1
|
Sun M, Liu Y, Tang S, Li Y, Zhang R, Mao L. Characterization of Intestinal Flora in Osteoporosis Patients Based on 16S rDNA Sequencing. Int J Gen Med 2024; 17:4311-4324. [PMID: 39346630 PMCID: PMC11430314 DOI: 10.2147/ijgm.s468654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Aim This study investigated differences in gut flora between osteoporosis (OP) patients and healthy individuals using 16S rDNA sequencing. The correlation between differential flora abundance and bone mineral density (BMD) was analyzed, and key flora and potential mechanisms associated with OP were explored. Methods Forty-three OP patients and twenty-four healthy volunteers were recruited. Gender, age, height, weight, and BMD data were collected. DNA from fecal samples was extracted for 16S rDNA sequencing. The Kruskal-Wallis test assessed differences in gut flora composition, while LEfSe analysis identified significant flora. Spearman correlation analysis examined the relationship between differential flora and BMD, and PICRUSt predicted pathways involved in OP. Results Significant differences in microbial composition were found between the two groups. Klebsiella, Escherichia-Shigella, and Akkermansia were biomarkers in OP patients, with Faecalibacterium in the healthy group. Akkermansia abundance negatively correlated with lumbar BMD, while Klebsiella and Escherichia-Shigella negatively correlated with femoral neck and hip BMD. Faecalibacterium showed a positive correlation with BMD. Functional predictions indicated differences in metabolism-related pathways between the groups. Conclusion Gut flora differed significantly between OP patients and healthy individuals. Akkermansia, Klebsiella, and Escherichia-Shigella could serve as diagnostic biomarkers for OP, highlighting the potential of gut flora in OP diagnosis and treatment.
Collapse
Affiliation(s)
- Mengyue Sun
- Department of Geratology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Shan Tang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Ridong Zhang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| |
Collapse
|
2
|
Beekman CN, Penumutchu S, Peterson R, Han G, Belenky M, Hasan MH, Belenky A, Beura LK, Belenky P. Spatial analysis of murine microbiota and bile acid metabolism during amoxicillin treatment. Cell Rep 2024; 43:114572. [PMID: 39116202 DOI: 10.1016/j.celrep.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Antibiotics cause collateral damage to resident microbes that is associated with various health risks. To date, studies have largely focused on the impacts of antibiotics on large intestinal and fecal microbiota. Here, we employ a gastrointestinal (GI) tract-wide integrated multiomic approach to show that amoxicillin (AMX) treatment reduces bacterial abundance, bile salt hydrolase activity, and unconjugated bile acids in the small intestine (SI). Losses of fatty acids (FAs) and increases in acylcarnitines in the large intestine (LI) correspond with spatially distinct expansions of Proteobacteria. Parasutterella excrementihominis engage in FA biosynthesis in the SI, while multiple Klebsiella species employ FA oxidation during expansion in the LI. We subsequently demonstrate that restoration of unconjugated bile acids can mitigate losses of commensals in the LI while also inhibiting the expansion of Proteobacteria during AMX treatment. These results suggest that the depletion of bile acids and lipids may contribute to AMX-induced dysbiosis in the lower GI tract.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachel Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Marina Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Alexei Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Lin H, Li X, Gao H, Hu W, Yu S, Li X, Lei L, Yang F. The role of gut microbiota in mediating increased toxicity of nano-sized polystyrene compared to micro-sized polystyrene in mice. CHEMOSPHERE 2024; 358:142275. [PMID: 38719125 DOI: 10.1016/j.chemosphere.2024.142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) are widespread environmental contaminants that have been detected in animals and humans. However, their toxic effects on terrestrial mammals and the underlying mechanisms are still not well understood. Herein, we explored the role of gut microbiota in mediating the toxicity of micro- and nano-sized polystyrene plastics (PS-MPs/PS-NPs) using an antibiotic depleted mice model. The results showed that PS-MPs and PS-NPs exposure disrupted the composition and structure of the gut microbiota. Specifically, these particles led to an increase in pathogenic Esherichia-shigella, while depleting probiotics such as Akkermansia and Lactobacillus. Comparatively, PS-NPs particles had more pronounced effect, leading to obviously shifted the colon transcriptional profiles characterized by inducing the enrichment of colon metabolism and immune-related pathways (i.e., upregulated in genes like udgh, ugt1a1, ugt1a6a, ugt1a7c and ugt2b34). Additionally, both PS-MPs and PS-NPs induced oxidative stress, gut-liver damage and systemic inflammation in mice. Mechanistically, we confirmed that PS particles disturbed gut microbiota, activating TLR2-My88-NF-κB pathway to trigger the release of inflammatory cytokine IL-1β and TNF-α. The damage and inflammation caused by both size of PS particles was alleviated when the gut microbiota was depleted. In conclusion, our findings deepen the understanding of the molecule mechanisms by which gut microbiota mediate the toxicity of PS particles, informing health implications of MPs pollution.
