly identified genotypes (designated DST 3670 and DST 3671). Although isolates from birds belonged to minor clades in contrast with most human isolates, no species-specificity was observed. Poultry-derived isolates were group founders or closely related to group founders of clonal complexes, suggesting that C. albicans is exposed to lesser selective pressure in animal hosts. The increasing number of genetic information in the C. albicans MLST database could help to reveal the epidemiological characteristics and evolutionary pathways that are essential for disease prevention strategies.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - László Makrai
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Balázs Vásárhelyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Gyula Balka
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2023; 9:jof9030353. [PMID: 36983521 PMCID: PMC10059995 DOI: 10.3390/jof9030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.
Collapse
|
5
|
Dougue AN, El‐Kholy MA, Giuffrè L, Galeano G, D′Aleo F, Kountchou CL, Nangwat C, Dzoyem JP, Giosa D, Pernice I, Shawky SM, Ngouana T, Boyom FF, Romeo O. Multilocus sequence typing (MLST) analysis reveals many novel genotypes and a high level of genetic diversity in Candida tropicalis isolates from Italy and Africa. Mycoses 2022; 65:989-1000. [PMID: 35713604 PMCID: PMC9796097 DOI: 10.1111/myc.13483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Candida tropicalis is a human pathogenic yeast frequently isolated in Latin America and Asian-Pacific regions, although recent studies showed that it is also becoming increasingly widespread throughout several African and south-European countries. Nevertheless, relatively little is known about its global patterns of genetic variation as most of existing multilocus sequence typing (MLST) data come from Asia and there are no genotyped African isolates. OBJECTIVES We report detailed genotyping data from a large set of C. tropicalis isolates recovered from different clinical sources in Italy, Egypt and Cameroon in order to expand the allele/genotype library of MLST database (https://pubmlst.org/ctropicalis), and to explore the genetic diversity in this species. METHODS A total of 103 C. tropicalis isolates were genotyped using the MLST scheme developed for this species. All isolates were also tested for in vitro susceptibility to various antifungals to assess whether certain genotypes were associated with drug-resistance. RESULTS AND CONCLUSIONS A total of 104 different alleles were detected across the MLST-loci investigated. The allelic diversity found at these loci resulted in 51 unique MLST genotypes of which 36 (70.6%) were novel. Global optimal eBURST analysis identified 18 clonal complexes (CCs) and confirm the existence of a specific Italian-cluster (CC36). Three CCs were also statistically associated with fluconazole resistance, which was elevated in Cameroon and Egypt. Our data show high genetic diversity in our isolates suggesting that the global population structure of C. tropicalis is still poorly understood. Moreover, its clinical impact in Italy, Egypt and Cameroon appears to be relevant and should be carefully considered.
Collapse
Affiliation(s)
- Aude Ngueguim Dougue
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Mohammed A. El‐Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of PharmacyArab Academy for Science, Technology and Maritime Transport (AASTMT)AlexandriaEgypt
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Grazia Galeano
- Department of Veterinary SciencesUniversity of MessinaMessinaItaly
| | - Francesco D′Aleo
- Laboratory of Clinical MicrobiologyGreat Metropolitan Hospital of Reggio CalabriaReggio CalabriaItaly
| | - Cyrille Levis Kountchou
- Research Unit of Laboratory of Microbiology and Antimicrobial Substances (RUMAS), Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon,Institute of Medical Research and Medicinal Plant StudiesCenter for Medical Research in Health and Priority PathologiesYaoundéCameroon
| | - Claude Nangwat
- Research Unit of Laboratory of Microbiology and Antimicrobial Substances (RUMAS), Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | - Jean Paul Dzoyem
- Research Unit of Laboratory of Microbiology and Antimicrobial Substances (RUMAS), Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Ida Pernice
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Sherine M. Shawky
