1
|
Ma Y, Peng X, Zhang J, Zhu Y, Huang R, Li G, Wu Y, Zhou C, You J, Fang S, Xiang S, Qiu J. Gut microbiota in preterm infants with late-onset sepsis and pneumonia: a pilot case-control study. BMC Microbiol 2024; 24:272. [PMID: 39039501 PMCID: PMC11265154 DOI: 10.1186/s12866-024-03419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Late-onset sepsis (LOS) and pneumonia are common infectious diseases, with high morbidity and mortality in neonates. This study aimed to investigate the differences in the gut microbiota among preterm infants with LOS, or pneumonia, and full-term infants. Furthermore, this study aimed to determine whether there is a correlation between intestinal pathogenic colonization and LOS. METHODS In a single-center case‒control study, 16 S rRNA gene sequencing technology was used to compare gut microbiota characteristics and differences among the LOS group, pneumonia group, and control group. RESULTS Our study revealed that the gut microbiota in the control group was more diverse than that in the LOS group and pneumonia group (P < 0.05). No significant differences in diversity were detected between the LOS and pneumonia groups (P > 0.05). Compared with the control group, the abundances of Akkermansia, Escherichia/Shigella, and Enterococcus increased, while the abundances of Bacteroides and Stenotrophomonas decreased in the LOS and pneumonia groups. The pathogenic bacteria in infants with LOS were consistent with the distribution of the main bacteria in the intestinal microbiota. An increase in Escherichia/Shigella abundance may predict a high risk of LOS occurrence, with an area under the curve (AUC) of 0.773. CONCLUSION Changes in the gut microbiota composition were associated with an increased risk of LOS and pneumonia. The dominant bacteria in the gut microbiota of the LOS group were found to be associated with the causative pathogen of LOS. Moreover, preterm infants exhibiting an elevated abundance of Escherichia/Shigella may be considered potential candidates for predicting the onset of LOS.
Collapse
Affiliation(s)
- Ye Ma
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Xiaoming Peng
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, 116 Changnan Road, Tianyuan District, Zhuzhou, China
| | - Yulian Zhu
- Department of Obstetrics, Hunan Prevention and Treatment Institute for Occupational Diseases, 162 Xinjian West Road, Yuhua District, Changsha, China
| | - Ruiwen Huang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Guinan Li
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Yunqin Wu
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Changci Zhou
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Jiajia You
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Siwei Fang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China.
| |
Collapse
|
2
|
Li Y, Ning X, Zhao Z, He X, Xue Q, Zhou M, Li W, Li M. Core fucosylation of maternal milk N-glycans imparts early-life immune tolerance through gut microbiota-dependent regulation in RORγt + Treg cells. Food Funct 2024; 15:4140-4153. [PMID: 38445991 DOI: 10.1039/d4fo00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xixi Ning
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Zihui Zhao
- Pelvic Floor Repair Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xi He
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Qidi Xue
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Manlin Zhou
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- Shantou University Medical College, Shantou, Guangdong, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Young SM, Woode RA, Williams EC, Ericsson AC, Clarke LL. Fecal dysbiosis and inflammation in intestinal-specific Cftr knockout mice on regimens preventing intestinal obstruction. Physiol Genomics 2024; 56:247-264. [PMID: 38073491 PMCID: PMC11283905 DOI: 10.1152/physiolgenomics.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic intestinal inflammation is a poorly understood manifestation of cystic fibrosis (CF), which may be refractory to ion channel CF transmembrane conductance regulator (CFTR) modulator therapy. People with CF exhibit intestinal dysbiosis, which has the potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia, leukocytes, and other tissues. Here, we investigate the contribution of intestinal epithelium-specific loss of Cftr [iCftr knockout (KO)] to dysbiosis and inflammation in mice treated with either of two antiobstructive dietary regimens necessary to maintain CF mouse models [polyethylene glycol (PEG) laxative or a liquid diet (LiqD)]. Feces collected from iCftr KO mice and their wild-type (WT) sex-matched littermates were used to measure fecal calprotectin to evaluate inflammation and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT mice that consumed either PEG or LiqD. PEG iCftr KO mice did not show a change in α diversity versus WT mice but demonstrated a significant difference in microbial composition (β diversity) with included increases in the phylum Proteobacteria, the family Peptostreptococcaceae, four genera of Clostridia including C. innocuum, and the mucolytic genus Akkermansia. Fecal microbiome analysis of LiqD-fed iCftr KO mice showed both decreased α diversity and differences in microbial composition with increases in the Proteobacteria family Enterobacteriaceae, Firmicutes families Clostridiaceae and Peptostreptococcaceae, and enrichment of Clostridium perfringens, C. innocuum, C. difficile, mucolytic Ruminococcus gnavus, and reduction of Akkermansia. It was concluded that epithelium-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of pan Cftr KO mice.NEW & NOTEWORTHY Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CF transmembrane conductance regulator (CFTR) that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR [inducible Cftr knockout (KO)] in mice is sufficient to induce intestinal dysbiosis and inflammation. Experiments were performed on mice consuming two dietary regimens routinely used to prevent obstruction in CF mice.
