1
|
Yang KC, Tien WY, Cheng MF. Gut microbiota compositions in the carriers and noncarriers of third-generation cephalosporin-resistant Escherichia coli: A study among children in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:896-905. [PMID: 39261124 DOI: 10.1016/j.jmii.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Antimicrobial resistance, particularly in third-generation cephalosporin-resistant (3GC-R) Escherichia coli (E. coli), poses major global health challenges and has various clinical implications. Researchers have explored the relationship between extended-spectrum β-lactamase-producing E. coli and gut microbiota composition, which influence host health and disease susceptibility, in adults. In this study, we analyzed gut microbiota composition in Taiwanese children by the colonization status of 3GC-R E. coli. METHODS This cross-sectional study included children (age, 0-6 years) from Kaohsiung, Taiwan. Fecal samples were subjected to microbiological and gut microbiome (full-length 16S rRNA sequencing) analyses. The antimicrobial susceptibility of E. coli colonies isolated from the samples was tested. Furthermore, gut microbiota compositions and diversity indices were compared between 3GC-R E. coli carriers and noncarriers. RESULTS Approximately 46% of all children aged <6 years carried 3GC-R E. coli. The abundances of Drancourtella, Romboutsia, and Desulfovibrio (genus level) were higher in carriers than in noncarriers. By contrast, the abundances of Odoribacteraceae (family level) and Sutterella (genus level) were higher in noncarriers than in carriers. No significant between-group difference was observed in alpha diversity. However, a significant between-group difference was noted in beta diversity (unweighted UniFrac analysis). CONCLUSION This is the first study that investigated differences in the gut microbiota between healthy 3GC-R E. coli carriers and noncarriers in children, suggesting potential mechanisms involving altered utilization of short-chain fatty acids and elevated succinate levels contributing to increased colonization of 3GC-R E. coli. The other taxa identified in this study may contribute to colonization resistance in the pediatric population.
Collapse
Affiliation(s)
- Keng-Chin Yang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wan-Yu Tien
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Fang Cheng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan.
| |
Collapse
|
2
|
Waddepally VV, Rabye S, Bashir R, Kandi V. Intestinal Colonization of Multidrug-Resistant Organisms: Identification and Antibiotic Susceptibility Patterns of Bacteria Isolated From Healthy Human Fecal Specimens. Cureus 2024; 16:e75006. [PMID: 39749090 PMCID: PMC11694048 DOI: 10.7759/cureus.75006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Intestinal carriage of multidrug-resistant organisms (MDROs) in healthy populations could amplify resistant bacteria, which may increase the risk of infections by these bacteria in the community and in the hospital. This study investigated the prevalence of colonization of multidrug-resistant (MDR) bacteria in the intestines of healthy individuals in South India. Methods A prospective study was conducted for six months at a tertiary care teaching hospital. Two hundred and fifty-five fecal samples collected from healthy individuals were processed according to standard microbiological guidelines. The bacteria (n=291) isolated from the samples were identified and evaluated using phenotypic detection methods for the presence of extended-spectrum beta-lactamase (ESBL), AmpC β-lactamase, carbapenemase, methicillin resistance, and vancomycin resistance. Results The prevalence of intestinal carriage of MDR bacteria in healthy populations was 57.04% (166/291). Klebsiella (81.92%; 68/83) was the most resistant bacterial isolate among the tested organisms. ESBL, AmpC β-lactamase, carbapenemase, and methicillin resistance rates were 34.70% (101/291), 12.37% (36/291), 7.90% (23/291), and 2.06% (6/291), respectively. Both ESBL and AmpC β-lactamase co-producing strains were 3.78% (11/291). Vancomycin resistance was not revealed among the sampled isolates. Conclusion The study revealed a high carriage rate of MDROs colonized in the intestines of healthy adults in the community. These results highlight the importance of identifying resistant pathogens through regular surveillance thereby understanding their epidemiology.
Collapse
Affiliation(s)
| | - Sofiya Rabye
- Microbiology, Lakshmi Narain Medical College, Bhopal, India
| | - Ryhana Bashir
- Microbiology, Mansarovar Institute of Medical Sciences, Bhopal, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
3
|
Hu JC, Han M, Yan RY, Hua MM, Li J, Shen H, Cao XL. Mobile genetic elements contributing to horizontal gene transfer of blaNDM among Escherichia coli in the community setting. Microb Pathog 2024; 196:106996. [PMID: 39368562 DOI: 10.1016/j.micpath.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To investigate the distribution of carbapenem-resistant Enterobacterales (CRE) in the community and to describe the genomic characteristics. METHODS CRE screened from fecal samples in healthy people at the health examination center of a tertiary hospital in China underwent Whole genome sequencing (WGS) to analyze genotypic characteristics of CRE. The flanking DNA sequence of blaNDM-5 and mcr1.1 genes were analyzed by Gcluster software. RESULTS A total of 7187 fecal samples were screened, and CRE carriage was detected in 0.4 % of the sampled population. In total, 30 Escherichia coli, one Citrobacter freundii and one Klebsiella aerogene were screened. The 30 carbapenem-resistant Escherichia coli (CREC) isolates displayed slight resistance to amikacin (13.3 %) and aztreonam (20.0 %). All the CRE isolates contained blaNDM, and blaNDM-5 (84.4 %) was the most common one. B1 (n = 11) and A (n = 7) were predominant phylogroups. Furthermore, 34 distinct plasmid replicons, 67 different VFs, 22 distinct STs, 17 different FimH types, 26 O:H serotypes as well as 74 MGEs including 61 insertion sequences and 13 transposons were identified. The flanking DNA sequence analysis of blaNDM-5 and mcr1.1 genes indicates the key role of horizontal transfer of blaNDM-5 in the CRE development evidenced by diverse STs and phylogenetic tree. CONCLUSION E. coli was the most predominant CRE isolates in community setting, and blaNDM (blaNDM-5) was the main CHβL encoding genes. The high prevalence of ARGs was associated with high resistance to commonly used antimicrobials. Besides, the genetic diversity of these isolates suggested the key role of blaNDM horizontal transfer in the CRE development. Thus, active screening of blaNDM in communities is particularly important for the prevention and control of CRE.