Collapse
Affiliation(s)
- Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Huihui Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Shenbo Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Tural Affairs, Tianjin 300191, China.
| |
Collapse
|
4
|
Chen W, Tan D, Yang Z, Tang J, Bai W, Tian L. Fermentation patterns of prebiotics fructooligosaccharides-SCFA esters inoculated with fecal microbiota from ulcerative colitis patients. Food Chem Toxicol 2023; 180:114009. [PMID: 37652126 DOI: 10.1016/j.fct.2023.114009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Ulcerative colitis (UC) is believed to arise from an imbalance between the intestinal microbiota and mucosal immunity, leading to excessive intestinal inflammation. Modulating the gut microbial community through dietary components presents a valuable strategy in aiding the treatment of UC. In this study, esters formed by binding of well-known prebiotics, fructooligosaccharides (FOS), with short chain fatty acids (SCFAs) via both enzymatic and chemical methods were evaluated for their impact on the gut microbiota of UC patients. An in vitro human colonic fermentation model was employed to monitor changes in total carbohydrates and SCFAs production during the fermentation of these esters by microbiota from patients with active and remission UC. The results showed that pronounced abundance of [Ruminococcus]_gnavus_group, Escherichia_Shigella, Lachnoclostridium, Klebsiella and other potential pathogens were detected in the fecal samples from UC patients, with a milder condition observed during the remission phase. Significant higher levels of corresponding SCFA were observed in the groups with addition of FOS-SCFAs esters during fermentation. Butyrylated fructooligosaccharides (B-FOS) and propionylated fructooligosaccharides (P-FOS) by enzymatic synthesis successfully promoted the proliferation of Bifidobacterium and inhibited Clostridium_sensu_stricto_1 and Klebsiella. Overall, B-FOS and P-FOS exhibit promising potential for restoring intestinal homeostasis and alleviating intestinal inflammation in individuals with UC.
Collapse
Affiliation(s)
- Weiwen Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Diming Tan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Zixin Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159:114300. [PMID: 36696803 DOI: 10.1016/j.biopha.2023.114300] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment. CONCLUSION FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.
