1
|
Zhang X, Li K, Wang P, Ma M, Tang T, Fu W, Wu H, Sun Y, Liu S, Liu D, Tan X. Harnessing Lecanicillium attenuatum: A novel strategy for combatting Nilaparvata lugens in rice fields. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106078. [PMID: 39277391 DOI: 10.1016/j.pestbp.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Nilaparvata lugens is a notorious rice pest causing significant annual yield and economic losses. The use of entomopathogenic fungi offers a promising and eco-friendly approach to sustainable pest management programs. However, research in this area is currently limited to a few specific types of insects and other arthropods. This study aimed to analyze the biocontrol potential of Lecanicillium attenuatum against N. lugens. Bioassays showed that L. attenuatum 3166 induced >80% mortality in N. lugens following 7 d exposure. Greenhouse and field investigations demonstrated that L. attenuatum 3166 application leads to a substantial reduction in N. lugens populations. Under greenhouse conditions, fluorescence was detected in GFP-labeled L. attenuatum 3166 hyphae enveloping the bodies of N. lugens. In field trials, L. attenuatum 3166 treatment exhibited a control efficacy of up to 68.94% at 14 d post-application, which was comparable to that of the commercial entomopathogenic fungal agent. Genomic sequencing of L. attenuatum 3166 revealed a comprehensive array of genes implicated in its infestation and lethality. Further, the transcriptome sequencing analysis highlighted the elevated expression levels of genes encoding proteases, chitinases, cutinases, and phospholipases. Our findings highlight the potential of L. attenuatum 3166 as an effective biological control agent against N. lugens.
Collapse
Affiliation(s)
- Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kui Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Pei Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingyong Ma
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tao Tang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wei Fu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongtao Wu
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Yan Sun
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Sizhen Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
2
|
Cao H, Gong H, Yu M, Pan X, Song T, Yu J, Qi Z, Du Y, Zhang R, Liu Y. The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13448. [PMID: 38502297 PMCID: PMC10950028 DOI: 10.1111/mpp.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hao Gong
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Mina Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiayan Pan
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianqiao Song
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhongqiang Qi
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan Du
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Rongsheng Zhang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
3
|
Kita K, Uchida M, Arie T, Teraoka T, Kaku H, Kanda Y, Mori M, Arazoe T, Kamakura T. The MAT1 locus is required for microconidia-mediated sexual fertility in the rice blast fungus. FEMS Microbiol Lett 2024; 371:fnae004. [PMID: 38305094 DOI: 10.1093/femsle/fnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
Rice blast fungus (Pyricularia oryzae) is a heterothallic ascomycete that causes the most destructive disease in cultivated rice worldwide. This fungus reproduces sexually and asexually, and its mating type is determined by the MAT1 locus, MAT1-1 or MAT1-2. Interestingly, most rice-infecting field isolates show a loss of female fertility, but the MAT1 locus is highly conserved in female-sterile isolates. In this study, we performed a functional analysis of MAT1 using the CRISPR/Cas9 system in female- and male-fertile isolates and female-sterile (male-fertile) isolates. Consistent with a previous report, MAT1 was essential for sexual reproduction but not for asexual reproduction. Meanwhile, deletion mutants of MAT1-1-1, MAT1-1-2, and MAT1-1-3 exhibited phenotypes different from those of other previously described isolates, suggesting that the function of MAT1-1 genes and/or their target genes in sexual reproduction differs among strains or isolates. The MAT1 genes, excluding MAT1-2-6, retained their functions even in female-sterile isolates, and deletion mutants lead to loss or reduction of male fertility. Although MAT1 deletion did not affect microconidia (spermatia) production, microconidia derived from the mutants could not induce perithecia formation. These results indicated that MAT1 is required for microconidia-mediated male fertility in addition to female fertility in P. oryzae .
