1
|
Siesto G, Pietrafesa R, Alberico G, Tedesco F, Cardinale M, Romano P, Capece A. Culturable yeast community associated with grape must and honey bees sampled from apiaries located in the vineyards. J Appl Microbiol 2024; 135:lxae160. [PMID: 38991988 DOI: 10.1093/jambio/lxae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
AIM In this study, we investigated culturable yeast community, present in grape must sampled from vineyards with apiaries on the borders, and in honey bees collected in these apiaries. METHODS AND RESULTS To this aim, yeasts isolated from spontaneously fermented grapes randomly collected in two vineyards (P1 and P2) with apiaries on the borders (A1 and A2) were compared to those isolated from spontaneously fermented grapes collected from a vineyard without apiary (P4). At the same time, yeast community was analyzed on bees collected in each apiary placed in the vineyards, in comparison to yeasts isolated from an apiary (A3) located far from the vineyards. The analysis was performed for two consecutive years (2021 and 2022). The isolated yeasts were identified by restriction analysis of amplified ITS region, followed by sequencing of ITS fragment.Our research showed that the presence of apiaries seems to increase yeast counts of grape must, in particular of Saccharomyces cerevisiae; furthermore, the permanence of apiaries in the vineyards allowed the recovering of these yeasts also from bees. CONCLUSIONS Our findings seem to corroborate the role of bees as vectors and reservoirs of oenologically relevant yeasts, such as a source of non-conventional yeasts with potential biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Grazia Alberico
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce-Monteroni, 73100 Lecce, Italy
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
3
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
4
|
van der Merwe M, Jukes MD, Knox C, Moore SD, Hill MP. Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens 2023; 12:1237. [PMID: 37887753 PMCID: PMC10610352 DOI: 10.3390/pathogens12101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour and development. A series of detached fruit bioassays were performed to determine whether the combination of yeast with CrleGV enhances its efficacy. These assays included determining the optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use alongside CrleGV was determined to be 106 cells·mL-1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there was an observed decrease in larval survival. In future studies, field trials will be conducted with combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory findings can be replicated in orchard conditions.
Collapse
Affiliation(s)
- Marcel van der Merwe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Michael D. Jukes
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
| | - Sean D. Moore
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
- Citrus Research International, P.O. Box 5095, Walmer, Gqeberha 6065, South Africa
| | - Martin P. Hill
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| |
Collapse
|
5
|
Di Paola M, Gori A, Stefanini I, Meriggi N, Renzi S, Nenciarini S, Cerasuolo B, Moriondo M, Romoli R, Pieraccini G, Baracchi D, Turillazzi F, Turillazzi S, Cavalieri D. Using wasps as a tool to restore a functioning vine grape mycobiota and preserve the mycobial "terroir". Sci Rep 2023; 13:16544. [PMID: 37783736 PMCID: PMC10545793 DOI: 10.1038/s41598-023-43541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
In the last one-hundred years, the exponential expansion of wine making has artificialized the agricultural landscape as well as its microbial diversity, spreading human selected Saccharomyces cerevisiae strains. Evidence showed that social wasps can harbor a significant fraction of the yeast phenotypic diversity of a given area of wine production, allowing different strains to overwinter and mate in their gut. The integrity of the wasp-yeast ecological interaction is of paramount importance to maintain the resilience of microbial populations associated to wine aromatic profiles. In a field experiment, we verified whether Polistes dominula wasps, reared in laboratory and fed with a traceable S. cerevisiae strain, could be a useful tool to drive the controlled yeast dispersion directly on grapes. The demonstration of the biotechnological potential of social insects in organic wine farming lays the foundations for multiple applications including maintenance of microbial biodiversity and rewilding vineyards through the introduction of wasp associated microbiomes.
Collapse
Affiliation(s)
- Monica Di Paola
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Agnese Gori
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Stefano Nenciarini
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Benedetta Cerasuolo
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Moriondo
- National Research Council, Bioeconomy Institute, Sesto Fiorentino, 50019, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Centre (CISM), University of Florence, via U. Schiff, 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), University of Florence, via U. Schiff, 6, Sesto Fiorentino, 50019, Florence, Italy
| | - David Baracchi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Turillazzi
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Stefano Turillazzi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy.