Collapse
|
6
|
Cao Y, Liu H, Teng Y, Zhang S, Zhu B, Xia X. Gut microbiota mediates the anti-colitis effects of polysaccharides derived from Rhopilema esculentum Kishinouye in mice. Food Funct 2023; 14:1989-2007. [PMID: 36723100 DOI: 10.1039/d2fo02712g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ulcerative colitis (UC) is closely associated with the disturbance of gut microbiota. Crude polysaccharide-rich extract from Rhopilema esculentum Kishinouye has been proven to alleviate dextran sulfate sodium (DSS)-triggered colitis. However, it remains unclear whether the polysaccharides from Rhopilema esculentum (REP) in the extract play a predominant role in ameliorating colitis and whether gut microbiota mediates the beneficial effect of REP. Herein, we aimed to investigate the anti-colitis effects of REP and its mechanisms and to explore the role of REP-modulated gut microbiota in alleviating colitis in mice. Oral REP supplementation ameliorated the symptoms, inflammatory responses, colonic damage and gut microbial dysbiosis in colitic mice. REP significantly enriched SCFA-producing bacteria such as Roseburia and probiotics such as Bifidobacterium and restored the level of SCFAs especially butyric acid and propionic acid. Next, we found that transplantation of microbiota from REP-treated mice alleviated DSS-induced acute colitis, evidenced by improved gut barrier integrity and lower inflammation compared with mice receiving microbiota from control mice. Notably, dramatically enriched Bifidobacterium, Faecalibaculum and SCFA-producing bacteria including Butyricicoccus and Roseburia were found in mice receiving microbiota from the REP-treated donor mice. Lastly, the protective effect of REP supplementation on colitis was abolished in the antibiotic-treated mice. Overall, our findings suggest that REP could alleviate DSS-induced colitis in mice by regulating the imbalance of the microbiome. The polysaccharides of Rhopilema esculentum Kishinouye have the potential to be developed into promising prebiotic agents for rectifying dysbiosis of gut microbiota and preventing UC.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Huanhuan Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Yue Teng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Siteng Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. .,College of Food Science and Engineering, Northwest A&F University, Yangling, Shannxi 712100, China
| |
Collapse
|
7
|
Han B, Zhang X, Wang L, Yuan W. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4 + T Cells Expansion. Microbiol Spectr 2023; 11:e0310122. [PMID: 36788674 PMCID: PMC9927280 DOI: 10.1128/spectrum.03101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.
Collapse
Affiliation(s)
- Bin Han
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Protective effects of amoxicillin and probiotics on colon disorders in an experimental model of acute diverticulitis disease. Inflammopharmacology 2022; 30:2153-2165. [DOI: 10.1007/s10787-022-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
AbstractAcute diverticulitis disease is associated with inflammation and infection in the colon diverticula and may lead to severe morbidity. This study aimed to evaluate and compare the protective effects of amoxicillin antibiotic, either alone or in combination with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis), in a rat model of acute diverticulitis disease. Acute diverticulitis was induced, in albino rats, by adding 3% weight/volume of dextran sulfate sodium (DSS) to the rats’ drinking water; daily for 7 days, in addition to injecting lipopolysaccharide (LPS) enema (4 mg/kg). The impact of treatments was assessed by measuring the physiological and immunological parameters and evaluating colon macroscopic and microscopic lesions. The results showed that both treatments (especially probiotics with amoxicillin) alleviated the adverse effects of DSS and LPS. This was obvious through the modulation of the rats’ body weight and the colon weight-to-length ratio. Also, there was a significant (p < 0.001) decrease in the colon macroscopic lesion score. The pro-inflammatory cytokines [(TNF)-α, (IL)-1β, (IFN)-γ, and (IL)-18]; in the colon tissue; were significantly (p < 0.001) decreased. Also, both treatments significantly ameliorated the elevation of myeloperoxidase activity and C-reactive protein levels, in addition to improving the histopathological alterations in the colon tissue. In conclusion, amoxicillin and probiotics–amoxicillin were effective in preventing the development of experimentally induced acute diverticulitis, through their anti-inflammatory and immunomodulatory effects. Furthermore, this study has explored the role of probiotics in preventing DSS/LPS-induced acute diverticulitis, so it can be applied as a promising treatment option for acute diverticulitis disease.
