1
|
Shen X, Ran J, Yang Q, Li B, Lu Y, Zheng J, Xu L, Jia K, Li Z, Peng L, Fang R. RACK1 and NEK7 mediate GSDMD-dependent macrophage pyroptosis upon Streptococcus suis infection. Vet Res 2024; 55:120. [PMID: 39334337 PMCID: PMC11428613 DOI: 10.1186/s13567-024-01376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that induces an NLRP3-dependent cytokine storm. NLRP3 inflammasome activation triggers not only an inflammatory response but also pyroptosis. However, the exact mechanism underlying S. suis-induced macrophage pyroptosis is not clear. Our results showed that SS2 induced the expression of pyroptosis-associated factors, including lactate dehydrogenase (LDH) release, propidium iodide (PI) uptake and GSDMD-N expression, as well as NLRP3 inflammasome activation and IL-1β secretion. However, GSDMD deficiency and NLRP3 inhibition using MCC950 attenuated the SS2-induced expression of pyroptosis-associated factors, suggesting that SS2 induces NLRP3-GSDMD-dependent pyroptosis. Furthermore, RACK1 knockdown also reduced the expression of pyroptosis-associated factors. In addition, RACK1 knockdown downregulated the expression of NLRP3 and Pro-IL-1β as well as the phosphorylation of P65. Surprisingly, the interaction between RACK1 and P65 was detected by co-immunoprecipitation, indicating that RACK1 induces macrophage pyroptosis by mediating the phosphorylation of P65 to promote the transcription of NLRP3 and pro-IL-1β. Similarly, NEK7 knockdown decreased the expression of pyroptosis-associated factors and ASC oligomerization. Moreover, the results of co-immunoprecipitation revealed the interaction of NEK7-RACK1-NLRP3 during SS2 infection, demonstrating that NEK7 mediates SS2-induced pyroptosis via the regulation of NLRP3 inflammasome assembly and activation. These results demonstrate the important role of RACK1 and NEK7 in SS2-induced pyroptosis. Our study provides new insight into SS2-induced cell death.
Collapse
Affiliation(s)
- Xin Shen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jinrong Ran
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qingqing Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Bingjie Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiajia Zheng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Liuyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Hu X, Lu Y, Yu X, Jia K, Xiong Q, Fang R. The suppressive role of NLRP6 in host defense against Streptococcus suis infection. Vet Microbiol 2024; 296:110166. [PMID: 38968694 DOI: 10.1016/j.vetmic.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Streptococcus suis (S. suis) disease is a prevalent zoonotic infectious threat that elicits a systemic inflammatory response in both swine and humans, frequently culminating in high mortality rates. The excessive inflammation triggered by S. suis infection can precipitate tissue damage and sudden death; however, a comprehensive strategy to mitigate this inflammatory response remains elusive. Our study examines the role of NLRP6 in S. suis infection, with a particular focus on its involvement in pathogen regulation. A marked upregulation of NLRP6 was observed in peritoneal macrophages post-infection with S. suis SC19 strain, consequently activating the NLRP6 inflammasome. Furthermore, SC19 infection was found to augment the secretion of pro-inflammatory cytokines IL-1β via NLRP6 activation, while NLRP6 deficiency mitigates the invasion and adhesion of SC19 to macrophages. In vivo models revealed that NLRP6 deletion enhanced survival rates of SC19-infected mice, alongside a reduction in tissue bacterial load and inflammatory cytokine levels. NLRP6-/- mice were shown to exhibit attenuated inflammatory responses in pulmonary, hepatic, and splenic tissues post-SC19 infection, as evidenced by lower inflammation scores. Flow cytometry analyses further substantiated that NLRP6 is involved in modulating macrophage and neutrophil recruitment during infection. Our findings suggest that NLRP6 negatively regulates host resistance against S. suis infection; its absence results in reduced mortality, bacterial colonization, and a milder inflammatory response. Elucidating the mechanism of NLRP6 in S. suis-induced inflammation provides novel insights and theoretical underpinnings for the prophylaxis and therapeutics of S. suis diseases.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoying Yu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qiuting Xiong
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Su YC, Wang CC, Chen YW, Wang ST, Shu CY, Tsai PJ, Ko WC, Chen CS, Chen PL. Haemolysin Ahh1 secreted from Aeromonas dhakensis activates the NLRP3 inflammasome in macrophages and mediates severe soft tissue infection. Int Immunopharmacol 2024; 128:111478. [PMID: 38183913 DOI: 10.1016/j.intimp.2023.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Severe soft tissue infections caused by Aeromonas dhakensis, such as necrotizing fasciitis or cellulitis, are prevalent in southern Taiwan and around the world. However, the mechanism by which A. dhakensis causes tissue damage remains unclear. Here, we found that the haemolysin Ahh1, which is the major virulence factor of A. dhakensis, causes cellular damage and activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome signalling pathway. Deletion of ahh1 significantly downregulated caspase-1, the proinflammatory cytokine interleukin 1β (IL-1β) and gasdermin D (GSDMD) and further decreased the damage caused by A. dhakensis in THP-1 cells. In addition, we found that knockdown of the NLRP3 inflammasome confers resistance to A. dhakensis infection in both THP-1 NLRP3-/- cells and C57BL/6 NLRP3-/- mice. In addition, we demonstrated that severe soft-tissue infections treated with antibiotics combined with a neutralizing antibody targeting IL-1β significantly increased the survival rate and alleviated the degree of tissue damage in model mice compared control mice. These findings show that antibiotics combined with therapies targeting IL-1β are potential strategies to treat severe tissue infections caused by toxin-producing bacteria.