- LABREMMA-Laboratory for Medical Entomotherapy, Microbiology and Environment, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
6
|
Cho H, Rohlfs M. Transmission of beneficial yeasts accompanies offspring production in Drosophila-An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecol Evol 2023; 13:e10184. [PMID: 37332518 PMCID: PMC10276349 DOI: 10.1002/ece3.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Abstract
Parent-to-offspring transmission of beneficial microorganisms is intimately interwoven with the evolution of social behaviors. Ancestral stages of complex sociality-microbe vectoring interrelationships may be characterized by high costs of intensive parental care and hence only a weak link between the transmission of microbial symbionts and offspring production. We investigate the relationship between yeast symbiont transmission and egg-laying, as well as some general factors thought to drive the "farming" of microscopic fungi by the fruit fly Drosophila melanogaster, an insect with no obvious parental care but which is highly dependent on dietary microbes during offspring development. The process of transmitting microbes involves flies ingesting microbes from their previous environment, storing and vectoring them, and finally depositing them to a new environment. This study revealed that fecal materials of adult flies play a significant role in this process, as they contain viable yeast cells that support larval development. During single patch visits, egg-laying female flies transmitted more yeast cells than non-egg-laying females, suggesting that dietary symbiont transmission is not random, but linked to offspring production. The crop, an extension of the foregut, was identified as an organ capable of storing viable yeast cells during travel between egg-laying sites. However, the amount of yeast in the crop reduced rapidly during periods of starvation. Although females starved for 24 h deposited a smaller amount of yeast than those starved for 6 h, the yeast inoculum produced still promoted the development of larval offspring. The results of these experiments suggest that female Drosophila fruit flies have the ability to store and regulate the transfer of microorganisms beneficial to their offspring via the shedding of fecal material. We argue that our observation may represent an initial evolutionary stage of maternal care through the manipulation of microbial load, from which more specialized feedbacks of sociality and microbe management may evolve.
Collapse
Affiliation(s)
- Hanna Cho
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| | - Marko Rohlfs
- Institute of Ecology, Insect and Chemical Ecology GroupUniversity of BremenBremenGermany
| |
Collapse
|
7
|
Turillazzi S, Meriggi N, Cavalieri D. Mutualistic Relationships between Microorganisms and Eusocial Wasps (Hymenoptera, Vespidae). Microorganisms 2023; 11:1340. [PMID: 37317314 DOI: 10.3390/microorganisms11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Eusocial wasps are represented in the Vespidae by the subfamilies Stenogastrinae, Vespinae and Polistinae. These wasps present colonies that are sometimes composed of thousands of individuals which live in nests built with paper materials. The high density of the adult and larval population, as well as the stable micro environment of the nests, make very favourable conditions for the flourishing of various types of microorganisms. These microorganisms, which may be pathogens, are beneficial and certainly contribute to model the sociality of these insects. The mutualistic relationships that we observe in some species, especially in Actinomycete bacteria and yeasts, could have important fallouts for the development of new medicines and for the use of these insects in agricultural environments.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Insect Pharma Entomotherapy s.r.l., Via M. del Piano 6, 50019 Firenze, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| |
Collapse
|
8
|
Valentini B, Barbero F, Casacci LP, Luganini A, Stefanini I. Forests influence yeast populations vectored by insects into vineyards. Front Microbiol 2022; 13:1039939. [DOI: 10.3389/fmicb.2022.1039939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
IntroductionIn the vineyard, yeast communities impact the ripening and fermentation of grapes and are influenced by geographical location, climate, and soil characteristics. Despite the great advancement in our knowledge of the vineyard mycobiota, a key step of the process leading to the definition of the vineyard yeast community is still poorly understood: if geography, climate, and soil influence the mycobiota, potentially through selection, where do the yeast originate from, and how can they reach the vineyard? In this perspective, it is currently acknowledged that forests host several yeast species and that insects, particularly social wasps, can vector and maintain the yeasts known to populate the vineyard. Alas, the conveyance, fostered by insects, of yeasts from the forest to the vineyard has not been proven yet. In this study, we aimed to assess the existence of links between a potential natural source of yeasts (woods), the vectors (social wasps), and the composition of the vineyard mycobiota.MethodsFor this purpose, the mycobiota of wasps caught in six Italian vineyards were analyzed over 2 years through culturomics approaches.ResultsThe results clearly indicate that the presence of wooded areas close to vineyards is associated with particular features of the mycobiota vectored by social wasps. Wasps caught in vineyards near wooded areas bear a higher number of yeast cells and higher biodiversity than insects caught in vineyards far from woods. Furthermore, insects caught in vineyards close to woods bear distinctive yeast populations, encompassing species such as Saccharomyces cerevisiae.DiscussionOverall, our work provides fundamental insights into the ecology of the vineyard mycobiota and highlights the need to maintain a vineyard-woodland mosaic landscape, thus preserving the suitable habitat for yeast species relevant to wine-making.