- Department of Microbiology, Medical Research InstituteUniversity of AlexandriaAlexandriaEgypt
| | - Thierry Kammalac Ngouana
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon,Biomedical Research UnitLaboratoire SionYaoundéCameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| |
Collapse
|
6
|
Pokhrel S, Boonmee N, Tulyaprawat O, Pharkjaksu S, Thaipisutikul I, Chairatana P, Ngamskulrungroj P, Mitrpant C. Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model. J Fungi (Basel) 2022; 8:jof8101014. [PMID: 36294579 PMCID: PMC9605499 DOI: 10.3390/jof8101014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Candida albicans, an opportunistic pathogen, has the ability to form biofilms in the host or within medical devices in the body. Biofilms have been associated with disseminated/invasive disease with increased severity of infection by disrupting the host immune response and prolonging antifungal treatment. In this study, the in vivo virulence of three strains with different biofilm formation strengths, that is, non-, weak-, and strong biofilm formers, was evaluated using the zebrafish model. The survival assay and fungal tissue burden were measured. Biofilm-related gene expressions were also investigated. The survival of zebrafish, inoculated with strong biofilms forming C. albicans,, was significantly shorter than strains without biofilms forming C. albicans. However, there were no statistical differences in the burden of viable colonogenic cell number between the groups of the three strains tested. We observed that the stronger the biofilm formation, the higher up-regulation of biofilm-associated genes. The biofilm-forming strain (140 and 57), injected into zebrafish larvae, possessed a higher level of expression of genes associated with adhesion, attachment, filamentation, and cell proliferation, including eap1, als3, hwp1, bcr1, and mkc1 at 8 h. The results suggested that, despite the difference in genetic background, biofilm formation is an important virulence factor for the pathogenesis of C. albicans. However, the association between biofilm formation strength and in vivo virulence is controversial and needs to be further studied.
Collapse
Affiliation(s)
- Sabi Pokhrel
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nawarat Boonmee
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Orawan Tulyaprawat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Iyarit Thaipisutikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
7
|
Keighley C, Gall M, van Hal SJ, Halliday CL, Chai LYA, Chew KL, Biswas C, Slavin MA, Meyer W, Sintchenko V, Chen SCA. Whole Genome Sequencing Shows Genetic Diversity, as Well as Clonal Complex and Gene Polymorphisms Associated with Fluconazole Non-Susceptible Isolates of Candida tropicalis. J Fungi (Basel) 2022; 8:jof8090896. [PMID: 36135621 PMCID: PMC9505729 DOI: 10.3390/jof8090896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to azoles in Candida tropicalis is increasing and may be mediated by genetic characteristics. Using whole genome sequencing (WGS), we examined the genetic diversity of 82 bloodstream C. tropicalis isolates from two countries and one ATCC strain in a global context. Multilocus sequence typing (MLST) and single nucleotide polymorphism (SNP)-based phylogenies were generated. Minimum inhibitory concentrations (MIC) for antifungal agents were determined using Sensititre YeastOne YO10. Eleven (13.2%) isolates were fluconazole-resistant and 17 (20.5%) were classified as fluconazole-non susceptible (FNS). Together with four Canadian isolates, the genomes of 12 fluconazole-resistant (18 FNS) and 69 fluconazole-susceptible strains were examined for gene mutations associated with drug resistance. Fluconazole-resistant isolates contained a mean of 56 non-synonymous SNPs per isolate in contrast to 36 SNPs in fluconazole-susceptible isolates (interquartile range [IQR] 46−59 vs. 31−48 respectively; p < 0.001). Ten of 18 FNS isolates contained missense ERG11 mutations (amino acid substitutions S154F, Y132F, Y257H). Two echinocandin-non susceptible isolates had homozygous FKS1 mutations (S30P). MLST identified high genetic diversity with 61 diploid sequence types (DSTs), including 53 new DSTs. All four isolates in DST 773 were fluconazole-resistant within clonal complex 2. WGS showed high genetic variation in invasive C. tropicalis; azole resistance was distributed across different lineages but with DST 773 associated with in vitro fluconazole resistance.