Collapse
Affiliation(s)
- Jin-Cao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Nanjing Field Epidemiology Training Program, Nanjing Municipal Center for Disease Control and Prevention, China
| | - Ru-Yu Yan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, China
| | - Miao-Miao Hua
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Xiao-Li Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| |
Collapse
|
4
|
Abera D, Negash AA, Fentaw S, Mekonnen Y, Cataldo RJ, Wami AA, Mihret A, Abegaz WE. High prevalence of colonization with extended-spectrum β-lactamase-producing and multidrug-resistant Enterobacterales in the community in Addis Ababa Ethiopia: risk factors, carbapenem resistance, and molecular characterization. BMC Microbiol 2024; 24:402. [PMID: 39390409 PMCID: PMC11465526 DOI: 10.1186/s12866-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Globally, extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales are major causes of hospital-acquired infections and there are increasing concerns about their role in community-acquired infections. OBJECTIVE We aimed to investigate the prevalence of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and Carbapenemase-producing-Carbapenemresistant-Enterobacterales (CP-CRE) and associated factors in community settings in Gulele sub city, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted among 261 healthy individuals. Stool samples were collected and processed using standard microbiological methods. Antimicrobial susceptibility and phenotypic ESBL and carbapenemase tests were performed. Antibiotic resistance genes were detected by Polymerase Chain Reaction (PCR). RESULTS The colonization rate of ESBL-PE and CP-CRE were 31.4% (82/261, 95% CI: 25.91-37.48) and 0.8% (2/261, 95% CI: 0.13-3.1), respectively by phenotypic method. Molecular detection of genes for ESBL-PE was 27.9% (73/261, 95% CI:22.7-33.9), and for CP-CRE was 0.8% (2/261, 95% CI: 0.13-3.1). The most prevalent genes were blaTEM [76.7% (56/73)] and blaCTX-M [45.2% (33/73)]. Previous antibiotic use (AOR:2.04, 95%CI: 1.35-4.41, P:0.041) and age between 42 and 53 years old (AOR:3.00, 95%CI:1.12-7.48, P:0.019) were significantly associated with ESBL-PE colonization. CONCLUSION Intestinal colonization by ESBL-PE harboring the associated antibiotic resistance genes was substantially high but with low CP-CRE. Continued surveillance of community-level carriage of antimicrobial resistance Enterobacterales is warranted.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Mendes BM, Bortoli ÉS, Zaleski CB, Martinelli MPD, Pascoal VF, Oliveira SD. Detection of multidrug-resistant bacteria in the nasal cavities and evaluation of sinus disorders in patients undergoing Le Fort I osteotomy. BMC Oral Health 2024; 24:533. [PMID: 38704542 PMCID: PMC11069297 DOI: 10.1186/s12903-024-04295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Orthognathic surgery can lead to sinus alterations, including sinusitis, attributed to the exposure of maxillary sinuses during Le Fort I osteotomy. Furthermore, being a hospital-based procedure, there is potential risk of complications arising from bacteria prevalent in such environments. This study evaluated maxillary sinusitis occurrence and the presence of multidrug-resistant bacteria in the nasal cavity before and after orthognathic surgery. METHODS Ten patients with dentofacial deformities underwent Le Fort I osteotomy. Clinical evaluations using SNOT-22 questionnaire were performed, and nasal cavity samples were collected pre-surgery and 3-6 months post-surgery to quantify total mesophilic bacteria and detect Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae. Cone Beam Computed Tomography (CBCT) was performed pre- and post-operatively, and the results were evaluated using the Lund-Mackay system. This study was registered and approved by the Research Ethics Committee of PUCRS (No. 4.683.066). RESULTS The evaluation of SNOT-22 revealed that five patients showed an improvement in symptoms, while two remained in the same range of interpretation. One patient developed post-operative maxillary sinusitis, which was not detected at the time of evaluation by SNOT-22 or CBCT. CBCT showed a worsening sinus condition in three patients, two of whom had a significant increase in total bacteria count in their nasal cavities. The Brodsky scale was used to assess hypertrophy in palatine tonsils, where 60% of the subjects had grade 1 tonsils, 20% had grade 2 and 20% had grade 3. None of the patients had grade 4 tonsils, which would indicate more than 75% obstruction. Two patients harboured S. aureus and K. pneumoniae in their nasal cavities. Notably, K. pneumoniae, which was multidrug-resistant, was present in the nasal cavity of patients even before surgery, but this did not result in maxillary sinusitis, likely due to the patients' young and healthy condition. CONCLUSION There was an improvement in signs and symptoms of maxillary sinusitis and quality of life in most patients after orthognathic surgery. However, some patients may still harbour multidrug-resistant bacteria, even if they are asymptomatic. Therefore, a thorough pre-operative assessment is essential to avoid difficult-to-treat post-operative complications.