Collapse
Affiliation(s)
- Yu-Cheng Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Chun Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Wei Chen
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90024, United States
| | - Sin-Tian Wang
- Department of Medical Laboratory Science and Biotechnology College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cing-Ying Shu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Lin Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
4
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
5
|
Ni C, Gao S, Li X, Zheng Y, Jiang H, Liu P, Lv Q, Huang W, Li Q, Ren Y, Mi Z, Kong D, Jiang Y. Fpr2 exacerbates Streptococcus suis-induced streptococcal toxic shock-like syndrome via attenuation of neutrophil recruitment. Front Immunol 2023; 14:1094331. [PMID: 36776849 PMCID: PMC9911822 DOI: 10.3389/fimmu.2023.1094331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
The life-threatening disease streptococcal toxic shock-like syndrome (STSLS), caused by the bacterial pathogen Streptococcus suis (S. suis). Proinflammatory markers, bacterial load, granulocyte recruitment, and neutrophil extracellular traps (NETs) levels were monitored in wild-type (WT) and Fpr2-/- mice suffering from STSLS. LXA4 and AnxA1, anti-inflammatory mediators related to Fpr2, were used to identity a potential role of the Fpr2 in STSLS development. We also elucidated the function of Fpr2 at different infection sites by comparing the STSLS model with the S. suis-meningitis model. Compared with the WT mice, Fpr2-/- mice exhibited a reduced inflammatory response and bacterial load, and increased neutrophil recruitment. Pretreatment with AnxA1 or LXA4 impaired leukocyte recruitment and increased both bacterial load and inflammatory reactions in WT but not Fpr2-/- mice experiencing STSLS. These results indicated that Fpr2 impairs neutrophil recruitment during STSLS, and this impairment is enhanced by AnxA1 or LXA4. By comparing the functions of Fpr2 in different S. suis infection models, inflammation and NETs was found to hinder bacterial clearance in S. suis meningitis, and conversely accelerate bacterial clearance in STSLS. Therefore, interference with neutrophil recruitment could potentially be harnessed to develop new treatments for this infectious disease.
Collapse
Affiliation(s)
- Chengpei Ni
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xudong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hua Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiqiang Mi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
6
|
IL-18 Signaling Is Essential for Causing Streptococcal Toxic Shock-like Syndrome (STSLS). Life (Basel) 2022; 12:life12091324. [PMID: 36143361 PMCID: PMC9503922 DOI: 10.3390/life12091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen that can cause multiple diseases, including streptococcal toxic shock-like syndrome (STSLS). The S. suis SC-19 strain could cause NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome hyperactivation, then induce a cytokine storm and STSLS. Although IL-18 is the downstream effector of NLRP3 signaling, the role of IL-18 signaling on STSLS remains to be elucidated. Thus, il18r1 gene knockout mice were constructed and challenged with the SC-19 strain. Alleviated clinical signs and tissue damages, as well as improved survival were observed in il18r−/− mice compared with the WT mice post-SC-19 challenge. Meanwhile, an obvious decrease in the inflammatory cytokine levels in blood was observed in the il18r-/- mice infected with SC-19. Therefore, IL-18, the downstream effector of NLRP3 inflammasome activation, was responsible for the cytokine storm and STSLS development caused by S. suis, suggesting that IL-18/IL-18Rα signaling could serve as a new target for STSLS.