Collapse
|
9
|
Xu HM, Xu J, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Nie YQ, Wang LS, Yao J, Li DF. Epigenetic DNA methylation of Zbtb7b regulates the population of double-positive CD4 +CD8 + T cells in ulcerative colitis. J Transl Med 2022; 20:289. [PMID: 35761286 PMCID: PMC9235105 DOI: 10.1186/s12967-022-03477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a heterogeneous disorder with complex pathogenesis. Therefore, in the present study, we aimed to assess genome-wide DNA methylation changes associated explicitly with the pathogenesis of UC. METHODS DNA methylation changes were identified by comparing UC tissues with healthy controls (HCs) from the GEO databases. The candidate genes were obtained and verified in clinical samples. Moreover, the underlying molecular mechanism related to Zbtb7b in the pathogenesis of UC was explored using the dextran sodium sulfate (DSS)-induced colitis model. RESULTS Bioinformatic analysis from GEO databases confirmed that Zbtb7b, known as Th-inducing POZ-Kruppel factor (ThPOK), was demethylated in UC tissues. Then, we demonstrated that Zbtb7b was in a hypo-methylation pattern through the DSS-induced colitis model (P = 0.0357), whereas the expression of Zbtb7b at the mRNA and protein levels was significantly up-regulated in the inflamed colonic tissues of UC patients (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0079, P < 0.0001) and DSS-induced colitis model (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0045, P = 0.0004). Moreover, the expression of Zbtb7b was positively associated with the degree of UC activity. Mechanically, over-expression of Zbtb7b might activate the maturation of CD4+T cells (FCM, IF: P = 0.0240, P = 0.0003) and repress the differentiation of double-positive CD4+CD8+T (DP CD4+CD8+T) cells (FCM, IF: P = 0.0247, P = 0.0118), contributing to the production of inflammatory cytokines, such as TNF-α (P = 0.0005, P = 0.0005), IL-17 (P = 0.0014, P = 0.0381), and IFN-γ (P = 0.0016, P = 0.0042), in the serum and colonic tissue of DSS-induced colitis model. CONCLUSIONS Epigenetic DNA hypo-methylation of Zbtb7b activated the maturation of CD4+T cells and repressed the differentiation of DP CD4+CD8+ T cells, resulting in the production of inflammatory cytokines and colonic inflammation in UC. Therefore, Zbtb7b might be a diagnostic and therapeutic biomarker for UC, and hypo-methylation might affect the biological function of Zbtb7b.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China
| | - Quan-Zhou Peng
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
10
|
Karaliute I, Ramonaite R, Bernatoniene J, Petrikaite V, Misiunas A, Denkovskiene E, Razanskiene A, Gleba Y, Kupcinskas J, Skieceviciene J. Reduction of gastrointestinal tract colonization by Klebsiella quasipneumoniae using antimicrobial protein KvarIa. Gut Pathog 2022; 14:17. [PMID: 35473598 PMCID: PMC9040220 DOI: 10.1186/s13099-022-00492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background Klebsiella quasipneumoniae is an opportunistic pathogen causing antibiotic-resistant infections of the gastrointestinal tract in many clinical cases. Orally delivered bioactive Klebsiella-specific antimicrobial proteins, klebicins, could be a promising method to eradicate Klebsiella species infecting the gut. Methods Mouse infection model was established based on infection of antibiotic-treated BALB/C mice with K. quasipneumoniae strain DSM28212. Four study groups were used (3 animals/group) to test the antimicrobial efficacy of orally delivered klebicin KvarIa: vehicle-only group (control, phosphate-buffered saline), and other three groups with bacteria, antibiotic therapy and 100 µg of uncoated Kvarla, 100 µg coated KvarIa, 1000 µg coated-KvarIa. Because of the general sensitivity of bacteriocins to gastroduodenal proteases, Kvarla doses were coated with Eudragit®, a GMP-certified formulation agent that releases the protein at certain pH. The coating treatment was selected based on measurements of mouse GI tract pH. The quantity of Klebsiella haemolysin gene (khe) in faecal samples of the study animals was used to quantify the presence of Klebsiella. Results GI colonization of K. quasipneumoniae was achieved only in the antibiotic-treated mice groups. Significant changes in khe marker quantification were found after the use of Eudragit® S100 formulated klebicin KvarIa, at both doses, with a significant reduction of K. quasipneumoniae colonization compared to the vehicle-only control group. Conclusions Mouse GI tract colonization with K. quasipneumoniae can be achieved if natural gut microbiota is suppressed by prior antibiotic treatment. The study demonstrates that GI infection caused by K. quasipneumoniae can be significantly reduced using Eudragit®-protected klebicin KvarIa.