Collapse
Affiliation(s)
- Bárbara M Mendes
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Évelin S Bortoli
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Catherine B Zaleski
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Maila P D Martinelli
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Vanessa F Pascoal
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Sílvia D Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Chelaru EC, Muntean AA, Hogea MO, Muntean MM, Popa MI, Popa GL. The Importance of Carbapenemase-Producing Enterobacterales in African Countries: Evolution and Current Burden. Antibiotics (Basel) 2024; 13:295. [PMID: 38666971 PMCID: PMC11047529 DOI: 10.3390/antibiotics13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a worldwide healthcare problem. Multidrug-resistant organisms (MDROs) can spread quickly owing to their resistance mechanisms. Although colonized individuals are crucial for MDRO dissemination, colonizing microbes can lead to symptomatic infections in carriers. Carbapenemase-producing Enterobacterales (CPE) are among the most important MDROs involved in colonizations and infections with severe outcomes. This review aimed to track down the first reports of CPE in Africa, describe their dissemination throughout African countries and summarize the current status of CRE and CPE data, highlighting current knowledge and limitations of reported data. Two database queries were undertaken using Medical Subject Headings (MeSH), employing relevant keywords to identify articles that had as their topics beta-lactamases, carbapenemases and carbapenem resistance pertaining to Africa or African regions and countries. The first information on CPE could be traced back to the mid-2000s, but data for many African countries were established after 2015-2018. Information is presented chronologically for each country. Although no clear conclusions could be drawn for some countries, it was observed that CPE infections and colonizations are present in most African countries and that carbapenem-resistance levels are rising. The most common CPE involved are Klebsiella pneumoniae and Escherichia coli, and the most prevalent carbapenemases are NDM-type and OXA-48-type enzymes. Prophylactic measures, such as screening, are required to combat this phenomenon.
Collapse
Affiliation(s)
- Edgar-Costin Chelaru
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Andrei-Alexandru Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Mihai-Octav Hogea
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mădălina-Maria Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mircea-Ioan Popa
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gabriela-Loredana Popa
- Department of Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Parasitic Disease Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
7
|
Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. Gut Microbes 2024; 16:2423026. [PMID: 39499189 PMCID: PMC11540080 DOI: 10.1080/19490976.2024.2423026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Faecal/intestinal microbiota transplant (FMT/IMT) is an efficacious treatment option for recurrent Clostridioides difficile infection, which has prompted substantial interest in FMT's potential role in the management of a much broader range of diseases associated with the gut microbiome. Despite its promise, the success rates of FMT in these other settings have been variable. This review critically evaluates the current evidence on the impact of clinical, biological, and procedural factors upon the therapeutic efficacy of FMT, and identifies areas that remain nebulous. Due to some of these factors, the optimal therapeutic approach remains unclear; for example, the preferred timing of FMT administration in a heavily antibiotic-exposed hematopoietic cell transplant recipient is not standardized, with arguments that can be made in alternate directions. We explore how these factors may impact upon more informed selection of donors, potential matching of donors to recipients, and aspects of clinical care of FMT recipients. This includes consideration of how gut microbiome composition and functionality may strategically inform donor selection criteria. Furthermore, we review how the most productive advances within the FMT space are those where clinical and translational outcomes are assessed together, and where this model has been used productively in recent years to better understand the contribution of the gut microbiome to human disease, and start the process toward development of more targeted microbiome therapeutics.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Despoina Chrysostomou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Madhumitha Pandiaraja
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
Lee I, Jo JW, Woo HJ, Suk KT, Lee SS, Kim BS. Proton pump inhibitors increase the risk of carbapenem-resistant Enterobacteriaceae colonization by facilitating the transfer of antibiotic resistance genes among bacteria in the gut microbiome. Gut Microbes 2024; 16:2341635. [PMID: 38634770 PMCID: PMC11028007 DOI: 10.1080/19490976.2024.2341635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.