Collapse
Affiliation(s)
- Sarah M Young
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
| | - Rowena A Woode
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Estela C Williams
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- College of Veterinary Medicine, University of Missouri Metagenomics Center, Columbia, Missouri, United States
| | - Lane L Clarke
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Dinteren SV, Araya-Cloutier C, Robaczewska E, den Otter M, Witkamp R, Vincken JP, Meijerink J. Switching the polarity of mouse enteroids affects the epithelial interplay with prenylated phenolics from licorice ( Glycyrrhiza) roots. Food Funct 2024; 15:1852-1866. [PMID: 38086658 DOI: 10.1039/d3fo02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Edyta Robaczewska
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Mellody den Otter
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
5
|
van Pul L, Maurer I, Boeser-Nunnink BD, Harskamp AM, van Dort KA, Kootstra NA. A genetic variation in fucosyltransferase 8 accelerates HIV-1 disease progression indicating a role for N-glycan fucosylation. AIDS 2023; 37:1959-1969. [PMID: 37598360 PMCID: PMC10552802 DOI: 10.1097/qad.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Core fucosylation by fucosyltransferase 8 (FUT8) is an important posttranslational modification that impacts components of the immune system. Genetic variations in FUT8 can alter its function and could, therefore, play a role in the antiviral immune response and pathogenesis of HIV-1. This study analysed the effect of a single nucleotide polymorphism (SNP) in FUT8 on the clinical course of HIV-1 infection. DESIGN/METHODS The effect of SNPs in FUT8 on untreated HIV-1 disease outcome were analysed in a cohort of 304 people with HIV-1 (PWH) using survival analysis. Flow-cytometry was used to determine the effect of SNP on T-cell activation, differentiation and exhaustion/senescence. T-cell function was determined by proliferation assay and by measuring intracellular cytokine production. The effect of the SNP on HIV-1 replication was determined by in-vitro HIV-1 infections. Sensitivity of HIV-1 produced in PBMC with or without the SNP to broadly neutralizing antibodies was determined using a TZM-bl based neutralization assay. RESULTS Presence of the minor allele of SNP rs4131564 was associated with accelerated disease progression. The SNP had no effect on T-cell activation and T-cell differentiation in PWH. Additionally, no differences in T-cell functionality as determined by proliferation and cytokine production was observed. HIV-1 replication and neutralization sensitivity was also unaffected by the SNP in FUT8. CONCLUSION SNP rs4131564 in FUT8 showed a major impact on HIV-1 disease course underscoring a role for N-glycan fucosylation even though no clear effect on the immune system or HIV-1 could be determined in vitro .
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M. Harskamp
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A. van Dort
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
7
|
Zhang Y, Zhou X, Lu Y. Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Front Cell Infect Microbiol 2022; 12:968992. [PMID: 36034713 PMCID: PMC9411928 DOI: 10.3389/fcimb.2022.968992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a multifactorial, neurodegenerative disorder characterized by the loss of retinal ganglion cells (RGCs). Crosstalk between the gut microbiota and host is involved in the progression of many neurodegenerative diseases, although little is known about its role in glaucoma. To investigated the alterations of the gut microbiota and derived metabolites in glaucomatous rats, and the interaction with RGCs, we performed 16S rRNA (V1-V9) sequencing and untargeted metabolomic analyses. The microbial composition differed significantly between the two groups, and the diversity of cecal bacteria was dramatically reduced in glaucomatous rats. The Firmicutes/Bacteroidetes (F/B) ratio, Verrucomicrobia phylum, and some bacterial genera (Romboutsia, Akkermansia, and Bacteroides) were dramatically increased in the glaucomatous rat model compared with the control, which showed negative correlation with RGCs. Untargeted metabolomic analysis identified 284 differentially expressed metabolites, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed considerable enrichment mainly in bile secretion pathways. The relationships among the metabolites enriched in the bile secretion pathway, differentially expressed cecal microbiota, and RGCs were investigated, and glutathione (GSH) was found to be negatively correlated with Bacteroides and F/B and positively correlated with RGCs. Reduced GSH level in the blood of glaucoma rats is further established, and was negatively correlated with Romboutsia and the F/B ratio and positively correlated with RGCs. This finding suggests the potential role of the gut microbiota and derived metabolites in glaucoma, and GSH, a major antioxidant metabolite, was related to their effects, indicating the potential for the development of gut microbiota-targeted interventions for glaucoma.