Collapse
Affiliation(s)
- Indre Karaliute
- Institute for Digestive Research, Laboratory of Clinical and Molecular Gastroenterology, Lithuanian University of Health Sciences, Mickeviciaus st. 9, 44307, Kaunas, Lithuania
| | - Rima Ramonaite
- Institute for Digestive Research, Laboratory of Clinical and Molecular Gastroenterology, Lithuanian University of Health Sciences, Mickeviciaus st. 9, 44307, Kaunas, Lithuania
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, 50161, Kaunas, Lithuania
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50162, Kaunas, Lithuania
| | | | | | | | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research, Laboratory of Clinical and Molecular Gastroenterology, Lithuanian University of Health Sciences, Mickeviciaus st. 9, 44307, Kaunas, Lithuania.,Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Laboratory of Clinical and Molecular Gastroenterology, Lithuanian University of Health Sciences, Mickeviciaus st. 9, 44307, Kaunas, Lithuania.
| |
Collapse
|
11
|
Chen Y, Zhang F, Ye X, Hu JJ, Yang X, Yao L, Zhao BC, Deng F, Liu KX. Association Between Gut Dysbiosis and Sepsis-Induced Myocardial Dysfunction in Patients With Sepsis or Septic Shock. Front Cell Infect Microbiol 2022; 12:857035. [PMID: 35372123 PMCID: PMC8964439 DOI: 10.3389/fcimb.2022.857035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Sepsis-induced myocardial dysfunction (SIMD) seriously affects the evolution and prognosis of the sepsis patient. The gut microbiota has been confirmed to play an important role in sepsis or cardiovascular diseases, but the changes and roles of the gut microbiota in SIMD have not been reported yet. This study aims to assess the compositions of the gut microbiota in sepsis or septic patients with or without myocardial injury and to find the relationship between the gut microbiota and SIMD. Methods The prospective, observational, and 1:1 matched case–control study was conducted to observe gut microbiota profiles from patients with SIMD (n = 18) and matched non-SIMD (NSIMD) patients (n = 18) by 16S rRNA gene sequencing. Then the relationship between the relative abundance of microbial taxa and clinical indicators and clinical outcomes related to SIMD was analyzed. The receiver operating characteristic (ROC) curves were used to evaluate the predictive efficiencies of the varied gut microbiota to SIMD. Results SIMD was associated with poor outcomes in sepsis patients. The beta-diversity of the gut microbiota was significantly different between the SIMD patients and NSIMD subjects. The gut microbiota profiles in different levels significantly differed between the two groups. Additionally, the abundance of some microbes (Klebsiella variicola, Enterobacteriaceae, and Bacteroides vulgatus) was correlated with clinical indicators and clinical outcomes. Notably, ROC analysis indicated that K. variicola may be a potential biomarker of SIMD. Conclusion Our study indicates that SIMD patients may have a particular gut microbiota signature and that the gut microbiota might be a potential diagnostic marker for evaluating the risk of developing SIMD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Jinshan Branch of Fujian Provincial Hospital, Fuzhou, China.,Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ye
- Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Yao
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
13
|
Dong Y, Wang P, Jiao J, Yang X, Chen M, Li J. Antihypertensive Therapy by ACEI/ARB Is Associated With Intestinal Flora Alterations and Metabolomic Profiles in Hypertensive Patients. Front Cell Dev Biol 2022; 10:861829. [PMID: 35399511 PMCID: PMC8986158 DOI: 10.3389/fcell.2022.861829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ACEI/ARB) are the first-line drugs for the treatment of essential hypertension (HTN), one of the most important risk factors for cardiovascular and cerebrovascular diseases. Intestinal flora and microbial metabolites have been demonstrated to play important roles in blood pressure (BP) regulation and HTN development. However, it remains elusive that intestinal bacteria and metabolites are associated with the protective effects of ACEI/ARB anti-hypertensive drugs against HTN. In this study, we evaluated the effect of ACEI/ARB