Collapse
|
7
|
Li G, Zong X, Cheng Y, Xu J, Deng J, Huang Y, Ma C, Fu Q. miR-223-3p contributes to suppressing NLRP3 inflammasome activation in Streptococcus equi ssp. zooepidemicus infection. Vet Microbiol 2022; 269:109430. [PMID: 35427992 DOI: 10.1016/j.vetmic.2022.109430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is an essential pathogen in a range of species, causing a worldwide variety of diseases, such as meningitis, endocarditis, and septicaemia. Studies have shown that microRNAs (miRNAs), which regulate target genes at the post-transcriptional level, play an important regulatory role in the organism. In this study, the infection of J774A.1 murine macrophages with SEZ up-regulated NLRP3 inflammasome and downstream pathways accompanied by miR-223-3p down-regulation. Through computational prediction and experimental confirmation, we have shown that miR-223-3p directly targets the NLRP3 mRNA. Consequently, overexpression of miR-223-3p suppressed NLRP3 inflammasome activation and downstream pathways in response to SEZ infection. The miR-223-3p inhibitor exhibited the opposite effect, causing hyperactivation of NLRP3 inflammation activation and downstream pathways. Additionally, we further demonstrated that miRNA-223-3p inhibited the secretion of IL-1β and IL-18 by regulating the NLRP3/caspase-1 pathway. Furthermore, intravenous administration of miR-223-3p significantly decreased inflammation in mice in response to SEZ. In conclusion, our results demonstrated that miR-223-3p contributes to suppressing the NLRP3 inflammasome activation in SEZ infection, contributing novel evidence to identify a therapeutic target for treating SEZ.
Collapse
Affiliation(s)
- Guochao Li
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Xueqing Zong
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Yun Cheng
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jianqi Xu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jingfei Deng
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China.
| |
Collapse
|
8
|
Öhlmann S, Krieger AK, Gisch N, Meurer M, de Buhr N, von Köckritz-Blickwede M, Schütze N, Baums CG. d-Alanylation of Lipoteichoic Acids in Streptococcus suis Reduces Association With Leukocytes in Porcine Blood. Front Microbiol 2022; 13:822369. [PMID: 35509315 PMCID: PMC9058155 DOI: 10.3389/fmicb.2022.822369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a common swine pathogen but also poses a threat to human health in causing meningitis and severe cases of streptococcal toxic shock-like syndrome (STSLS). Therefore, it is crucial to understand how S. suis interacts with the host immune system during bacteremia. As S. suis has the ability to introduce d-alanine into its lipoteichoic acids (LTAs), we investigated the working hypothesis that cell wall modification by LTA d-alanylation influences the interaction of S. suis with porcine blood immune cells. We created an isogenic mutant of S. suis strain 10 by in-frame deletion of the d-alanine d-alanyl carrier ligase (DltA). d-alanylation of LTAs was associated with reduced phagocytosis of S. suis by porcine granulocytes, reduced deposition of complement factor C3 on the bacterial surface, increased hydrophobicity of streptococci, and increased resistance to cationic antimicrobial peptides (CAMPs). At the same time, survival of S. suis was not significantly increased by LTA d-alanylation in whole blood of conventional piglets with specific IgG. However, we found a distinct cytokine pattern as IL-1β but not tumor necrosis factor (TNF)-α levels were significantly reduced in blood infected with the ΔdltA mutant. In contrast to TNF-α, activation and secretion of IL-1β are inflammasome-dependent, suggesting a possible influence of LTA d-alanylation on inflammasome regulation. Especially in the absence of specific antibodies, the association of S. suis with porcine monocytes was reduced by d-alanylation of its LTAs. This dltA-dependent phenotype was also observed with a non-encapsulated dltA double mutant indicating that it is independent of capsular polysaccharides. High antibody levels caused high levels of S. suis—monocyte—association followed by inflammatory cell death and strong production of both IL-1β and TNF-α, while the influence of LTA d-alanylation of the streptococci became less visible. In summary, the results of this study expand previous findings on d-alanylation of LTAs in S. suis and suggest that this pathogen specifically modulates association with blood leukocytes through this modification of its surface.