Collapse
Affiliation(s)
- Kohtetsu Kita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Momotaka Uchida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 1830054, Japan
| | - Tohru Teraoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 1830054, Japan
| | - Hisatoshi Kaku
- JICA Tsukuba Center, Japan International Coorporation Agency, 3-6 Koyadai, Tsukuba, Ibaraki 3050074, Japan
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Yasukazu Kanda
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Masaki Mori
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| |
Collapse
|
4
|
Wilson AM, Coetzee MPA, Wingfield MJ, Wingfield BD. Needles in fungal haystacks: Discovery of a putative a-factor pheromone and a unique mating strategy in the Leotiomycetes. PLoS One 2023; 18:e0292619. [PMID: 37824487 PMCID: PMC10569646 DOI: 10.1371/journal.pone.0292619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The Leotiomycetes is a hugely diverse group of fungi, accommodating a wide variety of important plant and animal pathogens, ericoid mycorrhizal fungi, as well as producers of antibiotics. Despite their importance, the genetics of these fungi remain relatively understudied, particularly as they don't include model taxa. For example, sexual reproduction and the genetic mechanisms that underly this process are poorly understood in the Leotiomycetes. We exploited publicly available genomic and transcriptomic resources to identify genes of the mating-type locus and pheromone response pathway in an effort to characterize the mating strategies and behaviors of 124 Leotiomycete species. Our analyses identified a putative a-factor mating pheromone in these species. This significant finding represents the first identification of this gene in Pezizomycotina species outside of the Sordariomycetes. A unique mating strategy was also discovered in Lachnellula species that appear to have lost the need for the primary MAT1-1-1 protein. Ancestral state reconstruction enabled the identification of numerous transitions between homothallism and heterothallism in the Leotiomycetes and suggests a heterothallic ancestor for this group. This comprehensive catalog of mating-related genes from such a large group of fungi provides a rich resource from which in-depth, functional studies can be conducted in these economically and ecologically important species.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
van der Merwe NA, Phakalatsane T, Wilken PM. The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa. Genes (Basel) 2023; 14:1158. [PMID: 37372338 DOI: 10.3390/genes14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems.
Collapse
Affiliation(s)
- Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Tshiamo Phakalatsane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Wilson AM, Wingfield MJ, Wingfield BD. Truncation of MAT1-2-7 Deregulates Developmental Pathways Associated with Sexual Reproduction in Huntiella omanensis. Microbiol Spectr 2022; 10:e0142522. [PMID: 36154282 PMCID: PMC9602353 DOI: 10.1128/spectrum.01425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
The MAT1-1-1 and MAT1-2-1 genes are thought to be the master regulators of sexual development in most ascomycete fungi, and they are often essential for this process. In contrast, it has been suggested that the secondary mating-type genes act to calibrate the sexual cycle and can be dispensable. Recent functional characterization of genes such as Aspergillus fumigatus MAT1-2-4, Huntiella omanensis MAT1-2-7, and Botrytis cinerea MAT1-1-5 has, however, shown that these secondary genes may play more central roles in the sexual pathway and are essential for the production of mature fruiting structures. We used a comparative transcriptome sequencing (RNA-seq) experiment to show that the truncation of MAT1-2-7 in the wood inhabiting H. omanensis residing in the Ceratocystidaceae is associated with the differential expression of approximately 25% of all the genes present in the genome, including the transcriptional regulators ste12, wc-2, sub1, VeA, HMG8, and pro1. This suggests that MAT1-2-7 may act as a transcription factor and that ΔMAT1-2-7 mutant sterility is the result of layered deregulation of a variety of signaling and developmental pathways. This study is one of only a few that details the functional characterization of a secondary MAT gene in a nonmodel species. Given that this gene is present in other Ceratocystidaceae species and that there are diverse secondary MAT genes present throughout the Pezizomycotina, further investigation into this gene and others like it will provide a clearer understanding of sexual development in these eukaryotes. IMPORTANCE Secondary mating-type genes are being described almost as quickly as new fungal genomes are being sequenced. Understanding the functions of these genes has lagged behind their description, in part due to limited taxonomic distribution, lack of conserved functional domains, and difficulties with regard to genetic manipulation protocols. This study aimed to address this by investigating a novel mating-type gene, MAT1-2-7, for which two independent mutant strains were generated in a previous study. We characterized the molecular response to the truncation of this gene in a nonmodel, wood-infecting fungus and showed that it resulted in widespread differential expression throughout the transcriptome of this fungus. This suggests that secondary MAT genes may play a more important role than previously thought. This study also emphasizes the need for further research into the life cycles of nonmodel fungi, which often exhibit unique features that are very different from the systems understood from model species.