Collapse
|
9
|
Cui P, Liu L, Huang Z, Shi S, Kong K, Zhang Y. Diversity, antibacterial activity and chemical analyses of gut-associated fungi isolated from the Crocothemis servilia. Front Microbiol 2022; 13:970990. [PMID: 36187943 PMCID: PMC9523248 DOI: 10.3389/fmicb.2022.970990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Insect-associated fungi are a potentially rich source of novel natural products with antibacterial activity. Here, we investigated the community composition and phylogenetic diversity of gut-associated fungi of the dragonfly (Crocothemis Servilia) using a combination of culture-dependent and culture-independent methods. A total of 42 fungal isolates were obtained from the guts of the dragonfly, which belonged to four classes and thirteen different genera. Amplicon sequencing analyses revealed that the fungal communities were more diverse, and a total of 136 genera were identified and dominated by the genera Wojnowiciella and Phoma. The antibacterial bioassay showed that five fungal crude extracts of representative isolates have shown antibacterial activities. Among them, the extract of Phoma sp. QTH17 showed the best antibacterial activities against Escherichia coli, Micrococcus tetragenus, and Staphylococcus aureus with the disc diameter of inhibition zone diameter (IZD) of 6.50, 10.80, and 8.70 mm, respectively. Chemical analysis of Phoma sp. QTH17 led to the discovery of five known compounds, including ergosterol (1), 3-Chlorogentisyl alcohol (2), epoxydon (3), epoxydon 6-methylsalicylate ester (4) and mannitol (5). Among them, the compound 3 exhibited potent antibacterial activities against E. coli, M. tetragenus, and S. aureus with the IZD of 7.00, 14.00, and 12.50 mm, respectively, which were slightly weaker than those of the positive gentamicin sulfate with the IZD of 11.13, 18.30, and 12.13 mm, respectively. In conclusion, our results confirmed that the diversity of gut-associated fungi of C. Servilia could be expected to explore the resource of new species and antibacterial substances.
Collapse
Affiliation(s)
- Pu Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lijun Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhongdi Huang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuping Shi
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kun Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Yinglao Zhang,
| |
Collapse
|
10
|
Piazzoni M, Negri A, Brambilla E, Giussani L, Pitton S, Caccia S, Epis S, Bandi C, Locarno S, Lenardi C. Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes. SOFT MATTER 2022; 18:6443-6452. [PMID: 35983789 DOI: 10.1039/d2sm00889k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological methods for mosquito larvae control are completely biodegradable and have null or limited effects on nontarget organisms. However, commercially available products have a low residual activity, with the consequent need for multiple applications that inevitably increase costs and the risk of resistance phenomena insurgence. Smart delivery systems made of hydrogels proved their efficacy in increasing the action duration of biolarvicides up to several months, but the lack of an efficient baiting mechanism to strongly attract the target pest remains a problem in practical applications. In this work, we investigated two novel hydrogel-based formulations of completely natural composition for baiting and killing larvae of Aedes albopictus mosquitos. The proposed materials consist of charged crosslinked polysaccharides (chitosan and cellulose) and are specifically manufactured to float in water, simulating organic matter usually present at breeding sites. Within the hydrogels' matrix, yeast colonies of Saccharomyces cerevisiae were embedded as phagostimulants alongside a biolarvicide (Bacillus thuringiensis var. israelensis (Bti)). Despite the similar chemical nature and structure, chitosan-based hydrogels exhibited a markedly superior baiting potential compared to those made of cellulose and also succeeded in efficiently killing mosquito larvae just after a few hours from administration. We are confident that the proposed smart delivery hydrogel made of chitosan can be an enabling tool to attract mosquito larvae towards biopesticides of different nature without delocalizing active ingredients away from the breeding site and to simultaneously increase their residual activity, thus holding the potential of minimizing environmental pollution related to pest control and vector-borne disease prevention.