Collapse
Affiliation(s)
- Imchang Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Heung-Jeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seung Soon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
9
|
Chuang C, Lee KC, Wang YP, Lee PC, Chang TE, Huang YH, Lin YT, Hou MC. High carriage rate of extended-spectrum β-lactamase Enterobacterales and diarrheagenic Escherichia coli in healthy donor screening for fecal microbiota transplantation. Eur J Clin Microbiol Infect Dis 2023; 42:1103-1113. [PMID: 37474764 DOI: 10.1007/s10096-023-04644-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The safety of fecal microbiota transplantation (FMT) has been highlighted by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli bacteremia transmitted from donors and acquisition of diarrheagenic E. coli (Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC)) via FMT. The use of donor screening criteria to lower the risk of pathogen transmission via FMT is essential. This study aimed to demonstrate the outcomes of our strict donor screening program. This study was conducted at our FMT center between January 2019 and June 2022. Our donor screening program included an initial questionnaire and subsequent blood and stool testing. We further used selective culture for third-generation cephalosporin-resistant (3GCR) Enterobacterales and multiplex PCR to detect diarrheagenic E. coli in stools. The resistance mechanisms and sequence type of 3GCR Enterobacterales were determined. A total of 742 individuals were assessed, and 583 participants (78.6%) were excluded after questionnaire. Of the remaining 159 participants undergoing stool and blood tests, 37 participants were finally qualified (5.0%, 37/742). A high fecal carriage rate of ESBL-producing Enterobacterales (35.2%, 56/159), including E. coli (n=53) and Klebsiella pneumoniae (n=5), and diarrheagenic E. coli (31.4%, 50/159), including EPEC (n=41), enteroaggregative E. coli (n=11), enterotoxigenic E. coli (n=4), and STEC (n=1), was noted. CTX-M-79 and CTX-M-15 were dominant in E. coli and K. pneumoniae, respectively. The sequence types of the ESBL-producing strains were diverse. The screening for 3GCR Enterobacterales and diarrheagenic E. coli in stool is necessary. Our findings also support the effectiveness of multiplex PCR panels in FMT donor screening programs.
Collapse
Affiliation(s)
- Chien Chuang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuei-Chuan Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Po Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Chang Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-En Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ming-Chih Hou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Pongchaikul P, Romero R, Mongkolsuk P, Vivithanaporn P, Wongsurawat T, Jenjaroenpun P, Nitayanon P, Thaipisuttikul I, Kamlungkuea T, Singsaneh A, Santanirand P, Chaemsaithong P. Genomic analysis of Enterococcus faecium strain RAOG174 associated with acute chorioamnionitis carried antibiotic resistance gene: is it time for precise microbiological identification for appropriate antibiotic use? BMC Genomics 2023; 24:405. [PMID: 37468842 DOI: 10.1186/s12864-023-09511-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Roberto Romero
- Pregnancy Research Branch (formerly The Perinatology Research Branch, NICHD/NIH/DHHS, in Detroit, Michigan, USA, has been renamed as the Pregnancy Research Branch, NICHD/NIH/DHHS), Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Paninee Mongkolsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Perapon Nitayanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Threebhorn Kamlungkuea
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arunee Singsaneh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Chowdhury F, Mah-E-Muneer S, Bollinger S, Sharma A, Ahmed D, Hossain K, Hassan MZ, Rahman M, Vanderende D, Sen D, Mozumder P, Khan AA, Sarker M, Smith RM, Styczynski A, Luvsansharav UO. Prevalence of Colonization With Antibiotic-Resistant Organisms in Hospitalized and Community Individuals in Bangladesh, a Phenotypic Analysis: Findings From the Antibiotic Resistance in Communities and Hospitals (ARCH) Study. Clin Infect Dis 2023; 77:S118-S124. [PMID: 37406054 DOI: 10.1093/cid/ciad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Low- and middle-income countries bear a disproportionate burden of antimicrobial resistance (AMR) but often lack adequate surveillance to inform mitigation efforts. Colonization can be a useful metric to understand AMR burden. We assessed the colonization prevalence of Enterobacterales with resistance to extended-spectrum cephalosporins, carbapenems, colistin, and methicillin-resistant Staphylococcus aureus among hospital and community dwellers. METHODS Between April and October 2019, we conducted a period prevalence study in Dhaka, Bangladesh. We collected stool and nasal specimens from adults in 3 hospitals and from community dwellers within the hospitals' catchment area. Specimens were plated on selective agar plates. Isolates underwent identification and antibiotic susceptibility testing using Vitek 2. We performed descriptive analysis and determined population prevalence estimates accounting for clustering at the community level. RESULTS The majority of both community and hospital participants were colonized with Enterobacterales with resistance to extended-spectrum cephalosporins (78%; 95% confidence interval [95% CI], 73-83; and 82%; 95% CI, 79-85, respectively). Thirty-seven percent (95% CI, 34-41) of hospitalized patients were colonized with carbapenems compared with 9% (95% CI, 6-13) of community individuals. Colistin colonization prevalence was 11% (95% CI, 8-14) in the community versus 7% (95% CI, 6-10) in the hospital. Methicillin-resistant Staphylococcus aureus colonization was similar in both community and hospital participants (22%; 95% CI, 19-26 vs 21% (95% CI, 18-24). CONCLUSIONS The high burden of AMR colonization observed among hospital and community participants may increase the risk for developing AMR infections and facilitating spread of AMR in both the community and hospital.