Collapse
Affiliation(s)
- Caitlin Keighley
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Institute for Infectious Diseases, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
- Correspondence: (C.K.); (M.G.)
| | - Mailie Gall
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
- Correspondence: (C.K.); (M.G.)
| | - Sebastiaan J. van Hal
- Department of Infectious Diseases and Microbiology, New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kean Lee Chew
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Laboratory Medicine, National University Health System, Singapore 119074, Singapore
| | - Chayanika Biswas
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
| | - Monica A. Slavin
- Department of Infectious Diseases, National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Wieland Meyer
- Centre for Infectious Diseases and Microbiology, Sydney Institute for Infectious Diseases, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Research and Education Network, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Institute for Infectious Diseases, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Sharon C. A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Institute for Infectious Diseases, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
8
|
Lima R, Ribeiro FC, Colombo AL, de Almeida JN. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:957021. [PMID: 37746212 PMCID: PMC10512401 DOI: 10.3389/ffunb.2022.957021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 09/26/2023]
Abstract
Antifungal resistance in humans, animals, and the environment is an emerging problem. Among the different fungal species that can develop resistance, Candida tropicalis is ubiquitous and causes infections in animals and humans. In Asia and some Latin American countries, C. tropicalis is among the most common species related to candidemia, and mortality rates are usually above 40%. Fluconazole resistance is especially reported in Asian countries and clonal spread in humans and the environment has been investigated in some studies. In Brazil, high rates of azole resistance have been found in animals and the environment. Multidrug resistance is still rare, but recent reports of clinical multidrug-resistant isolates are worrisome. The molecular apparatus of antifungal resistance has been majorly investigated in clinical C. tropicalis isolates, revealing that this species can develop resistance through the conjunction of different adaptative mechanisms. In this review article, we summarize the main findings regarding antifungal resistance and Candida tropicalis through an "One Health" approach.
Collapse
Affiliation(s)
- Ricardo Lima
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Felipe C. Ribeiro
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo L. Colombo
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joăo N. de Almeida
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
9
|
Mechanisms of Azole Resistance and Trailing in Candida tropicalis Bloodstream Isolates. J Fungi (Basel) 2021; 7:jof7080612. [PMID: 34436151 PMCID: PMC8396981 DOI: 10.3390/jof7080612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: Azole-resistant Candida tropicalis has emerged in Asia in the context of its trailing nature, defined by residual growth above minimum inhibitory concentrations (MICs). However, limited investigations in C. tropicalis have focused on the difference of genotypes and molecular mechanisms between these two traits. Methods: Sixty-four non-duplicated C. tropicalis bloodstream isolates collected in 2017 were evaluated for azole MICs by the EUCAST E.def 7.3.1 method, diploid sequence type (DST) by multilocus sequencing typing, and sequences and expression levels of genes encoding ERG11, its transcription factor, UPC2, and efflux pumps (CDR1, CDR2 and MDR1). Results: Isavuconazole showed the highest in vitro activity and trailing against C. tropicalis, followed by voriconazole and fluconazole (geometric mean [GM] MIC, 0.008, 0.090, 1.163 mg/L, respectively; trailing GM, 27.4%, 20.8% and 19.5%, respectively; both overall p < 0.001). Fourteen (21.9%) isolates were non-WT to fluconazole/voriconazole, 12 of which were non-WT to isavuconazole and clustered in clonal complex (CC) 3. Twenty-five (39.1%) isolates were high trailing WT, including all CC2 isolates (44.0%) (containing DST140 and DST98). All azole non-WT isolates carried the ERG11 mutations A395T/W and/or C461T/Y, and most carried the UPC2 mutation T503C/Y. These mutations were not identified in low and high trailing WT isolates. Azole non-WT and high trailing WT isolates exhibited the highest expression levels of ERG11 and MDR1, 3.91- and 2.30-fold, respectively (both overall p < 0.01). Conclusions: Azole resistance and trailing are phenotypically and genotypically different in C. tropicalis. Interference with azole binding and MDR1 up-regulation confer azole resistance and trailing, respectively.