Collapse
Affiliation(s)
- Marco Piazzoni
- CIMAINA, Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Agata Negri
- Department of Biosciences and Pediatric CRC "Romeo ed Enrica Invernizzi", University of Milan, Milan, ItalyVia Celoria 26, 20133, Milan, Italy
| | - Elisa Brambilla
- Department of Pharmaceutical Sciences, Section of General and Organic Chemistry "A. Marchesisi", Università degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Laura Giussani
- CIMAINA, Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Simone Pitton
- Department of Biosciences and Pediatric CRC "Romeo ed Enrica Invernizzi", University of Milan, Milan, ItalyVia Celoria 26, 20133, Milan, Italy
| | - Silvia Caccia
- Department of Biosciences and Pediatric CRC "Romeo ed Enrica Invernizzi", University of Milan, Milan, ItalyVia Celoria 26, 20133, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric CRC "Romeo ed Enrica Invernizzi", University of Milan, Milan, ItalyVia Celoria 26, 20133, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric CRC "Romeo ed Enrica Invernizzi", University of Milan, Milan, ItalyVia Celoria 26, 20133, Milan, Italy
| | - Silvia Locarno
- Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy.
| | - Cristina Lenardi
- CIMAINA, Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
- Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy.
| |
Collapse
|
11
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Bio-Ethology of Vespa crabro in Sardinia (Italy), an Area of New Introduction. BIOLOGY 2022; 11:biology11040518. [PMID: 35453717 PMCID: PMC9029727 DOI: 10.3390/biology11040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Alien insects, including hornets, may show invasive traits in non-native areas, thus threatening the ecological balance of natural and agro-ecosystems. The European hornet, Vespa crabro, is an omnivorous eusocial insect predator of many arthropods, including honey bees. It is native to Eurasia and established in Sardinia (Italy) in 2010, where it is an alien species. Vespa crabro does not represent a danger for beekeeping in its native area, although the potential environmental impacts in non-native areas are unknown. In view of the lack of such studies, this research investigated the potential invasive traits of V. crabro in an area of new introduction, with special regard to predatory activity against honey bees. Observations of hornet foraging behaviour in open fields highlighted a prevalent foraging activity on fruits and no preference for bees compared to other recognizable arthropods. Furthermore, behavioural and predatory observations of V. crabro near apiaries showed that foragers returned to nests carrying preys in 1% of cases. Vespa crabro did not show invasive traits nor notable behavioural changes in a non-native compared to its native area, as the hornet was confirmed to be a mild predator of honey bees. Therefore, the European hornet is not likely to represent a threat to beekeeping in Sardinia. Abstract Vespa crabro, also known as European hornet, is a eusocial Vespidae originally from Eurasia that was accidentally introduced on the island of Sardinia (Italy) in 2010. Currently, its distribution is limited to the northern area of the island. Considering that a non-harmful species in its native region can exhibit invasive behaviour when established in new environments, bio-ethological observations were conducted to better understand whether V. crabro could show invasive traits in Sardinia, which represents a new introduction area. Data on the foraging activity of the European hornet in open fields were collected within a citizen science monitoring program carried out in Sardinia from 2018 to 2020. Moreover, specific behavioural observations were made in apiaries to assess the predatory activity of the hornet towards honey bees and at the entrance of free-living European hornet colonies to evaluate other aspects of its behaviour, i.e., intranidal and extranidal tasks. The results of our study are discussed in relation to the behavioural traits known for this species in its native areas to place the behavioural repertoire of V. crabro in Sardinia into a wider context. Our observations revealed that V. crabro did not show any changes in behavioural traits in Sardinia compared to those described in its area of origin, so the risk of becoming an invasive species on this island seems unlikely.