Collapse
Affiliation(s)
- Fahmida Chowdhury
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Syeda Mah-E-Muneer
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Susan Bollinger
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Aditya Sharma
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Kamal Hossain
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md Zakiul Hassan
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mahmudur Rahman
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Daniel Vanderende
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Debashis Sen
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Palash Mozumder
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | | | | | - Rachel M Smith
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Ashley Styczynski
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | |
Collapse
|
12
|
Roson-Calero N, Ballesté-Delpierre C, Fernández J, Vila J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics (Basel) 2023; 12:1074. [PMID: 37370393 DOI: 10.3390/antibiotics12061074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decades, we have witnessed a steady increase in infections caused by multidrug-resistant (MDR) bacteria. These infections are associated with higher morbidity and mortality. Several interventions should be taken to reduce the emergence and spread of MDR bacteria. The eradication of resistant pathogens colonizing specific human body sites that would likely cause further infection in other sites is one of the most conventional strategies. The objective of this narrative mini-review is to compile and discuss different strategies for the eradication of MDR bacteria from gut microbiota. Here, we analyse the prevalence of MDR bacteria in the community and the hospital and the clinical impact of gut microbiota colonisation with MDR bacteria. Then, several strategies to eliminate MDR bacteria from gut microbiota are described and include: (i) selective decontamination of the digestive tract (SDD) using a cocktail of antibiotics; (ii) the use of pre and probiotics; (iii) fecal microbiota transplantation; (iv) the use of specific phages; (v) engineered CRISPR-Cas Systems. This review intends to provide a state-of-the-art of the most relevant strategies to eradicate MDR bacteria from gut microbiota currently being investigated.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, 08036 Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-Clif), 08021 Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
13
|
Adhikari S, Sharma Regmi R, Sapkota S, Khadka S, Patel N, Gurung S, Thapa D, Bhattarai P, Sapkota P, Devkota R, Ghimire A, Rijal KR. Multidrug resistance, biofilm formation and detection of bla CTX-M and bla VIM genes in E. coli and Salmonella isolates from chutney served at the street-food stalls of Bharatpur, Nepal. Heliyon 2023; 9:e15739. [PMID: 37144188 PMCID: PMC10151422 DOI: 10.1016/j.heliyon.2023.e15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Antimicrobial resistance (AMR) amid the bacteria found in ready-to-eat foods is a grave concern today warranting an immediate intervention. The current study was undertaken to explore the status of AMR in E. coli and Salmonella species in ready-to-eat Chutney samples (n = 150) served at the street food stalls in Bharatpur, Nepal, with a major focus on detecting extended-spectrum β-lactamase (ESBL) and metallo β-lactamase (MBL) genes along with biofilm formation. Average viable counts, coliform counts, and Salmonella Shigella counts were 1.33 × 106±141481.4, 1.83 × 105±91303.6, and 1.24 × 105±63933.19 respectively. Out of 150 samples, 41 (27.33%) harbored E. coli, of which 7 were E. coli O157:H7; whereas Salmonella spp. were found in 31 (20.67%) samples. Bacterial contamination of Chutney by E. coli and Salmonella and ESBL-production were both found significantly affected by different sources of water used, personal hygiene and literacy rate of the vendors as well as by the type of cleaning materials used to wash knives and chopping boards (P < 0.05). Antibiotic susceptibility testing revealed that imipenem was the most effective drug against both types of bacterial isolates. Additionally, 14 (45.16%) Salmonella isolates and 27 (65.85%) E. coli isolates were found to be multi-drug resistant (MDR). Total ESBL (bla CTX-M) producers reported were 4 (12.90%) Salmonella spp. and 9 (21.95%) E. coli. Only 1 (3.23%) Salmonella spp. and 2 (4.88%) E. coli isolates were bla VIM gene carriers. Dissemination of knowledge of personal hygiene amongst the street vendors and consumer awareness regarding ready-to-eat foods are crucial factors that can be suggested to curtail the emergence and transmission of food-borne pathogens.
Collapse
Affiliation(s)
- Sanjib Adhikari
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ramesh Sharma Regmi
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sanjeep Sapkota
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
- Corresponding author.
| | - Sujan Khadka
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Nitendra Patel
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Sandhya Gurung
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Divya Thapa
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Prabina Bhattarai
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Prakriti Sapkota
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Ranjana Devkota
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Albert Ghimire
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44200, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
14
|
Chao CM, Lai CC, Yu WL. Epidemiology of extended-spectrum β-lactamases in Enterobacterales in Taiwan for over two decades. Front Microbiol 2023; 13:1060050. [PMID: 36762100 PMCID: PMC9905819 DOI: 10.3389/fmicb.2022.1060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
The emergence of antimicrobial resistance among microorganisms is a serious public health concern, and extended-spectrum β-lactamases (ESBL)-producing Enterobacterales is one of the major concerns among antibiotic-resistant bacteria. Although the prevalence of ESBL in Enterobacterales has been increasing with time, the prevalence of ESBL could differ according to the species, hospital allocation, sources of infections, nosocomial or community acquisitions, and geographic regions. Therefore, we conducted a comprehensive review of the epidemiology of ESBL-producing Enterobacterales in Taiwan. Overall, the rates of ESBL producers are higher in northern regions than in other parts of Taiwan. In addition, the genotypes of ESBL vary according to different Enterobacterales. SHV-type ESBLs (SHV-5 and SHV-12) were the major types of Enterobacter cloacae complex, but Serratia marcescens, Proteus mirabilis, Escherichia coli, and Klebsiella pneumoniae were more likely to possess CTX-M-type ESBLs (CTX-M-3 and CTX-M-14). Moreover, a clonal sequence type of O25b-ST131 has been emerging among urinary or bloodstream E. coli isolates in the community in Taiwan, and this clone was potentially associated with virulence, ESBL (CTX-M-15) production, ciprofloxacin resistance, and mortality. Finally, the evolution of the genetic traits of the ESBL-producing Enterobacterales isolates helps us confirm the interhospital and intrahospital clonal dissemination in several regions of Taiwan. In conclusion, continuous surveillance in the investigation of ESBL production among Enterobacterales is needed to establish its long-term epidemiology.