on gut microbiome and metabolites in patients suffering from HTN. We performed 16S rRNA sequencing and fecal metabolomic analysis of 36 HTN patients placed on ACEI/ARB therapy and 19 newly diagnosed HTN patients with no history of anti-hypertensive treatment. Patients under medication treatment were further classified into well-controlled (n = 24) and poor-controlled (n = 12) groups according to their BP levels. The ACEI/ARB improved the intestinal microbiome of the HTN patients by reducing potentially pathogenic bacteria such as Enterobacter and Klebsiella and increasing beneficial bacteria such as Odoribacter. Moreover, ACEI/ARB therapy was correlated with significant metabolomic changes in the HTN patients, including progressively enhanced inositol from poor-controlled to well-controlled groups. The profiles of gut bacteria were linked to the production of metabolites, and inositol was negatively correlated with Klebsiella, Enterobacter, and Proteobacteria. Our study suggests that ACEI/ARB modulates gut microbial composition and functions and alters microbial metabolites in HTN patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Li
- *Correspondence: Jing Li, ; Mulei Chen,
| |
Collapse
|
14
|
Xu HM, Huang HL, Liu YD, Zhu JQ, Zhou YL, Chen HT, Xu J, Zhao HL, Guo X, Shi W, Nie YQ, Zhou YJ. Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiol 2021; 21:279. [PMID: 34654370 PMCID: PMC8520286 DOI: 10.1186/s12866-021-02342-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dextran sulfate sodium (DSS) replicates ulcerative colitis (UC)-like colitis in murine models. However, the microbial characteristics of DSS-triggered colitis require further clarification. To analyze the changes in gut microbiota associated with DSS-induced acute and chronic colitis. METHODS Acute colitis was induced in mice by administering 3% DSS for 1 week in the drinking water, and chronic colitis was induced by supplementing drinking water with 2.5% DSS every other week for 5 weeks. Control groups received the same drinking water without DSS supplementation. The histopathological score and length of the colons, and disease activity index (DAI) were evaluated to confirm the presence of experimental colitis. Intestinal microbiota was profiled by 16S rDNA sequencing of cecal content. RESULTS Mice with both acute and chronic DSS-triggered colitis had significantly higher DAI and colon histopathological scores in contrast to the control groups (P < 0.0001, P < 0.0001), and the colon was remarkably shortened (P < 0.0001, P < 0.0001). The gut microbiota α-diversity was partly downregulated in both acute and chronic colitis groups in contrast to their respective control groups (Pielou index P = 0.0022, P = 0.0649; Shannon index P = 0.0022, P = 0.0931). The reduction in the Pielou and Shannon indices were more obvious in mice with acute colitis (P = 0.0022, P = 0.0043). The relative abundance of Bacteroides and Turicibacter was increased (all P < 0.05), while that of Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Rikenella, Alistipes, Alloprevotella, and Butyricicoccus was significantly decreased after acute DSS induction (all P < 0.05). The relative abundance of Bacteroides, Akkermansia, Helicobacter, Parabacteroides, Erysipelatoclostridium, Turicibacter and Romboutsia was also markedly increased (all P < 0.05), and that of Lachnospiraceae_NK4A136_group, Alistipes, Enterorhabdus, Prevotellaceae_UCG-001, Butyricicoccus, Ruminiclostridium_6, Muribaculum, Ruminococcaceae_NK4A214_group, Family_XIII_UCG-001 and Flavonifractor was significantly decreased after chronic DSS induction (all P < 0.05). CONCLUSION DSS-induced acute and chronic colitis demonstrated similar symptoms and histopathological changes. The changes in the gut microbiota of the acute colitis model were closer to that observed in UC. The acute colitis model had greater abundance of SCFAs-producing bacteria and lower α-diversity compared to the chronic colitis model.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Yan-Di Liu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Jia-Qi Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Hui-Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Wei Shi
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China.