Collapse
|
13
|
Madden AA, Lahue C, Gordy CL, Little JL, Nichols LM, Calvert MD, Dunn RR, Smukowski Heil C. Sugar-seeking insects as a source of diverse bread-making yeasts with enhanced attributes. Yeast 2021; 39:108-127. [PMID: 34687090 DOI: 10.1002/yea.3676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Insects represent a particularly interesting habitat in which to search for novel yeasts of value to industry. Insect-associated yeasts have the potential to have traits relevant to modern food and beverage production due to insect-yeast interactions, with such traits including diverse carbohydrate metabolisms, high sugar tolerance, and general stress tolerance. Here, we consider the potential value of insect-associated yeasts in the specific context of baking. We isolated 63 yeast strains from 13 species of hymenoptera from the United States, representing 37 yeast species from 14 genera. Screening for the ability to ferment maltose, a sugar important for bread production, resulted in the identification of 13 strains of Candida, Lachancea, and Pichia species. We assessed their ability to leaven dough. All strains produced baked loaves comparable to a commercial baking strain of Saccharomyces cerevisiae. The same 13 strains were also grown under various sugar and salt conditions relevant to osmotic challenges experienced in the manufacturing processes and the production of sweet dough. We show that many of these yeast strains, most notably strains of Lachancea species, grow at a similar or higher rate and population size as commercial baker's yeast. We additionally assessed the comparative phenotypes and genetics of insect-associated S. cerevisiae strains unable to ferment maltose and identified baking-relevant traits, including variations in the HOG1 signaling pathway and diverse carbohydrate metabolisms. Our results suggest that non-conventional yeasts have high potential for baking and, more generally, showcase the success of bioprospecting in insects for identifying yeasts relevant for industrial uses.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,The Microbe Institute, Everett, Massachusetts, USA
| | - Caitlin Lahue
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,University of North Carolina Chapel-Hill, Chapel Hill, North Carolina, USA
| | - Claire L Gordy
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Joy L Little
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Martha D Calvert
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
15
|
Buser CC, Jokela J, Martin OY. Scent of a killer: How could killer yeast boost its dispersal? Ecol Evol 2021; 11:5809-5814. [PMID: 34141185 PMCID: PMC8207343 DOI: 10.1002/ece3.7534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Vector-borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis-the so-called "killer yeast" system. "Killer yeast" consists of Saccharomyces cerevisiae yeast hosting two double-stranded RNA viruses (M satellite dsRNAs, L-A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing "killer yeast" phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.
Collapse
Affiliation(s)
- Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Jukka Jokela
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
16
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Cirigliano A, Mura F, Cecchini A, Tomassetti MC, Maras DF, Di Paola M, Meriggi N, Cavalieri D, Negri R, Quagliariello A, Hallsworth JE, Rinaldi T. Active microbial ecosystem in
Iron‐Age
tombs of the Etruscan civilization. Environ Microbiol 2020; 23:3957-3969. [DOI: 10.1111/1462-2920.15327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Angela Cirigliano
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Francesco Mura
- CNIS – Center for Nanotechnology Applied to Industry of La Sapienza Sapienza University of Rome Rome Italy
| | - Adele Cecchini
- Associazione No Profit ‘Amici Delle Tombe Dipinte di Tarquinia’ Tarquinia Italy
| | | | - Daniele Federico Maras
- Soprintendenza Archeologia Belle Arti e Paesaggio per l'Area Metropolitana di Roma, la Provincia di Viterbo e l'Etruria Meridionale Ministero dei Beni e delle Attività Culturali e del Turismo Rome Italy
| | | | | | | | - Rodolfo Negri
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science University of Padova Padova Italy
| | - John E. Hallsworth
- Institute for Global Food Security School of Biological Sciences, Queen's University Belfast Belfast UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| |
Collapse
|
18
|
Di Paola M, Meriggi N, Cavalieri D. Applications of Wild Isolates of Saccharomyces Yeast for Industrial Fermentation: The Gut of Social Insects as Niche for Yeast Hybrids' Production. Front Microbiol 2020; 11:578425. [PMID: 33193200 PMCID: PMC7661385 DOI: 10.3389/fmicb.2020.578425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
In the industry of fermented food and beverages, yeast cultures are often selected and standardized in order to ensure a better control of fermentation and a more stable product over time. Several studies have shown that the organoleptic characteristics of fermented products reflect geographic variations of the microbial community composition. Despite investigations of the worldwide distribution and genetic diversity of Saccharomyces cerevisiae, it is still unclear how and to what extent human intervention has shaped the brewer’s yeast population structure. The genotypic and phenotypic characterization of environmental yeast populations and their potential application in the fermentative processes can significantly enrich the industrial fermentation products. Social insects have proven to be closely associated to the yeasts ecology. The relationships between yeasts and insects represent a fundamental aspect for understanding the ecological and evolutionary forces shaping their adaptation to different niches. Studies on phylogenetic relationships of S. cerevisiae populations showed genetic differences among strains isolated from gut and non-gut environments (i.e., natural sources and fermentation). Recent evidences showed that insect’s gut is a reservoir and an evolutionary niche for Saccharomyces, contributing to its survival and evolution, favoring its dispersion, mating and improving the inter-specific hybrids production during hibernation. Here, we discuss the potential use of social insects for production of a wide range of hybrid yeasts from environmental Saccharomyces isolates suitable for industrial and biotechnological applications.
Collapse
Affiliation(s)
- Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|