Collapse
Affiliation(s)
- Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Taiwan,Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan,Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Wen-Liang Yu,
| |
Collapse
|
15
|
Pilmis B, Weiss E, Scemla A, Le Monnier A, Grossi PA, Slavin MA, Van Delden C, Lortholary O, Paugam-Burtz C, Zahar JR. Multidrug-resistant Enterobacterales infections in abdominal solid organ transplantation. Clin Microbiol Infect 2023; 29:38-43. [PMID: 35716912 DOI: 10.1016/j.cmi.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Transplant recipients are highly susceptible to multidrug-resistant (MDR) related infections. The lack of early appropriate antimicrobial treatment may contribute to the high mortality due to MDR-related infections in transplant recipients especially in case of metallo-β-lactamases. OBJECTIVES In this review, we present the current state of knowledge concerning multidrug-resistant Gram negative bacilli's risk management in the care of solid-organ transplant recipients and suggest control strategies. SOURCES We searched for studies treating MDR g-negative bacilli related infections in the renal and hepatic transplant patient population. We included randomized and observational studies. CONTENT Solid-organ transplant is the best therapeutic option for patients diagnosed with end-stage organ disease. While the incidence of opportunistic infections is decreasing due to better prevention, the burden of "classical" infections related to MDR bacteria especially related to Gram-negative bacteria is constantly increasing. Over the last two decades, various MDR pathogens have emerged as a relevant cause of infection in this specific population associated with significant mortality. Several factors related to the management of transplant donor candidates and recipients increase the risk of MDR infections in transplant recipients. The awareness of this high susceptibility of transplant recipients to MDR-related infections challenges the choice of empirical therapy, while its appropriateness can only be validated a posteriori. Indeed, the lack of early appropriate antimicrobial treatment may contribute to the high mortality due to MDR-related infections in transplant recipients especially in case of metallo-β-lactamases. IMPLICATIONS Multidrug-resistant Gram-negative bacteria are associated with high morbidity and mortality in solid organ transplant recipients. It seems important to identify patients at risk of colonization/MDR bacteria to evaluate strategies to limit the risk of secondary infections and to minimize the inappropriate use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Benoît Pilmis
- Centre d'infectiologie Necker-Pasteur, Hôpital Necker Enfants-Malades, Centre médical de l'institut Pasteur, Université de Paris, Paris, France; Équipe mobile de microbiologie Clinique, Groupe Hospitalier Paris Saint Joseph, Paris, France; Institut Micalis, UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Chatenay-Malabry, France.
| | - Emmanuel Weiss
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP.Nord, Université de Paris, Paris, France; Inserm UMR S1149, Centre de recherche sur l'inflammation
| | - Anne Scemla
- Departement of Nephrology-Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Paris, France
| | - Alban Le Monnier
- Institut Micalis, UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Chatenay-Malabry, France; Service de Microbiologie Clinique et Plateforme de dosage des anti-infectieux, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Paolo Antonio Grossi
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Monica A Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Olivier Lortholary
- Centre d'infectiologie Necker-Pasteur, Hôpital Necker Enfants-Malades, Centre médical de l'institut Pasteur, Université de Paris, Paris, France
| | - Catherine Paugam-Burtz
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP.Nord, Université de Paris, Paris, France; Inserm UMR S1149, Centre de recherche sur l'inflammation
| | - Jean-Ralph Zahar
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, France; Service de Microbiologie Clinique et Unité de Contrôle et de Prévention du risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, Bobigny, France
| |
Collapse
|
16
|
Aghamohammad S, Rohani M. Antibiotic resistance and the alternatives to conventional antibiotics: The role of probiotics and microbiota in combating antimicrobial resistance. Microbiol Res 2022; 267:127275. [PMID: 36493661 DOI: 10.1016/j.micres.2022.127275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
From the introduction of the first antibiotic to the present day, the emergence of antibiotic resistance has been a difficult problem for medicine. Regardless of the type of antibiotic resistance, the presence of resistant isolates in clinical and even asymptomatic fecal carriers becomes a difficult public health problem. Therefore, the use of new antimicrobial combination therapies or alternative agents with antimicrobial activity that have the least side effects, including plant-, metal-, and nanoparticle-based agents, could be crucial and useful. Recently, the use of probiotics as a hypothetical candidate to combat infectious disease control and antimicrobial resistance has received notable attention. Considering the alteration of the microbiota in fecal carriers and also in patients with resistant bacterial isolates, the use of probiotics could have an appropriate effect on the balance of the microbial population. In this review, we have attempted to discuss the history of antimicrobial resistance and provide an overview of microbiota change and the use of probiotics as new agents with antimicrobial activity associated with the emergence of resistant isolates.