Collapse
Affiliation(s)
- Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ann-Kathrin Krieger
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Christoph Georg Baums,
| |
Collapse
|
9
|
Tanishita Y, Sekiya H, Inohara N, Tsuchiya K, Mitsuyama M, Núñez G, Hara H. Listeria toxin promotes phosphorylation of the inflammasome adaptor ASC through Lyn and Syk to exacerbate pathogen expansion. Cell Rep 2022; 38:110414. [PMID: 35196496 DOI: 10.1016/j.celrep.2022.110414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammasome activation exacerbates infectious disease caused by pathogens such as Listeria monocytogenes, Staphylococcus aureus, and severe acute respiratory syndrome coronavirus 2. Although these pathogens activate host inflammasomes to regulate pathogen expansion, the mechanisms by which pathogen toxins contribute to inflammasome activation remain poorly understood. Here we show that activation of inflammasomes by Listeria infection is promoted by amino acid residue T223 of listeriolysin O (LLO) independently of its pore-forming activity. LLO T223 is critical for phosphorylation of the inflammasome adaptor ASC at amino acid residue Y144 through Lyn-Syk signaling, which is essential for ASC oligomerization. Notably, a Listeria mutant expressing LLO T223A is impaired in inducing ASC phosphorylation and inflammasome activation. Furthermore, the virulence of LLO T223A mutant is markedly attenuated in vivo due to impaired ability to activate the inflammasome. Our results reveal a function of a pathogen toxin that exacerbates infection by promoting phosphorylation of ASC.
Collapse
Affiliation(s)
- Yuko Tanishita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hisateru Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
10
|
Interleukin-17A Contributes to Bacterial Clearance in a Mouse Model of Streptococcal Toxic Shock-Like Syndrome. Pathogens 2021; 10:pathogens10060766. [PMID: 34204511 PMCID: PMC8235343 DOI: 10.3390/pathogens10060766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis (S. suis), an emerging zoonotic pathogen, can cause streptococcal toxic shock-like syndrome (STSLS) in humans with high mortality. STSLS is characterized by high bacterial burden, an inflammatory cytokine storm, multi-organ dysfunction, and ultimately acute host death. Although it has been found that a significantly high level of IL-17A was induced in an NLRP3-dependent manner during STSLS development, the role of IL-17A on S. suis STSLS remains to be elucidated. In this study, we found that the epidemic strain SC 19 caused a significantly higher level of IL-17A than the non-epidemic strain P1/7. In addition, higher bacterial burden was observed from SC 19-infected il17a−/− mice than il17a+/+ mice, although acute death, tissue injury and inflammatory cytokines storm were observed in both types of mice. Furthermore, compared with il17a+/+ mice, the level of neutrophils recruitment was lower in il17a−/− mice, and the levels of induced antimicrobial proteins, such as CRAMP, S100A8 and lipocalin-2, were also decreased in il17a−/− mice. In conclusion, this study demonstrated that IL-17A does not contribute to the severe inflammation, although it may play a minor role for bacterial clearance by inducing antimicrobial proteins and promoting neutrophil recruitment during STSLS.
Collapse
|
11
|
Xu L, Lin L, Lu X, Xiao P, Liu R, Wu M, Jin M, Zhang A. Acquiring high expression of suilysin enable non-epidemic Streptococccus suis to cause streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation. Emerg Microbes Infect 2021; 10:1309-1319. [PMID: 33792531 PMCID: PMC8253218 DOI: 10.1080/22221751.2021.1908098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidemic Streptococcus suis (S. suis) strain [Sequence type (ST) 7] was gradually evolving from the non-epidemic ST1 strain and got the ability for high expressing of suilysin (SLY). And the high expression of SLY was required for the epidemic strain to cause NLRP3 hyperactivation, which is essential for the induction of cytokines storm, dysfunction of multiple organs, and a high incidence of mortality, the characters of streptococcal toxic shock-like syndrome (STSLS). However, it remains to be elucidated whether acquiring high SLY expression due to genome evolution was sufficient for the non-epidemic strain to cause STSLS. Here, we found that the overexpression of SLY in ST1 strain (P1/7-SLY) could obviously increase the inflammasome activation, which was dependent on NLRP3 signalling. In contrast, the strain (P1/7-mSLY) overexpressing the mutant SLY (protein without hemolytic activity) could not significantly increase the inflammasome activation. Furthermore, similar to the epidemic strain, P1/7-SLY could cause STSLS in nlrp3+/+ mice but not in nlrp3−/− mice. In contrast, P1/7-mSLY could not cause STSLS in both nlrp3+/+ mice and nlrp3−/− mice. In summary, we demonstrate that genetic evolution enabling S. suis strain to express high level of SLY may be an essential and sufficient condition for NLRP3 inflammasome hyperactivation, which could further cause cytokines storm and STSLS.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Lan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Peng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Ran Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, People's Republic of China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, People's Republic of China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, People's Republic of China
| |
Collapse
|