Collapse
Affiliation(s)
- A. M. Wilson
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - M. J. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - B. D. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Cao H, Gong H, Song T, Yu M, Pan X, Yu J, Qi Z, Du Y, Liu Y. The Adaptor Protein UvSte50 Governs Fungal Pathogenicity of Ustilaginoidea virens via the MAPK Signaling Pathway. J Fungi (Basel) 2022; 8:954. [PMID: 36135679 PMCID: PMC9503583 DOI: 10.3390/jof8090954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways regulate diverse cellular processes and have been partially characterized in the rice false smut fungus Ustilaginoidea virens. UvSte50 has been identified as a homolog to Saccharomyces cerevisiae Ste50, which is known to be an adaptor protein for MAPK cascades. ΔUvste50 was found to be defective in conidiation, sensitive to hyperosmotic and oxidative stresses, and non-pathogenic. The mycelial expansion of ΔUvste50 inside spikelets of rice terminated at stamen filaments, eventually resulting in a lack of formation of false smut balls on spikelets. We determined that UvSte50 directly interacts with both UvSte7 (MAPK kinase; MEK) and UvSte11 (MAPK kinase kinase; MEKK), where the Ras-association (RA) domain of UvSte50 is indispensable for its interaction with UvSte7. UvSte50 also interacts with UvHog1, a MAP kinase of the Hog1-MAPK pathway, which is known to have important roles in hyphal growth and stress responses in U. virens. In addition, affinity capture-mass spectrometry analysis and yeast two-hybrid assay were conducted, through which we identified the interactions of UvSte50 with UvRas2, UvAc1 (adenylate cyclase), and UvCap1 (cyclase-associated protein), key components of the Ras/cAMP signaling pathway in U. virens. Together, UvSte50 functions as an adaptor protein interacting with multiple components of the MAPK and Ras/cAMP signaling pathways, thus playing critical role in plant infection by U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hao Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Ma QZ, Wu HY, Xie SP, Zhao BS, Yin XM, Ding SL, Guo YS, Xu C, Zang R, Geng YH, Zhang M. BsTup1 is required for growth, conidiogenesis, stress response and pathogenicity of Bipolaris sorokiniana. Int J Biol Macromol 2022; 220:721-732. [PMID: 35981683 DOI: 10.1016/j.ijbiomac.2022.07.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tup1, a conserved transcriptional repressor, plays a critical role in the growth and development of fungi. Here, we identified a BsTup1 gene from the plant pathogenic fungus Bipolaris sorokiniana. The expression of BsTup1 showed a more than three-fold increase during the conidial stage compared with mycelium stage. Deletion of BsTup1 led to decrease hyphal growth and defect in conidia formation. A significant difference was detected in osmotic, oxidative, or cell wall stress responses between the WT and ΔBsTup1 strains. Pathogenicity assays showed that virulence of the ΔBsTup1 mutant was dramatically decreased on wheat and barely leaves. Moreover, it was observed that hyphal tips of the mutants could not form appressorium-like structures on the inner epidermis of onion and barley coleoptile. Yeast two-hybrid assays indicated that BsTup1 could interact with the BsSsn6. RNAseq revealed significant transcriptional changes in the ΔBsTup1 mutant with 2369 genes down-regulated and 2962 genes up-regulated. In these genes, we found that a subset of genes involved in fungal growth, sporulation, cell wall integrity, osmotic stress, oxidation stress, and pathogenicity, which were misregulated in the ΔBsTup1 mutant. These data revealed that BsTup1 has multiple functions in fungal growth, development, stress response and pathogenesis in B. sorokiniana.