Collapse
Affiliation(s)
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
18
|
Isles NS, Mu A, Kwong JC, Howden BP, Stinear TP. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends Microbiol 2022; 30:853-865. [DOI: 10.1016/j.tim.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
19
|
Bezabih YM, Bezabih A, Dion M, Batard E, Teka S, Obole A, Dessalegn N, Enyew A, Roujeinikova A, Alamneh E, Mirkazemi C, Peterson GM, Bezabhe WM. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac048. [PMID: 35668909 PMCID: PMC9160884 DOI: 10.1093/jacamr/dlac048] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives The widespread intestinal carriage of ESBL-producing Escherichia coli (ESBL E. coli) among both patients and healthy individuals is alarming. However, the global prevalence and trend of this MDR bacterium in healthcare settings remains undetermined. To address this knowledge gap, we performed a comparative meta-analysis of the prevalence in community and healthcare settings. Methods Our systematic review included 133 articles published between 1 January 2000 and 22 April 2021 and indexed in PubMed, EMBASE or Google Scholar. A random-effects meta-analysis was performed to obtain the global pooled prevalence (community and healthcare settings). Subgroup meta-analyses were performed by grouping studies using the WHO regions and 5 year intervals of the study period. Results We found that 21.1% (95% CI, 19.1%–23.2%) of inpatients in healthcare settings and 17.6% (95% CI, 15.3%–19.8%) of healthy individuals worldwide carried ESBL E. coli in their intestine. The global carriage rate in healthcare settings increased 3-fold from 7% (95% CI, 3.7%–10.3%) in 2001–05 to 25.7% (95% CI, 19.5%–32.0%) in 2016–20, whereas in community settings it increased 10-fold from 2.6% (95% CI, 1.2%–4.0%) to 26.4% (95% CI, 17.0%–35.9%) over the same period. Conclusions The global and regional human intestinal ESBL E. coli carriage is increasing in both community and healthcare settings. Carriage rates were generally higher in healthcare than in community settings. Key relevant health organizations should perform surveillance and implement preventive measures to address the spread of ESBL E. coli in both settings.
Collapse
Affiliation(s)
- Yihienew M. Bezabih
- Arsi University College of Health Sciences, University Road, Asella, ET 0193, Ethiopia
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
- Corresponding author. E-mail: ; @myihienew
| | | | - Michel Dion
- University of Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances Laboratory, Nantes, France
| | - Eric Batard
- University of Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances Laboratory, Nantes, France
- CHU Nantes, Emergency Department, Nantes, France
| | - Samson Teka
- Marshall University School of Medicine, Huntington, WV, USA
| | - Abiy Obole
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
| | - Noah Dessalegn
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
| | | | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Endalkachew Alamneh
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Corinne Mirkazemi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
20
|
Detection of Multidrug-Resistant Enterobacterales-From ESBLs to Carbapenemases. Antibiotics (Basel) 2021; 10:antibiotics10091140. [PMID: 34572722 PMCID: PMC8465816 DOI: 10.3390/antibiotics10091140] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Multidrug-resistant Enterobacterales (MDRE) are an emerging threat to global health, leading to rising health care costs, morbidity and mortality. Multidrug-resistance is commonly caused by different β-lactamases (e.g., ESBLs and carbapenemases), sometimes in combination with other resistance mechanisms (e.g., porin loss, efflux). The continuous spread of MDRE among patients in hospital settings and the healthy population require adjustments in healthcare management and routine diagnostics. Rapid and reliable detection of MDRE infections as well as gastrointestinal colonization is key to guide therapy and infection control measures. However, proper implementation of these strategies requires diagnostic methods with short time-to-result, high sensitivity and specificity. Therefore, research on new techniques and improvement of already established protocols is inevitable. In this review, current methods for detection of MDRE are summarized with focus on culture based and molecular techniques, which are useful for the clinical microbiology laboratory.
Collapse
|
21
|
Chen PY, Chuang YC, Wang JT, Sheng WH, Chen YC, Chang SC. Sequence type 8 as an emerging clone of methicillin-resistant Staphylococcus aureus causing bloodstream infections in Taiwan. Emerg Microbes Infect 2021; 10:1908-1918. [PMID: 34520335 PMCID: PMC8475108 DOI: 10.1080/22221751.2021.1981158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sequence type (ST) 8 has not been a common methicillin-resistant Staphylococcus aureus (MRSA) clone in Asia until recently. We aimed to determine the clinical significance and microbiological characteristics of MRSA bacteraemia (MRSAB) caused by ST8 and other endemic clones. A total of 281 non-duplicated MRSAB were identified in a medical centre between 2016 and 2018. Sequencing of target genes was performed to determine ST and to confirm ST8 belonging to USA300. Antimicrobial susceptibility testing was performing by using Sensititre standard panel. In total, ST8 accounted for 18.5% of MRSAB ranking after ST239 (31.0%) and ST59 (23.5%). However, it increased to become the most prevalent clone finally. All ST8 isolates belonged to spa clonal complex008, and carried SCCmec IV/IVa, PVL and ACME genes, indicating USA300. ST8/USA300 isolates were highly susceptible to non-β-lactams antibiotics, except fluoroquinolone and erythromycin. ST8/USA300 MRSAB is commonly developed in community settings with either healthcare risks or not (71.2%). Compared to other STs MRSAB, ST8/USA300 MRSAB patients had more diabetes mellitus (50.0%), more admitted from long-term care facility residents (25.0%), had more skin ad soft tissue infection as primary focus (25.0%), and had fewer vascular devices (26.9%) at MRSAB onset. On multivariable analysis, isolates with vancomycin MIC were significantly associated with mortality in the dose-response relationship, rather than STs. This report depicts the clinical features of ST8/USA300 MRSAB and clonal shift from prior endemic clones to ST8/USA300. Our data strongly support long-term surveillance to ascertain whether ST8/USA300 will successfully disseminate and demonstrate its pathogenicity on clinical outcomes.