Collapse
|
10
|
Boonsilp S, Homkaew A, Phumisantiphong U, Nutalai D, Wongsuk T. Species Distribution, Antifungal Susceptibility, and Molecular Epidemiology of Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2021; 7:jof7070577. [PMID: 34356956 PMCID: PMC8303137 DOI: 10.3390/jof7070577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022] Open
Abstract
Candida species represent a common cause of bloodstream infection (BSI). Given the emergence of non-albicans Candida (NAC) associated with treatment failure, investigations into the species distribution, fungal susceptibility profile, and molecular epidemiology of pathogens are necessary to optimize the treatment of candidemia and explore the transmission of drug resistance for control management. This study evaluated the prevalence, antifungal susceptibility, and molecular characteristics of Candida species causing BSI in a tertiary-level hospital in Bangkok, Thailand. In total, 54 Candida isolates were recovered from 49 patients with candidemia. C. tropicalis was the most prevalent species (33.3%), followed by C. albicans (29.6%). Most Candida species were susceptible to various antifungal agents, excluding C. glabrata and C. tropicalis, which had increased rates of non-susceptibility to azoles. Most C. glabrata isolates were non-susceptible to echinocandins, especially caspofungin. The population structure of C. albicans was highly diverse, with clade 17 predominance. GoeBURST analysis of C. tropicalis revealed associations between genotype and fluconazole resistance in a particular clonal complex. The population structure of C. glabrata appeared to have a low level of genetic diversity in MLST loci. Collectively, these data might provide a fundamental database contributing to the development of novel antifungal agents and diagnostic tests.
Collapse
Affiliation(s)
- Siriphan Boonsilp
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Correspondence: (S.B.); (T.W.)
| | - Anchalee Homkaew
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Uraporn Phumisantiphong
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Daranee Nutalai
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Correspondence: (S.B.); (T.W.)
| |
Collapse
|
11
|
Wang Y, Fan X, Wang H, Kudinha T, Mei YN, Ni F, Pan YH, Gao LM, Xu H, Kong HS, Yang Q, Wang WP, Xi HY, Luo YP, Ye LY, Xiao M. Continual Decline in Azole Susceptibility Rates in Candida tropicalis Over a 9-Year Period in China. Front Microbiol 2021; 12:702839. [PMID: 34305872 PMCID: PMC8299486 DOI: 10.3389/fmicb.2021.702839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background There have been reports of increasing azole resistance in Candida tropicalis, especially in the Asia-Pacific region. Here we report on the epidemiology and antifungal susceptibility of C. tropicalis causing invasive candidiasis in China, from a 9-year surveillance study. Methods From August 2009 to July 2018, C. tropicalis isolates (n = 3702) were collected from 87 hospitals across China. Species identification was carried out by mass spectrometry or rDNA sequencing. Antifungal susceptibility was determined by Clinical and Laboratory Standards Institute disk diffusion (CHIF-NET10-14, n = 1510) or Sensititre YeastOne (CHIF-NET15-18, n = 2192) methods. Results Overall, 22.2% (823/3702) of the isolates were resistant to fluconazole, with 90.4% (744/823) being cross-resistant to voriconazole. In addition, 16.9 (370/2192) and 71.7% (1572/2192) of the isolates were of non-wild-type phenotype to itraconazole and posaconazole, respectively. Over the 9 years of surveillance, the fluconazole resistance rate continued to increase, rising from 5.7 (7/122) to 31.8% (236/741), while that for voriconazole was almost the same, rising from 5.7 (7/122) to 29.1% (216/741), with no significant statistical differences across the geographic regions. However, significant difference in fluconazole resistance rate was noted between isolates cultured from blood (27.2%, 489/1799) and those from non-blood (17.6%, 334/1903) specimens (P-value < 0.05), and amongst isolates collected from medical wards (28.1%, 312/1110) versus intensive care units (19.6%, 214/1092) and surgical wards (17.9%, 194/1086) (Bonferroni adjusted P-value < 0.05). Although echinocandin resistance remained low (0.8%, 18/2192) during the surveillance period, it was observed in most administrative regions, and one-third (6/18) of these isolates were simultaneously resistant to fluconazole. Conclusion The continual decrease in the rate of azole susceptibility among C. tropicalis strains has become a nationwide challenge in China, and the emergence of multi-drug resistance could pose further threats. These phenomena call for effective efforts in future interventions.