Collapse
Affiliation(s)
- Qing-Zhou Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hai-Yan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou 450002, China
| | - Shun-Pei Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing-Sen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin-Ming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sheng-Li Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya-Shuang Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Xu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue-Hua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
9
|
Liu KX, Jia JQ, Chen N, Fu DD, Sun JY, Zhao JM, Li JY, Xiao SQ, Xue CS. Mating-Type Genes Control Sexual Reproduction, Conidial Germination, and Virulence in Cochliobolus lunatus. PHYTOPATHOLOGY 2022; 112:1055-1062. [PMID: 34738831 DOI: 10.1094/phyto-02-21-0063-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cochliobolus lunatus (anamorph: Curvularia lunata) is a major pathogenic fungus that causes the Curvularia leaf spot of maize. ClMAT1-1-1 and ClMAT1-2-1, the C. lunatus orthologs of C. heterostrophus ChMAT1-1-1 and ChMAT1-2-1, were investigated in the present study to uncover their functions in C. lunatus. Southern blot analysis showed that these mating-type MAT genes exist in the C. lunatus genome as a single copy. ClMAT1-1-1 and ClMAT1-2-1 were knocked out and complemented to generate ΔClmat1-1-1 and ΔClmat1-2-1 and ΔClmat1-1-1-C and ΔClmat1-2-1-C, respectively. The mutant strains had defective sexual development and failed to produce pseudothecia. There were no significant differences in growth rate or conidia production between the mutant and wild-type strains. However, the aerial mycelia and mycelial dry weight of ΔClmat1-1-1 and ΔClmat1-2-1 were lower than those of wild type, suggesting that MAT genes affect asexual development. ClMAT genes were involved in the responses to cell wall integrity and osmotic adaptation. ΔClmat1-2-1 had a lower conidial germination rate than the wild-type strain CX-3. The virulence of ΔClmat1-2-1 and ΔClmat1-1-1 was also reduced compared with the wild-type. Complementary strains could restore all the phenotypes.
Collapse
Affiliation(s)
- K X Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Q Jia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - N Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - D D Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Y Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J M Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Y Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - S Q Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - C S Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| |
Collapse
|
10
|
Pan X, Wang X, Yu J, Yu M, Cao H, Yong M, Song T, Qi Z, Du Y, Zhang R, Liu Y. Loop-Mediated Isothermal Amplification for Rapid Detection of Mating Types of Villosiclava virens. PLANT DISEASE 2022; 106:1128-1133. [PMID: 34739329 DOI: 10.1094/pdis-09-21-1943-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice false smut (RFS), caused by Villosiclava virens, is an important fungal disease in panicles of rice. V. virens is a heterothallic ascomycete controlled by two opposite idiomorphs, MAT1-1 and MAT1-2. Previous study showed that sexual reproduction of V. virens plays an important role in the epidemic of RFS. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay to detect the mating type of V. virens easily and rapidly by using specific primers based on the mating type genes MAT1-1-2 and MAT1-2-1, respectively. The LAMP assay used only a water/dry bath and could recognize the mating type of V. virens in just 45 min. The LAMP assay was so sensitive that it could detect small amounts of V. virens genomic DNA (as low as 2.0 pg of MAT1-1 and 200.0 pg of MAT1-2) and was 10 times more sensitive than PCR. In addition, we demonstrated the application of mating type via LAMP assay by assessing the genomic DNA of V. virens isolated from rice fields. The high efficiency and specificity of this LAMP assay suggest that it can be used as a rapid testing tool in mating type recognition of V. virens isolates in the field.
Collapse
Affiliation(s)
- Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiao Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
11
|
Fang A, Fu Z, Wang Z, Fu Y, Qin Y, Bai Z, Tan Z, Cai J, Yang Y, Yu Y, Sun W, Bi C. Genetic Diversity and Population Structure of the Rice False Smut Pathogen Ustilaginoidea virens in the Sichuan-Chongqing Region. PLANT DISEASE 2022; 106:93-100. [PMID: 34340563 DOI: 10.1094/pdis-04-21-0750-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from single nucleotide polymorphism-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in the Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. Groups I and VI were the largest, with 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. Analysis of molecular variance showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup genetic variation. The unweighted pair-group method with arithmetic means dendrogram and population structure revealed that the genetic composition of isolates collected from Santai, Nanchong, Yongchuan, and Wansheng dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.
Collapse
Affiliation(s)
- Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhuangyuan Fu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zexiong Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuhang Fu
- Sericulture Station of Chongqing, Chongqing 400020, China
| | - Yubao Qin
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhenxu Bai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ze Tan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Junsong Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Wilson AM, Wilken PM, Wingfield MJ, Wingfield BD. Genetic Networks That Govern Sexual Reproduction in the Pezizomycotina. Microbiol Mol Biol Rev 2021; 85:e0002021. [PMID: 34585983 PMCID: PMC8485983 DOI: 10.1128/mmbr.00020-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Andi M. Wilson
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - P. Markus Wilken
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Brenda D. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
13
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|