Collapse
Affiliation(s)
- Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Colonization Dynamics of Multidrug-Resistant Klebsiella pneumoniae Are Dictated by Microbiota-Cluster Group Behavior over Individual Antibiotic Susceptibility: A Metataxonomic Analysis. Antibiotics (Basel) 2021; 10:antibiotics10030268. [PMID: 33800048 PMCID: PMC8001907 DOI: 10.3390/antibiotics10030268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal carriage of multidrug-resistant (MDR) bacteria is one of the main risk factors for developing serious, difficult-to-treat infections. Given that there is currently no all-round solution to eliminate colonization with MDR bacteria, it is particularly important to understand the dynamic process of colonization to aid the development of novel decolonization strategies. The aim of our present study was to perform metataxonomic analyses of gut microbiota dynamics during colonization with an extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Klebsiella pneumoniae (ECKP) strain in mice; additionally, to ascertain the effects of antibiotic administration (ampicillin, ceftazidime, and ciprofloxacin) on the establishment and elimination of ECKP intestinal colonization. We have found that the phyla Bacteroidetes and Firmicutes were most dominant in all of the treatment groups; however, Bacteroidetes was more common in the groups treated with antibiotics compared to the control group. Significant differences were observed among the different antibiotic-treated groups in beta but not alpha diversity, implying that the difference is the relative abundance of some bacterial community members. Bacteria from the Lachnospiraceae family (including Agathobacter, Anaerostipes, Lachnoclostridium 11308, Lachnospiraceae UCG-004, Lachnospiraceae NK3A20 group 11318, Lachnospiraceae NK4A136 group 11319, Roseburia, and Tyzzerella) showed an inverse relationship with the carriage rate of the ECKP strain, whereas members of Enterobacteriaceae and the ECKP strain have shown a correlational relationship. Our results suggest that the composition of the microbial community plays a primary role in the MDR-colonization rate, whereas the antibiotic susceptibility of individual MDR strains affects this process to a lesser extent. Distinct bacterial families have associated into microbial clusters, collecting taxonomically close species to produce survival benefits in the gut. These associations do not develop at random, as they may be attributed to the presence of specific metabolomic networks. A new concept should be introduced in designing future endeavors for MDR decolonization, supplemented by knowledge of the composition of the host bacterial community and the identification of bacterial clusters capable of suppressing or enhancing the invader species.
Collapse
|
23
|
Xu Q, Pan F, Sun Y, Wang C, Shi Y, Zhang T, Yu F, Zhang H. Fecal Carriage and Molecular Epidemiology of Carbapenem-Resistant Enterobacteriaceae from Inpatient Children in a Pediatric Hospital of Shanghai. Infect Drug Resist 2020; 13:4405-4415. [PMID: 33328745 PMCID: PMC7735787 DOI: 10.2147/idr.s275549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To determine the epidemiology characteristics of intestinal colonization of carbapenem-resistant Enterobacteriaceae (CRE) among inpatients in a pediatric hospital in China. Methods A retrospective study was conducted from April to December 2019. Medical records were reviewed to extract the clinical information. Antimicrobial susceptibility was performed by broth microdilution method. Drug resistance determinants and plasmid types were analyzed using polymerase chain reaction (PCR) assays. Multilocus sequence typing (MLST) and Enterobacterial repetitive intergenic consensus sequences PCR (ERIC-PCR) were employed to determine the genetic relationships between strains. Results A total of 90 CRE strains were isolated, with a fecal carriage rate of 8.6% (90/1052), and mainly distributed in E. aerogenes (n=30), K. pneumoniae (n=25) and E. coli (n=23). More than 50% of CRE colonizers had a history of invasive procedures and antibiotic exposures. As high as 91.1% (82/90) of CRE isolates carried carbapenemase genes, with blaNDM-5 (n=56) being the most common, and mainly found in E. aerogenes (51.8%, 29/56) and E. coli (32.1%, 18/56) isolates, which primarily belonged to ST4 (100%, 29/29) and ST692 (55.6%, 10/18), respectively. Followed by blaKPC-2 (n=12), and all found in K. pneumoniae ST11 isolates. Other carbapenemase genes including blaNDM-1, blaIMP-4 and blaIMP-26. Meanwhile, ESBL genes (blaCTX-M, blaTEM-1 and blaSHV) and AmpC genes (blaDHA-1 and blaEBC) were also detected. All CRE isolates showed high resistance to cephalosporins and carbapenemases (97.8%-100.0%) but remained susceptible to tigecycline (98.9%). IncX3 was a major plasmid type in NDM-containing strains (91.3%), and 91.7% of KPC-2-producing K. pneumoniae harboring IncFII and IncFIB plasmids. The ERIC-PCR revealed that several strains with identical STs were genetically similar. Conclusion This study revealed a major intestinal colonization of ST4 NDM-5 E. aerogenes, ST11 KPC-2 K. pneumoniae and ST692 NDM-5 E. coli strains among inpatients in a pediatric hospital. Infection control measures should be implemented immediately to prevent the spread of these strains in clinical settings.
Collapse
Affiliation(s)
- Qi Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|