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
15
|
Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Front Immunol 2021; 12:670286. [PMID: 34135898 PMCID: PMC8200823 DOI: 10.3389/fimmu.2021.670286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular immunotherapy with chimeric antigen receptor (CAR)-T cells (CARTs) represents a breakthrough in the treatment of hematologic malignancies. CARTs are genetically engineered hybrid receptors that combine antigen-specificity of monoclonal antibodies with T cell function to direct patient-derived T cells to kill malignant cells expressing the target (tumor) antigen. CARTs have been introduced into clinical medicine as CD19-targeted CARTs for refractory and relapsed B cell malignancies. Despite high initial response rates, current CART therapies are limited by a long-term loss of antitumor efficacy, the occurrence of toxicities, and the lack of biomarkers for predicting therapy and toxicity outcomes. In the past decade, the gut microbiome of mammals has been extensively studied and evidence is accumulating that human health, apart from our own genome, largely depends on microbes that are living in and on the human body. The microbiome encompasses more than 1000 bacterial species who collectively encode a metagenome that guides multifaceted, bidirectional host-microbiome interactions, primarily through the action of microbial metabolites. Increasing knowledge has been accumulated on the role of the gut microbiome in T cell-driven anticancer immunotherapy. It has been shown that antibiotics, dietary components and gut microbes reciprocally affect the efficacy and toxicity of allogeneic hematopoietic cell transplantation (allo HCT) as the prototype of T cell-based immunotherapy for hematologic malignancies, and that microbiome diversity metrics can predict clinical outcomes of allo HCTs. In this review, we will provide a comprehensive overview of the principles of CD19-CART immunotherapy and major aspects of the gut microbiome and its modulators that impact antitumor T cell transfer therapies. We will outline i) the extrinsic and intrinsic variables that can contribute to the complex interaction of the gut microbiome and host in CART immunotherapy, including ii) antibiotic administration affecting loss of colonization resistance, expansion of pathobionts and disturbed mucosal and immunological homeostasis, and ii) the role of specific gut commensals and their microbial virulence factors in host immunity and inflammation. Although the role of the gut microbiome in CART immunotherapy has only been marginally explored so far, this review may open a new chapter and views on putative connections and mechanisms.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Klinik fuer Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| |
Collapse
|
16
|
Xu HM, Huang HL, Xu J, He J, Zhao C, Peng Y, Zhao HL, Huang WQ, Cao CY, Zhou YJ, Zhou YL, Nie YQ. Cross-Talk Between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Front Microbiol 2021; 12:658292. [PMID: 33912150 PMCID: PMC8071877 DOI: 10.3389/fmicb.2021.658292] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography-mass spectrometry (LC-MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie He
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Qi Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuang-Yu Cao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Pace F, Watnick PI. The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends Microbiol 2020; 29:849-859. [PMID: 33257138 DOI: 10.1016/j.tim.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The role of sex steroids in mammalian maturation is well established. Recently, it has been increasingly appreciated that sex steroids also play an important role in the propensity of adults to develop a myriad of diseases. The exposure and responsiveness of tissues to sex steroids varies among individuals and between the sexes, and this has been correlated with gender-specific differences in the composition of the intestinal microbiota and in susceptibility to metabolic, autoimmune, and neoplastic diseases. Here we focus on recent studies that demonstrate an interplay between sex steroids, the intestinal immune response, and the intestinal microbiota. While correlations between biological sex, the intestinal innate immune response, intestinal inflammation, and intestinal microbiota have been established, many gaps in our knowledge prevent the emergence of an overarching model for this complex interaction. Such a model could aid in the development of prebiotic, probiotic, or synthetic therapeutics that decrease the risk of autoimmune, metabolic, neoplastic, and infectious diseases of the intestine and mitigate the particular health risks faced by individuals receiving sex steroid treatment.
Collapse
Affiliation(s)
- Fernanda Pace
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|