Collapse
Affiliation(s)
- Yinglei Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- *Correspondence: Xujiao Zhou, ; Yi Lu,
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- *Correspondence: Xujiao Zhou, ; Yi Lu,
| |
Collapse
|
8
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
9
|
Sun Y, Li X, Wang T, Li W. Core Fucosylation Regulates the Function of Pre-BCR, BCR and IgG in Humoral Immunity. Front Immunol 2022; 13:844427. [PMID: 35401499 PMCID: PMC8990897 DOI: 10.3389/fimmu.2022.844427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Most of the membrane molecules involved in immune response are glycosylated. N-glycans linked to asparagine (Asn) of immune molecules contribute to the protein conformation, surface expression, stability, and antigenicity. Core fucosylation catalyzed by core fucosyltransferase (FUT8) is the most common post-translational modification. Core fucosylation is essential for evoking a proper immune response, which this review aims to communicate. First, FUT8 deficiency suppressed the interaction between μHC and λ5 during pre-BCR assembly is given. Second, we described the effects of core fucosylation in B cell signal transduction via BCR. Third, we investigated the role of core fucosylation in the interaction between helper T (TH) cells and B cells. Finally, we showed the role of FUT8 on the biological function of IgG. In this review, we discussed recent insights into the sites where core fucosylation is critical for humoral immune responses.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Wenzhe Li,
| |
Collapse
|
10
|
Huang H, He Y, Li Y, Gu M, Wu M, Ji L. Eriodictyol suppresses the malignant progression of colorectal cancer by downregulating tissue specific transplantation antigen P35B (TSTA3) expression to restrain fucosylation. Bioengineered 2022; 13:5551-5563. [PMID: 35184647 PMCID: PMC8973719 DOI: 10.1080/21655979.2022.2039485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hua Huang
- Department of Anorectal, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Yun He
- Department of Oncology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Youran Li
- Department of Anorectal, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Minna Wu
- Department of Anorectal, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lijiang Ji
- Department of Anorectal, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| |
Collapse
|
11
|
Fan Q, Wu Y, Li M, An F, Yao L, Wang M, Wang X, Yuan J, Jiang K, Li W, Li M. Lactobacillus spp. create a protective micro-ecological environment through regulating the core fucosylation of vaginal epithelial cells against cervical cancer. Cell Death Dis 2021; 12:1094. [PMID: 34799549 PMCID: PMC8604912 DOI: 10.1038/s41419-021-04388-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Vaginal dysbiosis often occurs in patients with cervical cancer. The fucosylation of mucosal epithelial cells is closely related to microbial colonization, and play an important role in protecting the vaginal mucosal epithelial cells. However, no reports on the relationship between vaginal dysbiosis and abnormal mucosal epithelial cell fucosylation, and their roles in the occurrence and development of cervical cancer are unavailable. Here we report that core fucosylation levels were significantly lower in the serum, exfoliated cervical cells and tumor tissue of cervical cancer patients. Core fucosyltransferase gene (Fut8) knockout promoted the proliferation and migration of cervical cancer cells. In patients with cervical cancer, the vaginal dysbiosis, and the abundance of Lactobacillus, especially L. iners, was significantly reduced. Meanwhile, the abundance of L.iners was positively correlated with core fucosylation levels. The L. iners metabolite lactate can activate the Wnt pathway through the lactate-Gpr81 complex, which increases the level of core fucosylation in epidermal cells, inhibiting the proliferation and migration of cervical cancer cells, and have application prospects in regulating the vaginal microecology and preventing cervical cancer.
Collapse
Affiliation(s)
- Qingjie Fan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yuanhang Wu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mechou Li
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan An
- The Cancer Stem Cell Research Institute of Dalian Medical University, Dalian, China
| | - Lulu Yao
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meixian Wang
- The Reproductive and Genetics Center of Dalian Women and Children's Medical Center (Group), Dalian, China
| | - Xiuying Wang
- The Gynecology and Oncology Ward of Dalian Maternal and Child Health Hospital, Dalian, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Impaired Intestinal Akkermansia muciniphila and Aryl Hydrocarbon Receptor Ligands Contribute to Nonalcoholic Fatty Liver Disease in Mice. mSystems 2021; 6:6/1/e00985-20. [PMID: 33622853 PMCID: PMC8573958 DOI: 10.1128/msystems.00985-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Noncaloric artificial sweeteners (NAS) are extensively introduced into commonly consumed drinks and foods worldwide. However, data on the health effects of NAS consumption remain elusive. Saccharin and sucralose have been shown to pass through the human gastrointestinal tract without undergoing absorption and metabolism and directly encounter the gut microbiota community. Here, we aimed to identify a novel mechanism linking intestinal Akkermansia muciniphila and the aryl hydrocarbon receptor (AHR) to saccharin/sucralose-induced nonalcoholic fatty liver disease (NAFLD) in mice. Saccharin/sucralose consumption altered the gut microbial community structure, with significant depletion of A. muciniphila abundance in the cecal contents of mice, resulting in disruption of intestinal permeability and a high level of serum lipopolysaccharide, which likely contributed to systemic inflammation and caused NAFLD in mice. Saccharin/sucralose also markedly decreased microbiota-derived AHR ligands and colonic AHR expression, which are closely associated with many metabolic syndromes. Metformin or fructo-oligosaccharide supplementation significantly restored A. muciniphila and AHR ligands in sucralose-consuming mice, consequently ameliorating NAFLD. IMPORTANCE Our findings indicate that the gut-liver signaling axis contributes to saccharin/sucralose consumption-induced NAFLD. Supplementation with metformin or fructo-oligosaccharide is a potential therapeutic strategy for NAFLD treatment. In addition, we also developed a new nutritional strategy by using a natural sweetener (neohesperidin dihydrochalcone [NHDC]) as a substitute for NAS and free sugars.
Collapse
|