Collapse
Affiliation(s)
- Yao Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia.,New South Wales Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
| | - Ya-Ning Mei
- Department of Clinical Laboratory, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Fang Ni
- Department of Clinical Laboratory, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yu-Hong Pan
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lan-Mei Gao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Shen Kong
- Department of Laboratory Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Ping Wang
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hai-Yan Xi
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yan-Ping Luo
- Medical Laboratory Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Li-Yan Ye
- Medical Laboratory Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
12
|
Invasive Fungal Diseases in Children with Acute Leukemia and Severe Aplastic Anemia. Mediterr J Hematol Infect Dis 2021; 13:e2021039. [PMID: 34276908 PMCID: PMC8265365 DOI: 10.4084/mjhid.2021.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Although the outcomes of childhood leukemia and severe aplastic anemia (SAA) have improved, infectious complications are still the major concern. Particularly worrisome are invasive fungal diseases (IFDs), one of the most common causes of infectious-related deaths in patients with prolonged neutropenia. A retrospective study was conducted of IFDs in pediatric patients with newly diagnosed or relapsed acute leukemia, or with SAA, at Siriraj Hospital, Mahidol University, Thailand. There were 241 patients: 150 with acute lymphoblastic leukemia (ALL), 35 with acute myeloid leukemia (AML), 31 with relapsed leukemia, and 25 with SAA. Their median age was 5.4 years (range, 0.3–16.0 years). The overall IFD prevalence was 10.7%, with a breakdown in the ALL, AML, relapsed leukemia, and SAA patients of 8%, 11.4%, 19.3%, and 16%, respectively. Pulmonary IFD caused by invasive aspergillosis was the most common, accounting for 38.5% of all infection sites. Candidemia was present in 34.6% of the IFD patients; Candida tropicalis was the most common organism. The overall case-fatality rate was 38.5%, with the highest rate found in relapsed leukemia (75%). The incidences of IFDs in patients with relapsed leukemia and SAA who received fungal prophylaxis were significantly lower than in those who did not (P = N/A and 0.04, respectively). IFDs in Thai children with hematological diseases appeared to be prevalent, with a high fatality rate. The usage of antifungal prophylaxes should be considered for patients with SAA to prevent IFDs.
Collapse
|
13
|
Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Hafez A, Salehi M, Polat F, Yaşar M, Arslan N, Hoşbul T, Ünal N, Metin DY, Gürcan Ş, Birinci A, Koç AN, Pan W, Ilkit M, Perlin DS, Lass-Flörl C. Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping. Front Microbiol 2020; 11:587278. [PMID: 33123116 PMCID: PMC7573116 DOI: 10.3389/fmicb.2020.587278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Candida tropicalis is the fourth leading cause of candidemia in Turkey. Although C. tropicalis isolates from 1997 to 2017 were characterized as fully susceptible to antifungals, the increasing global prevalence of azole-non-susceptible (ANS) C. tropicalis and the association between high fluconazole tolerance (HFT) and fluconazole therapeutic failure (FTF) prompted us to re-evaluate azole susceptibility of C. tropicalis in Turkey. In this study, 161 C. tropicalis blood isolates from seven clinical centers were identified by ITS rDNA sequencing, genotyped by multilocus microsatellite typing, and tested for susceptibility to five azoles, two echinocandins, and amphotericin B (AMB); antifungal resistance mechanisms were assessed by sequencing of ERG11 and FKS1 genes. The results indicated that C. tropicalis isolates, which belonged to 125 genotypes grouped into 11 clusters, were fully susceptible to echinocandins and AMB; however, 18.6% of them had the ANS phenotype but only two carried the ANS-conferring mutation (Y132F). HFT was recorded in 52 isolates, 10 of which were also ANS. Large proportions of patients infected with ANS and HFT isolates (89 and 40.7%, respectively) showed FTF. Patients infected with azole-susceptible or ANS isolates did not differ in mortality, which, however, was significantly lower for those infected with HFT isolates (P = 0.007). There were significant differences in mortality (P = 0.02), ANS (P = 0.012), and HFT (P = 0.007) among genotype clusters. The alarming increase in the prevalence of C. tropicalis blood isolates with ANS and HFT in Turkey and the notable FTF rate should be a matter of public health concern.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | | | | | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Furkan Polat
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Melike Yaşar
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nazlı Arslan
- Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Tuğrul Hoşbul
- Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey.,Department of Microbiology, Adana City Hospital, University of Health Sciences, Adana, Turkey
| | - Dilek Yeşim Metin
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Şaban Gürcan
- Department of Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Asuman Birinci
- Department of Microbiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ayşe Nedret Koç
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|